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Abstract— We establish that the Lagrangian dual of a
constrained linear estimation problem is a particular nonlinear
optimal control problem. The result has an elegant symmetry,
which is revealed when the constrained estimation problem is
expressed as an equivalent nonlinear optimisation problem.

I. I

The relationship between linear estimation and linear
quadratic control is well known in the unconstrained case.
Since the original work of Kalman and others [4], [5],
many authors have contributed to further understand this
relationship. For example, Kailath, Sayed and Hassibi [3]
have explored duality in the unconstrained case using the
geometrical concepts of dual bases and orthogonal com-
plements. The connection between the two unconstrained
optimisation problems using Lagrangian duality has also
been established in, e.g., the recent work of Rao [6].

However, to the best of our knowledge, the duality
between estimation and control remains an open question in
the constrained case. Here we derive the Lagrangian dual
of a constrained estimation problem and show that it leads
to a particular nonlinear optimal control problem. We then
show that the primal constrained estimation problem has an
equivalent formulation as a nonlinear optimisation problem,
exposing a clear symmetry with its dual.

II. C E

It is well known (e.g., [2]) that the unconstrained state
estimation problem for linear systems can be set up as an
optimisation problem. Specifically, consider

xk+1 = Axk + Bwk, k = 0, · · · ,N − 1 ,
yk = Cxk + ek, k = 1, · · · ,N ,

(II.1)

where xk ∈ IRn, wk ∈ IRm, yk ∈ IRp, and where {wk}, {ek}

are i.i.d. sequences having Gaussian distributions N(0,Q)
and N(0,R), respectively, and x0 has a Gaussian distribution
N(x̄0, P0). We will assume throughout the paper that Q,
R and P0 are symmetric, positive definite matrices. Given
{yk} , {y0, . . . , yN}, then the minimum variance unbiased
estimator of {xk} , {x0, . . . , xN} satisfies

x̂∗ , arg min
x̂k ,êk ,ŵk

J
(

{x̂k}, {êk}, {ŵk}
)

, (II.2)

where

J
(

{x̂k}, {êk}, {ŵk}
)

=
1
2
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2
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0
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1
2
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k=1

||êk||
2
R−1

+
1
2

N−1∑

k=0

||ŵk||
2
Q−1 , (II.3)

and where ‖x‖2M denotes xT Mx for a real vector x and real
symmetric matrix M.

The optimisation in (II.2) is carried out subject to the
linear constraints

x̂k+1 = Ax̂k + Bŵk , k = 0, · · · ,N − 1 ,
êk = yk −Cx̂k , k = 1, · · · ,N .

(II.4)

It is well known that the solution to (II.2)–(II.3) is the
Kalman filter [2].

Here we consider a constrained version of the above
problem, in which the sequence {wk} has a truncated Gaus-
sian distribution, that is, the distribution is a scaled Gaussian
distribution N(0,Q) in a region Ω ⊂ IRm and zero elsewhere.
It can be shown that the appropriate optimisation problem
becomes (II.2)–(II.3) subject to the additional constraint
ŵk ∈ Ω. This yields the estimate which maximises the
joint probability density of the states {x0, . . . , xN} given
the measurements {y0, . . . , yN}, and leads to the following
constrained estimation problem

Pe : min
x̂k ,êk ,ŵk
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2
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, (II.5)

subject to:

x̂k+1 = Ax̂k + Bŵk , k = 0, · · · ,N − 1 , (II.6)
êk = yk − Cx̂k , k = 1, · · · ,N , (II.7)
{x̂0, . . . , x̂N , ê1, . . . , êN , ŵ0, . . . , ŵN−1} ∈ X , (II.8)

where

X= IRn × · · · × IRn
︸          ︷︷          ︸

N+1

× IRp × · · · × IRp
︸           ︷︷           ︸

N

×Ω × · · · ×Ω
︸        ︷︷        ︸

N

. (II.9)

Provided Ω is a polyhedral set, that is, the intersection
of a finite number of closed half-spaces, then the above



problem is a well studied quadratic programme. Many
authors have investigated this primal constrained estimation
problem (e.g., [7]). In practice, the problem is usually
formulated in a moving horizon sense, i.e., the fixed horizon
problem (II.5)–(II.9) is solved over a window of size N that
is “moved” at each time step. However, our interest here is
in the underlying fixed horizon problem (II.5)–(II.9).

III. B  L D

Here we review well known facts about Lagrangian
duality. Consider the primal problem

P : min f (x) , (III.1)

subject to:

gi(x) ≤ 0 ,
hi(x) = 0 ,
x ∈ X .

where f : IRn → IR, g : IRn → IRm, h : IRn → IRl and X is a
nonempty set in IRn. Then the Lagrangian dual problem is

D : max θ(u, v) , (III.2)

subject to:

u ≥ 0 .

where

θ(u, v) , inf{ f (x) + uT g(x) + vT h(x) : x ∈ X} (III.3)

is the Lagrangian dual function. The entries of the vectors
u ∈ IRm and v ∈ IRl are known as the Lagrange multipliers.
The following is a well known result (see, for example,
Theorem 6.2.4 in [1]).

Theorem 3.1 (Strong Duality Theorem): Let X be a
nonempty convex set in IRn, and let f : IRn → IR, g : IRn →

IRm be convex, and h : IRn → IRl be affine. Suppose that the
following constraint qualification is satisfied. There exist an
x̂ ∈ X such that g(x̂) < 0 and h(x̂) = 0, and 0 ∈ int h(X)
(the interior of h(X)), where h(X) = {h(x) : x ∈ X}. Then,

inf{ f (x) : x ∈ X, g(x) ≤ 0, h(x) = 0} =
sup{θ(u, v) : u ≥ 0} . (III.4)

Furthermore, if the inf is finite, then sup{θ(u, v) : u ≥ 0} is
achieved at (ū, v̄) with ū ≥ 0. If the inf is achieved at x̄,
then ūT g(x̄) = 0.
Notice that, under the conditions of the theorem, both the
primal problem (III.1) and the dual problem (III.2) achieve
identical optima. This is often referred to as absence of a
duality gap.

IV. D  C E  C

The following result establishes strong duality between
the constrained estimation problem (II.5)–(II.9) and a par-
ticular nonlinear optimal control problem.

Theorem 4.1: Assume that Ω in (II.9) is a nonempty
convex set. Given the primal constrained fixed horizon
estimation problem Pe, defined by Equations (II.5)–(II.9),
the Lagrangian dual problem is:

De : min
λk ,uk

{

1
2
‖ATλ0 + P−1

0 x̄0‖
2
P0

+
1
2

N∑

k=1

‖uk − R−1yk‖
2
R

+

N−1∑

k=0

[

1
2
‖ζ̄k‖

2
Q + (ζk − ζ̄k)T Qζ̄k

]



+ γ (IV.1)

subject to:

λk−1 = ATλk +CT uk, k = 1, · · · ,N, (IV.2)
λN = 0, (IV.3)

ζk = BTλk , k = 0, · · · ,N − 1 , (IV.4)

ζ̄k = Q−1/2
Π
Ω̃

Q1/2 ζk , k = 0, · · · ,N − 1 , (IV.5)

where γ is the constant term

γ , −
1
2
‖x̄0‖

2
P−1

0
−

1
2

N∑

k=1

‖yk‖
2
R−1 ,

and where Π
Ω̃

denotes the minimum Euclidean distance
projection onto Ω̃ , {z = Q−1/2w : w ∈ Ω}, that is,

Π
Ω̃

: IRm −→ Ω̃

v 7−→ v̄ = Π
Ω̃

v , arg min
z∈Ω̃
‖z − v‖ . (IV.6)

Moreover, there is no duality gap, that is, the minimum
achieved in (II.5) is equal to minus the minimum achieved
in (IV.1).

Proof: Consider the primal constrained fixed horizon
estimation problem Pe, defined by Equations (II.5)–(II.9).
From (III.3) and (II.9), the Lagrangian dual function θ is
given by

θ
(

{λk}, {uk}
)

= inf
ŵk∈Ω,x̂k ,êk

L
(

{ŵk}, {x̂k}, {êk}, {λk}, {uk}
)

, (IV.7)

where the function L is defined as,

L
(

{ŵk}, {x̂k}, {êk}, {λk}, {uk}
)

=
1
2
‖x̂0 − x̄0‖

2
P−1

0

+
1
2

N∑

k=1

||êk||
2
R−1 +

1
2

N−1∑

k=0

||ŵk||
2
Q−1

+

N−1∑

k=0

λT
k

[

x̂k+1 − Ax̂k − Bŵk

]

+

N∑

k=1

uT
k

[

yk −Cx̂k − êk

]

, (IV.8)

where {λk} and {uk} are the Lagrangian multipliers corre-
sponding, respectively, to the linear equalities (II.6) and



(II.7). The function L can be rewritten as,

L
(

{ŵk}, {x̂k}, {êk}, {λk}, {uk}
)

=
1
2
‖x̂0 − x̄0‖

2
P−1

0

+

N∑

k=1

{

λT
k−1 x̂k − λ

T
k−1Ax̂k−1 − uT

k Cx̂k
}

+

N∑

k=1

{

1
2
||êk||

2
R−1 − uT

k êk + uT
k yk

}

+

N−1∑

k=0

{

1
2
||ŵk||

2
Q−1 − λ

T
k Bŵk

}

. (IV.9)

Notice that the terms that depend on the constrained vari-
ables ŵk are independent of the other variables, x̂k and êk,
with respect to which the minimisation (IV.7) is carried out.
Hence, from the convexity of the function L, the values that
achieve the infimum in (IV.7), denoted ŵ∗k, x̂∗k and ê∗k, can
be computed from:

ŵ∗k = arg min
ŵk∈Ω

{

1
2
||ŵk||

2
Q−1 − λ

T
k Bŵk

}

,

k = 0, · · · ,N − 1, (IV.10)
∂L(·)
∂x̂0

= P−1
0

(

x̂∗0 − x̄0

)

− ATλ0 = 0, (IV.11)

∂L(·)
∂x̂k

= λk−1 − ATλk − CT uk = 0 ,

k = 1, · · · ,N − 1, (IV.12)
∂L(·)
∂x̂N

= λN−1 − CT uN = 0, (IV.13)

∂L(·)
∂êk

= R−1ê∗k − uk = 0 ,

k = 1, · · · ,N. (IV.14)

We will express the optimisation problem (IV.10) in a more
convenient way. To this end, define the variables

ζk , BTλk , (IV.15)

v , Q−1/2ŵk , (IV.16)

v∗ , Q−1/2ŵ∗k , (IV.17)

to transform (IV.10) into the minimum Euclidean distance
problem

v∗ = arg min
v∈Ω̃,

{

1
2

vT v − (ζT
k Q1/2)v

}

, (IV.18)

where Ω̃ , {v : Q1/2v ∈ Ω}. The solution to (IV.18) can be
expressed as

v∗ = v̄ , Π
Ω̃

Q1/2ζk , (IV.19)

where Π
Ω̃

is the Euclidean projection (IV.6). Using (IV.17)
and (IV.19), the solution to (IV.10) is then

ŵ∗k = Q1/2
Π
Ω̃

Q1/2ζk . (IV.20)

Finally, we define

ζ̄k , Q−1ŵ∗k = Q−1/2
Π
Ω̃

Q1/2ζk . (IV.21)

and introduce an extra variable, λN , 0, for ease of notation.
Thus, from (IV.10)–(IV.15), and (IV.21), we obtain:

ŵ∗k = Qζ̄k , k = 0, · · · ,N − 1, (IV.22)

ζ̄k , Q−1/2
Π
Ω̃

Q1/2ζk , k = 0, · · · ,N − 1, (IV.23)

ζk , BTλk , k = 0, · · · ,N − 1, (IV.24)
λN , 0 , (IV.25)

λk−1 = ATλk +CT uk , k = 1, · · · ,N, (IV.26)

x̂∗0 = P0ATλ0 + x̄0 , (IV.27)
ê∗k = Ruk , k = 1, · · · ,N. (IV.28)

Substituting (IV.22)–(IV.28) into (IV.9) we obtain, after
some manipulations, the Lagrangian dual function:

θ
(

{λk}, {uk}
)

= L
(

{ŵ∗k}, {x̂
∗
k}, {ê

∗
k}, {λk}, {uk}

)

= −
1
2
{

‖ATλ0‖
2
P0
+ 2λT

0 Ax̄0
}

−
1
2

N∑

k=1

{

‖uk‖
2
R − 2uT

k yk
}

+

N−1∑

k=0

{1
2
ζ̄T

k Qζ̄k − ζT
k Qζ̄k

}

.

(IV.29)

Finally, completing the squares in (IV.29), and after further
algebraic manipulations, we obtain:

θ
(

{λk}, {uk}
)

= −
1
2
‖ATλ0 + P−1

0 x̄0‖
2
P0

−
1
2

N∑

k=1

‖uk − R−1yk‖
2
R

−

N−1∑

k=0

[

1
2
‖ζ̄k‖

2
Q + (ζk − ζ̄k)T Qζ̄k

]

+
1
2
‖x̄0‖

2
P−1

0
+

1
2

N∑

k=1

‖yk‖
2
R−1 .

(IV.30)

The formulation of the dual problem De in (IV.1) follows
from (III.2)–(III.3), and the fact that max θ = −min(−θ) and
the optimisers are the same. Also, from Theorem 3.1, we
conclude that there is no duality gap, that is, the minimum
achieved in (II.5) is equal to minus the minimum achieved
in (IV.1).

A particular case of Theorem 4.1 is the following well
known result for the unconstrained case.

Corollary 4.2: In the case in which the variables ŵk in
the primal problem Pe are unconstrained (i.e., Ω = Rm), the



dual problem becomes

De : min
λk ,uk

1
2

{

‖ATλ0 + P−1
0 x̄0‖

2
P0

+

N∑

k=1

‖uk − R−1yk‖
2
R

+

N−1∑

k=0

‖BTλk‖
2
Q

}

+ γ , (IV.31)

subject to:

λk−1 = ATλk +CT uk, k = 1, · · · ,N, (IV.32)
λN = 0, (IV.33)

where γ , − 1
2 ‖x̄0‖

2
P−1

0
− 1

2
∑N

k=1 ‖yk‖
2
R−1 is a constant.

Proof: In the case where ŵk is unconstrained, it is
easily seen that the minimiser of (IV.10) is:

ŵ∗k = QBTλk = Qζk, k = 0, · · · ,N − 1. (IV.34)

Also note that ζ̄k = ζk in (IV.21) since the projection (IV.6)
reduces to the identity mapping in the unconstrained case.
The result then follows upon substituting ζ̄k = ζk = BTλk in
expression (IV.1).

V. A E F   P P

In the previous section we have shown that problem
De is dual to problem Pe in (II.5)–(II.9). We can gain
further insight by expressing Pe in a different way. This
is facilitated by the following results.

Lemma 5.1: Let Ω̃ ⊂ IRm be a closed convex set that
contains zero in its interior. Let v ∈ IRm such that v < Ω̃.
Then there exists a unique point v̄ ∈ Ω̃ with minimum
Euclidean distance from v. Furthermore, v and v̄ satisfy the
following inequality

(v − v̄)T v̄ > 0 . (V.1)
Proof: Since 0 ∈ int Ω̃ (the interior of Ω̃) then Ω̃ is

nonempty. From Theorem 2.4.1 of [1] we have that there
exists a unique v̄ ∈ Ω̃ with minimum Euclidean distance
from v, and v̄ is the minimiser if and only if

(v − v̄)T (z − v̄) ≤ 0 , ∀z ∈ Ω̃ . (V.2)

Now, let ξ ∈ int Ω̃. This implies that there exists an ε > 0
such that the ball Nε(ξ) , {z : ‖z − ξ‖ < ε} is contained in
Ω̃. We will show that

(v − v̄)T (ξ − v̄) < 0 . (V.3)

Since ξ ∈ Ω̃, (V.2) holds for z = ξ. Thus we only need to
show that (V.2) for z = ξ ∈ int Ω̃ can never be an equality.
Suppose, by contradiction, that

(v − v̄)T (ξ − v̄) = 0 . (V.4)

Note that ‖v − v̄‖ > 0 since Ω̃ is closed, and v < Ω̃, v̄ ∈ Ω̃.
Define

ξ̃ = ξ + α
v − v̄
‖v − v̄‖

, 0 < α < ε , (V.5)

hence, ‖ξ̃ − ξ‖ = α < ε and ξ̃ ∈ Nε(ξ). We then have, using
(V.4) and (V.5), that

(v − v̄)T (ξ̃ − v̄) = (v − v̄)T (ξ − v̄) + α
(v−v̄)T (v−v̄)
‖v − v̄‖

= α‖v − v̄‖ > 0.

Thus, we have found a point ξ̃ ∈ Ω̃ (since Nε(ξ) is contained
in Ω̃) such that (v − v̄)T (ξ̃ − v̄) > 0, which contradicts
(V.2). Thus, (V.3) must be true. Inequality (V.1) then follows
taking ξ = 0, which is in the interior of Ω̃ by assumption.

Lemma 5.2: Let f : IRm → IR be any function and let
Ω ⊂ IRm be a closed convex set that contains zero in its
interior. Consider the optimisation problem

P′1 : min
w

J(w) , (V.6)

with

J(w) , f (w̄) + (w − w̄)T Q−1w̄ , (V.7)

w̄ , Q1/2
Π
Ω̃

Q−1/2 w , (V.8)

where Π
Ω̃

is the mapping that assigns to any vector v in IRm

the vector v̄ in Ω̃ that is closest to v in Euclidean distance,
that is

Π
Ω̃

: IRm −→ Ω̃

v 7−→ v̄ = Π
Ω̃

v , arg min
z∈Ω̃

‖z − v‖ . (V.9)

The set Ω̃ is defined as

Ω̃ , {z = Q−1/2w : w ∈ Ω} . (V.10)

Then any solution w∗ to (V.6)–(V.10) satisfies w∗ ∈ Ω.
Proof: Suppose, by contradiction, that w∗ < Ω. Let,

w̄∗ , Q1/2
Π
Ω̃

Q−1/2 w∗. (V.11)

Notice that w̄∗ ∈ Ω since (V.8), with Π
Ω̃

and Ω̃ defined in
(V.9) and (V.10), respectively, defines a projection of IRm

onto Ω.
Define,

v∗ , Q−1/2w∗ , v̄∗ , Q−1/2w̄∗ . (V.12)

Then, by construction, v∗ and v̄∗ satisfy,

v̄∗ = Π
Ω̃

v∗ , (V.13)

and, in particular, v̄∗ ∈ Ω̃. Using (V.8), (V.11) and (V.12) in
(V.7) we obtain,

J(w∗) = f (w̄∗) + (w∗ − w̄∗)T Q−1w̄∗

= f (Q1/2v̄∗) + (v∗ − v̄∗)T v̄∗ .
(V.14)

Also, since v̄∗ ∈ Ω̃, we have w̄∗ , Q1/2
Π
Ω̃

Q−1/2 w̄∗ = w̄∗.
Thus, similarly to what was done in (V.14), we obtain,

J(w̄∗) = f (w̄∗) + (w̄∗ − w̄∗)T Q−1w̄∗ = f (Q1/2v̄∗). (V.15)



It is easy to see that Ω̃ in (V.10) is a closed convex set
and 0 ∈ int Ω̃ since Q1/2 > 0. From Lemma 5.1, equation
(V.13), and the definition of Π

Ω̃
in (V.9), we conclude that

(v∗ − v̄∗)T v̄∗ > 0 .

Hence, from (V.14) and (V.15), we have

J(w∗) − J(w̄∗) = (v∗ − v̄∗)T v̄∗ > 0 .

We have thus found a point w̄∗ ∈ Ω that yields a strictly
lower value for the cost, which contradicts the fact that w∗

is a solution of (V.6)–(V.10). It follows that w∗ must be in
Ω, and the proof is then completed.

Corollary 5.3: Under the conditions of Lemma 5.2,
problem P′1 defined by (V.6)–(V.10) is equivalent to the
following problem

P1 : min
w∈Ω

f (w) . (V.16)
Proof: Lemma 5.2 shows that any solution to (V.6)–

(V.10) belongs to Ω, and hence we can perform the min-
imisation of (V.7) in Ω without losing optimal solutions.
Since the mapping Q1/2

Π
Ω̃

Q−1/2 used in (V.8) reduces to
the identity mapping in Ω, we conclude that (V.7) is equal
to the cost function in (V.16) for all w ∈ Ω, and thus both
problems are equivalent.

Corollary 5.4: Let f : IRn × IRm × · · · × IRm → IR be any
function and let Ω ⊂ IRm be a closed convex set that contains
zero in its interior. Consider the optimisation problem

P′2 : min
x0,w0,...,wN−1

J(x0,w0, . . . ,wi, . . . ,wN−1) , (V.17)

with

J(x0,w0, . . . ,wi, . . . ,wN−1)
, f (x0, w̄0, . . . , w̄i, . . . , w̄N−1)

+

N−1∑

k=0

(wk − w̄k)T Q−1w̄k , (V.18)

w̄i = Q1/2
Π
Ω̃

Q−1/2 wi , i = 0, . . . ,N − 1 , (V.19)

where Π
Ω̃

and Ω̃ are defined in (V.9) and (V.10), respec-
tively.

Then any solution {x∗0,w
∗
0, . . . ,w

∗
i , . . . ,w

∗
N−1} of (V.17)–

(V.19) satisfies w∗i ∈ Ω for i = 0, . . . ,N − 1.
Proof: Let {x∗0,w

∗
0, . . . ,w

∗
i , . . . ,w

∗
N−1} be an optimal so-

lution of (V.17)–(V.19), and suppose w∗i < Ω for some i. Via
a similar argument to that used in the proof of Lemma 5.2,
we can show that the sequence {x∗0,w

∗
0, . . . , w̄

∗
i , . . . ,w

∗
N−1},

with w̄∗i computed from (V.19), gives a lower value of the
cost (V.18). Thus w∗i must belong to Ω. Since the same is
true for all i = 0, . . . ,N − 1, the result follows.

Corollary 5.5: Under the conditions of Corollary 5.4,
problem P′2 defined by (V.17)–(V.19) is equivalent to the
following problem

P2 : min
wk∈Ω,x0

f (x0,w0, . . . ,wi, . . . ,wN−1) . (V.20)

Proof: Similar to the proof of Corollary 5.3.

We are now ready to express the primal estimation prob-
lem Pe defined by equations (II.5)–(II.9) in an equivalent
form. This is done in the following theorem.

Theorem 5.6 (Equivalent Primal Formulation): Assume
that Ω is a convex set that contains zero in its interior. Then
the primal estimation problem Pe defined by equations
(II.5)–(II.9) is equivalent to the following optimisation
problem

P′e : min
x̂k ,êk,ŵk






1
2
‖x̂0 − x̄0‖

2
P−1

0
+

1
2

N∑

k=1

||êk||
2
R−1

+

N−1∑

k=0

[

1
2
||w̄k||

2
Q−1 + (ŵk − w̄k)T Q−1w̄k

]



, (V.21)

subject to:

x̂k+1 = Ax̂k + Bw̄k , k = 0, · · · ,N − 1 , (V.22)
êk = yk −Cx̂k , k = 1, · · · ,N ,

w̄k = Q1/2
Π
Ω̃

Q−1/2 ŵk , k = 0, . . . ,N − 1 , (V.23)

where Π
Ω̃

and Ω̃ are defined in (V.9) and (V.10), respec-
tively.

Proof: First note that, using the equations (II.4), the
cost function (II.3) can be written in the form

J
(

{x̂k}, {êk}, {ŵk}
)

= f (x̂0, ŵ0, . . . , ŵi, . . . , ŵN−1) .

Since the minimisation of the above cost function is per-
formed for x̂0 ∈ IRn, and for ŵk ∈ Ω, we conclude that
problem Pe can be written in the form (V.20). Using
Corollary 5.5 we can then express Pe in the form of problem
P′2 defined by (V.17)–(V.19). However, this is equivalent to
(V.21)–(V.23) (note the presence of w̄k in (V.22)), and the
result then follows.

VI. S  C E  C

In summary, we have shown that the two following
problems are dual in the Lagrangian sense.

Primal Problem (Equivalent Formulation):

P′e : min
x̂k ,êk ,ŵk






1
2
‖x̂0 − x̄0‖

2
P−1

0
+

1
2

N∑

k=1

||êk||
2
R−1

+

N−1∑

k=0

[

1
2
||w̄k||

2
Q−1 + (ŵk − w̄k)T Q−1w̄k

]



,

subject to:

x̂k+1 = Ax̂k + Bw̄k , k = 0, · · · ,N − 1 ,
êk = yk − Cx̂k , k = 1, · · · ,N ,

w̄k = Q1/2
Π
Ω̃

Q−1/2 ŵk , k = 0, . . . ,N − 1 .



PSfrag replacements

−

+

yk

êkŵk
Q−1/2

w̄k
Π
Ω̃

Q1/2 (A, B,C)
Cx̂k

Fig. 1. Configuration for the Primal Problem (Equivalent Formulation)

Dual Problem:

De : min
λk ,uk

{

1
2
‖ATλ0 + P−1

0 x̄0‖
2
P0

+
1
2

N∑

k=1

‖uk − R−1yk‖
2
R

+

N−1∑

k=0

[

1
2
‖ζ̄k‖

2
Q + (ζk − ζ̄k)T Qζ̄k

]



+ γ

subject to:

λk−1 = ATλk +CT uk, k = 1, · · · ,N,
λN = 0,

ζk = BTλk , k = 0, · · · ,N − 1 ,

ζ̄k = Q−1/2
Π
Ω̃

Q1/2 ζk , k = 0, · · · ,N − 1 ,

where γ = − 1
2 ‖x̄0‖

2
P−1

0
− 1

2
∑N

k=1 ‖yk‖
2
R−1 .

PSfrag replacements

ζk
Q1/2

ζ̄k
Π
Ω̃

Q−1/2(AT,CT, BT)
uk

R−1yk

−

+

ûk , uk − R−1yk

Fig. 2. Configuration for the Dual Problem

In the above two problems, Π
Ω̃

is the minimum Euclidean
distance projection defined in (IV.6).

Figures 1 and 2 illustrate the primal equivalent problem
P′e and the dual problem De. Note from the figures the
symmetry between both problems; namely, inputs become
outputs, system matrices conmute: A↔ AT , B↔ CT , C ↔
BT , time is reversed and input projections become output
projections.

VII. S C

The above duality result takes a particularly simple form
in the scalar input case, that is, when m = 1 in (II.1). We
assume Ω = {w : |w| ≤ ∆}, where ∆ is a positive constant,
and take Q = 1 in the cost function (II.3), without loss of
generality since we can always scale by this factor.

The (equivalent) primal and dual problems are then:

Primal Problem:

P′e : min
x̂k ,êk ,ŵk

1
2





‖x̂0 − x̄0‖

2
P−1

0
+

N∑

k=1

||êk||
2
R−1

+

N−1∑

k=0

[

ŵ2
k − (ŵk − sat∆ŵk)2

]





,

subject to:

x̂k+1 = Ax̂k + Bsat∆ŵk , k = 0, · · · ,N − 1 ,
êk = yk −Cx̂k , k = 1, · · · ,N .

Dual Problem:

De : min
λk ,uk

1
2

{

‖ATλ0 + P−1
0 x̄0‖

2
P0

+

N∑

k=1

‖uk − R−1yk‖
2
R

+

N−1∑

k=0

[

ζ2
k − (ζk − sat∆ζk)2

] }

+ γ

subject to:

λk−1 = ATλk +CT uk, k = 1, · · · ,N,
λN = 0,

ζk = BTλk , k = 0, · · · ,N − 1 ,

where γ = − 1
2 ‖x̄0‖

2
P−1

0
− 1

2
∑N

k=1 ‖yk‖
2
R−1 .

In the above two problems, sat∆u is the usual saturation
function defined as sat∆u = sign u min(|u|,∆).

VIII. C

This paper has established a form of strong duality
between constrained estimation and control. The result has
a pleasing symmetry when the primal estimation problem
is expressed in an equivalent form.
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