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Abstract— The cost function in stochastic optimal control
is viewed as a random variable. Then the classical linear-
quadratic-Gaussian control, entropy control, risk-sensitive
control, and cost cumulant control can be viewed as the cost
distribution shaping methods. In this paper, we will survey
the existing relations between entropy, Bode integral, and
risk-sensitive cost function. Furthermore, we will relate the
cost cumulants with information theoretic entropy, and Bode
integral. The interpretation of cost cumulant control is given
in terms of the control entropy minimization. The paper
also relates information theoretic entropy with exponential-of-
integral cost function using a Lagrange multiplier and calculus
of variations. Finally, the logarithmic-exponential-of-integral
cost function is related to the information theoretic entropy
using large deviation theory.

I. INTRODUCTION

One of the well known results on the fundamental
limit on a closed loop system are Bode integral [2, p.
285]. Bode considered frequency response of single input,
single output, open-loop stable, linear-time-invariant (LTI)
system. He stated that the integral of logarithm of the
magnitude of the sensitivity function is equal to zero
for an open-loop stable system. An interpretation of the
Bode’s integral is that reducing the sensitivity due to the
system disturbances at one range of frequencies by feedback
control will amplify the transients and oscillations at other
frequencies. An extension of this Bode’s result has been
given by Freudenberg and Looze for a general open-loop,
multivariable, LTI system [11].

The time varying extension is studied by Iglesias and
his coworkers. They studied the relations between the
Bode integral, system theoretic entropy, and infinite horizon
risk-aversive control cost function [14]. Moreover, Iglesias
related Bode integral to the difference of the output and
input entropy rates [15]. This result can also be seen from
the definition of the entropy rate [20, p. 534]. Consider an
LTI system as shown is Figure 1 with input,xn, output,yn,
the open loop transfer function,G(z), and the sensitivity
function,S(z). Now, assume thatS(z) is stable. Then the
entropy rate is average uncertainty per sample and it is given
by �H(y) = �H(x) + 12� Z ��� log jdetS(ej!)jd!: (1)

The Bode integral is equal to output entropy rate minus
the input entropy rate. The second term in the right hand
side is the Bode integral, which is also defined as the system
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Fig. 1. Feedback System Block Diagram

variety [28], and this is equal to zero if the system is open-
loop stable. Moreover, the Bode integral is equal to the sum
of open right half plane poles,fpi = 1g if the sytem is open
loop unstable. In equations this relationship is given byZ �0 ln j detS(ej!)jd! =8<: 0 if G(z) is stableP� ln jpij if G(z) is unstable,

i.e., jpij < 1
In 1988, Glover and Doyle showed that the system

theoretic entropy is related to the infinite horizon risk-
aversive cost function [12]. This has been related to cost
cumulant control in [23]. The system theoretic entropy is
related to the information theoretic entropy through the
conditional entropies [21, p. 54].

Also, in 1988 Saridis provided an interpretation of
stochastic optimal control in terms of information theoretic
entropy [24]. He claimed that the cost mean optimization
is equivalent to control entropy minimization where the
entropy density function is found to be the worst possible
case. Figure 2 summarizes the relationship between various
control methods. The researchers who related the two areas
are given near the arrows. Figure 2 also shows the section
number of this paper where the relations between two areas
are established.

Consider the cost function and the control action in
stochastic optimal control as a random variable. Then we
can view various control problems as the cost distribution
shaping methods. Moments or cumulants characterize a
distribution, thus by optimizing a particular moment such
as the mean, we are shaping the distribution of the cost
function. Conventionally, in optimal stochastic control,one
establishes a cost function and optimizes the controller
with respect to the mean of the cost function. Optimizing
only the mean (the first cumulant) of the cost function is
a special case of optimizing the distribution of the cost
function. For instance, the cost variance (second cumulant)
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Fig. 2. Relations Among Various Robust Control Methods

can be minimized. The variance indicates to what extent
performance is spread around its mean. In some instances
this variance is an important parameter to optimize. For
example, if a manufacturer wants to produce products above
a certain quality level, the desirable production quality
distribution will be a sharp distribution with small variance
with the mean pushed close to the rejection threshold.
Figure 3 shows how the distributions change as the first
three cumulants vary. This can be achieved if one can
control any cumulant of the cost function.

The information theoretic entropy is related to the sum of
all the cost cumulants or moments, thus entropy optimiza-
tion is also a form of cost distribution shaping method. The
risk-sensitive cost function is also an infinite sum of all the
cumulants or moments[27], thus it is also a form of cost
distribution shaping method.

Cost moment or cumulant control can also be interpreted
in terms of entropy minimization, which is discussed in
Section II-A. Also cost cumulant control is related to
the Bode integral in Section II-B. We relate the entropy
with the risk-sensitive cost function in Section III. Be-
cause risk-sensitive control can be formulated in terms of
exponential-of-integral (EOI) or logarithm-exponential-of-
integral (LEOI) cost functions, we will relate these two
cases with information theoretic entropy. Then the conclu-
sions are given in the final section.
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Fig. 3. Effects of Cumulants on the Distribution

II. COST CUMULANT CONTROL, ENTROPY, AND
BODE INTEGRAL

In this section we relate cost cumulant control with
information theoretic entropy, and Bode integral.

A. Cost Cumulant Control and Information Theoretic En-
tropy

Cost cumulant control is a form of cost distribution
shaping method, and it is closely related to entropy control.
We will show that the optimal control that minimization
the entropy of the control is equivalent to minimizingn-
th moment of the cost function. Because moments are
related to cumulants [18], cost cumulant control is related
to minimum entropy control. In this paradigm, the cost
function represents the energy of a system and optimization
is performed over the admissible control laws.

Define entropy ash = � R p(u) ln p(u)dx where p(u)
is the density function. In minimum entropy control, we
find the density that would give the maximum entropy.
Then we determine the control law,u, that would minimize
the entropy when the density,p(u) is the worst case
density. Conceptually this is similar toH1 control, where
the infinity norm of the transfer function is minimized.
Consequently, entropy control andH1 control are related
[12].

We are ready to formulate the cost cumulant control in
terms of information theoretic entropy. Consider a nonlinear
system, _x = f(x; u; w; t): (2)

and a nonquadratic cost function,Ĵ = Z tF0 (x; u; t)dt: (3)

Then the n-th moment cost function is given asJ = EfĴng; (4)

wheren = 1; 2; � � �. If we considerĴ as a random variable
then we can optimize this cost function in many different
ways. We could minimize any of the moments or cumulants
of the cost function. Moments and cumulants characterize
a distribution. Thus, we could optimize the cost distribution
to suit our control purposes.

Now, we will provide an interpretation of cost cumulant
control in terms of entropy. Letp(u) be the probability
density of the control action and let
u denote a set of
admissible controls. ThenZ
u p(u)dx = 1: (5)

For p(u) we may assign the following entropy,H(u; p) = � Z
u p(u) ln p(u)dx = �E
ufln p(u)g: (6)



We would like to minimize the entropy with the constraints
(4) and (5). So we create an unconstrained expression for
the entropy using Lagrange multipliers.I = H(u)� �[EfĴng � J ℄� �1 �Z
u p(u)dx� 1�= � Z
u p(u) ln p(u)dx� � Z
u p(u)Ĵndx + �J��1 Z
u p(u)dx+ �1:
Using calculus of variations (for exampe, see [3, p. 47]),
we maximizeI with respect top(u),��p h�p ln p� �pĴn � �1pi = 0� ln p� 1� �Ĵn � �1 = 0:
Therefore, the worst case density isp(u) = exp(��� �Ĵn);
where� = �1 + 1. And the corresponding entropy isH(u) = �+ �EfĴng: (7)

Theorem 2.1:Consider the following systemdxdt = f(x; u; t) + g(x; t)w(t); x(t0) = x0;z(t) = h(x; t) + v(t)
wherew andv are independent identically distributed (i.i.d.)
random processes. A necessary and sufficient condition foru�(x; t) to minimize J = EfĴng subject to the above
dynamic constraints is thatu(x; t) minimizes the entropyH(u(x; t)) where the associatedp(u(x; t)) is the maximum
entropy density function satisfying Jaynes’s maximum en-
tropy principle.
Proof: The proof will closely follow the minimum mean
case of Saridis [24]. For the necessary condition, consider
Jayne’s maximum entropy conditionH(x0; u; p) = �+ �EfĴn(x0; u; t)g
where� is the constant satisfyingZ
u p(u)dx = 1 and

�H�p = 0:
Then minu H(x0; u; p) , �H�u = 0, minu EfĴn(x0; u; t)g= Z
u min Ĵnpdx:
Using the lemma of the calculus of variations this is
equivalent to minimizingĴnp or�Ĵn�u = �Ĵn�u p+ Ĵn �p�u = 0: (8)

But
�p�u = ���Ĵn�u p and from Eq. (8) we obtain(1� �Ĵn)�Ĵn�u p = 0:

For p 6= 0 and� 6= 1, it implies that
�Ĵn�u = 0 or u� =Ĵn(x0; u�; t) is minimum.

For sufficient condition we assume that the conditions of
interchanging integrations and minimizations are satisfied.
Thenu� that minimizesĴn(x0; u) implies that it maximizesp(x0; u) such thatH(u�) = � Z
u p(u�) ln p(u�)dx= �+ Z
u p(u�)�Ĵndx= �+ Z
u maxu p(u)minu �Ĵndx= �+ Z
u minu p(u)minu �Ĵndx) �+ Z
u minu [p(u)�Ĵn℄dx= minu H(u)
where maxu(�) = �minu(�) and minu(A)minu(B) )minu(AB) for A;B > 0. 2

Now, we consider a few special cases. Iff is linear,L is quadratic andw is Gaussian process. Moreover, ifp(u(x; t)) is the worst case (maximum entropy) density
function andEfĴg is the cost function. Then look foru that
minimizes the above cost function such thatu minimizes
the entropyH(u) = � R
u p(u) ln p(u)dx wherep(u(x; t))
is the maximum entropy density function satisfying Jayne’s
maximum entropy principle. This is Saridis’s interpretation
of the stochastic optimal control in terms of information
theoretic entropy. Saridis determined the worst case density
to be in exponential form. Here it is interesting to note that
at least from 1955 it was known that for a single variable
case, the distribution that gives the maximum entropy for
a given mean and variance is a Gaussian distribution [1, p.
257]. Another interesting fact is that the conditional entropy
is equal to the entropy rate for white and Markov processes.

B. Cost Cumulant Control and Bode Integral

This section relates the cost cumulant cost function
with Bode integral. We will relate the risk-sensitive cost
funciton to the cost cumulant cost function as in [23].
Then we will relate risk-sensitive cost function to the Bode
integral following the steps in [14]. This will result in
relating the cost cumulant cost function with the Bode
integral.

Consider a linear time-invariant (LTI) system,ek = Sxk,
as shown in Figure 1. The corresponding quadratic cost



function is JD = T�1Xk=0 x0kxk � e0kek;
whereT is the terminal time. The risk-sensitive cost func-
tion is given asJRS(JD ; �) = � 2�T logE exp���2JD� : (9)

The first charateristic function ofJD is defined as�(s) = Efexp(�sJD)g = 1 + 1Xi=1 (�1)ii! �isi; (10)

where�i’s are the i-th moments ofJD, and the second
characteristic function is given by (s) = log�(s) = 1Xi=1 (�1)ii! �isi; (11)

where�i’s are i-th cumulants ofJD. From Eqs. (10) and
(11), we obtainlogEfexp(�sJD)g = 1Xi=1 (�1)ii! �isi: (12)

Then substitute Eq. (12) into (9).JRS(JD ; �) = � 2�T 1Xi=1 (�1)ii! �i��2�i : (13)

The above equation gives the relationship between the risk-
sensitive cost function and the cost cumulant cost function.

Following [14], we will now derive the relationship be-
tween the risk-sensitive cost function and the Bode integral.
Assume the sensitivity function,S(z), satisfieskSk1 < �.
Then by spectral factorization, we obtainI � ��2S�(z)S(z) = G�(z)G(z)
andlog jdetS(ej!)j = 12 log det �I �G�(ej!)G(ej!)�+m log�;
wherem is the matrix dimension of the sensitivity function.
This can be rewritten as12� Z ��� log jdetS(ej!)jd! =m log�+ 14� Z�� � log det �I �G�(ej!)G(ej!)� d!:

(14)

From [12], we havelimT!1�� 2�T logE exp���2JD�� == 12�� Z ��� log det �I �G�(ej!)G(ej!)� d!;(15)

if kGk21 < 1=j�j. We assume� = �1, which is the risk-
aversive case, and substitute Eq. (15) into (14) to obtain12� Z ��� log jdetS(ej!)jd! =m log�� limT!1� 1T logE exp�12JD�� : (16)

From Eq. (9), we obtain12� Z ��� log jdetS(ej!)jd! =m log�� limT!1 1T 1Xi=1 1i! �12�i �i: (17)

We have used Eqs. (9) and (13) on (16) to obtain the last
equality. Eq. (17) relates the Bode integral with the cost
cumulants ofJD.

For LTI and infinite horizon case, the above equation
provides an interpretation of the Bode integral in terms
of the cost cumulants. The Bode integral is zero for an
open loop stable system, and it is a sum of unstable poles
for an open loop unstable system. Thus, a sum of linear
combination of all the cumulants are equal tom log� for
the open loop stable system, andm log� plus a sum of
unstable poles for the stable system.

Also if we substitute the Bode integral in Eq. (17) to (1),
we note that the entropy rate of the ouput minus the input is
the sum of all cumulants. This relates system variety to the
cumulants, and provides an interpretation of conservation
of the sum of cost cumulants.

III. ENTROPY AND RISK-SENSITIVE COST
FUNCTION

Risk-sensitive control can be viewed as optimizing the
infinite sum of all the moments or the cumulants of the cost
function. The moment case is related to the exponential-of-
integral (EOI) cost function and the cumulant case to the
logarithm-exponential-of-integral (LEOI) cost function[27].
EOI control is also known as linear exponential quadratic
Gaussian (LEQG) control. In the next subsection we will
relate the information theoretic entropy to the EOI cost
function. Subsequently, we will relate entropy with the
LEOI cost function.

A. Entropy and EOI Cost Function

Here, a form of risk-sensitive cost function, EOI cost
function, is related to the information theoretic entropy.We
consider the nonlinear system given in Eq. (13), and a risk-
sensitive cost function,J = Efexp(�Ĵ)g; (18)

where Ĵ is given in (3). Now, we consider the density
function for the controller:p(u) = p(u(x; t));



and Z
u p(u)dx = 1:
Then the information theoretic entropy is given asH(u) = � Z
u p(u) ln p(u)dx = �E
ufln p(u)g:
To find the density function that would maximize the en-
tropy, we form an unconstrained expression for the entropy
using Lagrange multipliers.I = H(u)� �[Efexp(�Ĵ)g � J ℄� �1[Z
u p(u)dx� 1℄= � Z
u p(u) ln p(u)dx� � Z
u p(u) exp(�Ĵ)dx + �J��1 Z
u p(u)dx+ �1:
Using calculus of variations, we maximizeI with respect
to p(u), ��p [�p ln p� �p exp(�Ĵ)� �1p℄ = 0� ln p� 1� �exp(�Ĵ)� �1 = 0:
Therefore, the worst case density is determined asp(u) = exp(��� � exp(�Ĵ));
where� = �1 + 1. And the corresponding entropy isH(u) = �+ �Efexp(�Ĵ)g: (19)

The interpretation in terms of EOI cost function is as
follows. The minimization of EOI cost function (18) is
equivalent to minimizing the information theoretic entropy
given by Eq. (19). Thus, in EOI control we are finding the
controller that would minimize the entropy (19) assuming
the worst case density function,p(u).
B. Entropy and LEOI Cost Function

More generally, in this Section we relate information
theoretic entropy (Shannon’s entropy) to the LEOI cost
function using large deviation theory [4], [7], [8], [10]. We
still consider the general nonlinear state equation given by
Eq. (2). As in [22], we define the occupation distribution
of xt in � as �tF (�) = 1tF Z tF0 ��(xt)dt;
where�� is the indicator of�, � � IRn, and t 2 [0; tF ℄.
The infinite horizon LEOI cost function is given as�(j) = limtF!1 1tF logE �exp�Z tF0 j(xt) dt�� : (20)

where j : IRn ! IR is a continuous function. Let� be
finite measure onIRn, and define forf 2 Cb(IRn) (bounded
continuous space onIRn)hh�; fii = ZIRn f(x)�(dx):

(20) can be rewritten using the occupation distribution as�(j) = limtF!1 1tF logE �exp �tF hh�tf ; jii�	 : (21)

In Donsker and Varadhan’s notation [6], we note that�t(�) = Lt;w(A). The asymptotic rate involving function-
als ofLt;w is then governed by theI-function (see [5, page
390]) I(�) = � infu2D+ ZX �Luu � (x)�(dx); (22)

whereD+ is the set of positive functionsu in the domain
of L. It was shown by Donsker [6] that thisI-function is
related to the entropy functionH(Q) byI(�) = infQ2MS(
)q(Q)=� H(Q);
where
 be a space of functions!(�) on �1 < t < 1
with values in a Polish space X.MS(
) denotes the space
of stationary processes on
, and q(Q) = � means the
marginal of the stationary measureQ is �. We want to
relate this entropy function to the more familiar information
theoretic entropy (Shannon’s entropy) of the formh(�;�) = � Z f(x) log f(x)�(dx)
if h(�;�) is finite. LetX;� be a measurable space and�; �
be the probability measures on (X;�). For each! 2 
 we
denote by!(t) the value of the function!(�) at timet. We
also denote by
+t , the corresponding space of functions on[t;1) with values inX and we denote byFst the�-algebra
in 
 generated by!(�) for s � � � t.

Note thath(�;�) is finite if and only if (a)� is absolutely
continuous with respect to�, and (b) the Radon-Nikodym

derivative,
d�d� = f(x), is such thatf(x) log f(x) 2 L1(�).

Let fPt;xg be a homogeneous Markov family of measures
on 
+t , define fPt;!(t)g = Pt;x with the starting pointx = !(t), and definefQt;!g as the regular conditional
probability distributions ofQ givenF�1t . Finally, we have
the relationshipH(Q) = H(1; Q) = �E nhF01 (P0;!(0);Q0;!)o ;
whereF0t is the�-fields in 
 generated by!(�) for 0 �� � t. ThusH(Q) is the entropy of the stationary processQ with respect to the Markov processP0;x at time1. In the
infinite horizon LEOI control problem, we are minimizing
(20) which corresponds to minimizing (21). To minimize
(21), we should minimize the exponent, which implies that
we are minimizing the occupation distributionLt;!(A).
Furthermore, from (22), minimizingLt;!(A) corresponds
to maximizingI(�), and maximizingI(�) corresponds to
maximizing the entropyH(Q). And finally, maximizingH(Q) corresponds to minimizingh(�;�). Thus, as in the
EOI case the LEOI optimization is a minimum entropy
control method.



IV. CONCLUSIONS

In this paper, we surveyed various relations between en-
torpy control, risk-sensitive control, cost cumulant control,
and Bode integral. Then we provided an interpretation of
cost moment/cumulant control in terms of cost distribution
shaping and entorpy minimization. The infinite sum of all
the cumulants is related to the entropy rate and system vari-
ety. Finally, we related risk-sensitive cost function withthe
information theoretic entropy. Thus providing an interpre-
tation for risk-sensitive control as an entropy minimization
method.
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