
 
 

 

  
Abstract—In the past years, recognition algorithms based on 

local features have received much attention; and their 
advantages over traditional recognition methods in dealing 
with similarity transformation, partial occlusion and 
extraneous noise, have been verified. But due to the difficulty 
of most current local-feature-based methods in realtime 
implementation, their application in mobile robot vision has 
been deferred. Motivated by it, this paper is expected to 
provide a vision system especially adapted to mobile robots 
based on local features. Compared with previous works, in this 
paper a novel local invariant descriptor combined with 
gradient information is provided; and accordingly a new 
matching method of interest points is introduced. The novel 
local invariant, which is characterized by Gaussian derivatives, 
also consists of descriptions of some non-interest points 
localized according to the average gradient at interest points, 
so that the novel local invariant descriptor achieves a high 
discrimination under various similarity transformation. And 
the new matching method greatly increases the robustness of 
the algorithm by employing a segmentation correlation and 
eliminating some possibly wrong matching results. 
Experimental results demonstrate our algorithm has a good 
recognition ability and robustness in case of rotation, partial 
occlusion, various similarity transformations, extraneous noise, 
etc. And it can be implemented in real time, which makes it 
very appropriate for mobile robot use. 

I. INTRODUCTION 

A. Recognition Methods 
Although laser finder has shown good performance in 

indoor robot navigation, a vision system is in a great need for 
mobile robot to finish some sophisticated tasks, such as 
landmark recognition, mail delivering, button pushing, etc. 
As it is well known, recognition algorithms play an 
important role in a robot vision system. So far, a lot of object 
recognition methods have been provided in the past decades, 
which can mainly be divided into two groups: those based on 
geometric models of an object [1][2] and those based on the 
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appearance feature of an object [3]. Because it is often 
difficult to obtain geometric models for objects in the real 
world, the appearance-based methods are usually much 
preferred for a vision system which is aimed at practical 
applications. And the appearance-based algorithms such as 
histogram methods [4][5][6], eigenspace methods [7][8] and 
so on, have been successfully developed. However, since all 
the appearance-based approaches are global, they usually 
have difficulty in dealing with partial occlusion and 
extraneous noise. Therefore, recently local features have 
been receiving more and more attention because of its 
superior character in describing local image patches and 
dealing with extraneous noise. And the work based on local 
invariants by Schmid and Mohr [9] has been pointed out in 
[3] as one of  the most successful object recognition systems 
so far, which was developed to address the problem of 
retrieving images from large image databases. 

B. Robot Vision Based on Local Features 
Since a robot vision system is required to deal with partial 

occlusion and other local disturbances, the introduction of 
local features is quite favorable and promising. Based on the 
image retrieval system in [9], Baerveldt [10] developed an 
object verification and localization system. Different to [9], 
in [10] the author introduced the local characterizations of 
extra points around the interest points but with lower orders 
to increase the discrimination. By this modification, the 
computation of the local descriptor is simplified, and 
meanwhile it does show good performance. However, this 
system is unable to recognize rotated objects due to the 
uninformed positions of the extra introduced points. 
Obviously, it is a drawback since object rotation commonly 
exists. With regard to the merits and defects of previous 
works, this paper is mainly aimed to develop a 
local-feature-based recognition algorithm appropriate for 
mobile robot use with good performance and robustness 
under various view conditions, such as partial occlusion, 
similarity transformations, rotation, extraneous noise and 
minor viewpoint variations. And the improvements are 
achieved mainly by a novel local invariant and a 
corresponding new matching method which will be detailed 
in section 2. Experimental results convincingly confirmed 
the effectiveness of this improved algorithm. 
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II. OUR APPROACH 
Due to their respective weakness of appearance-based and 

geometric methods in recognition as mentioned above, we 
introduce local features in our mobile robot vision. Similar 
to most methods based on local features, our algorithm can 
be briefly described as follows. First, we extract interest 
points, i.e. points with high information content. Then a 
small neighborhood around the interest points is described 
by with a novel local invariant descriptor. The object model, 
consisting of a list of interest points and their local invariants, 
is then matched with the interest points extracted from the 
scene image on a point to point basis. Finally, some 
geometric constraints are applied to eliminate the false 
matching and refine the matching results. The specific steps 
of our algorithm are described below in detail together with 
the changes and improvements compared with the previous 
works [9][10][11]. 

A. Interest Points 
Obviously, computing an image descriptor for each pixel 

in the image creates too much information. Interest points 
are those points in the image which contain a high degree of 
image information, such as corners and junctions. The signal 
usually changes two-dimensionally at interest points, so the 
derivatives are usually high at these points. 

A wide variety of detectors for automatic extraction of 
interest points have been presented in [12], and the 
comparative performance of different detectors is provided 
in [13]. In terms of object recognition, the most important 
quality of detectors is repeatability. A detector called 
SUSAN [14] has been proved to be one of the best detectors, 
and it is also faster than most other detectors. That’s why it 
was employed in our application. The basic idea of SUSAN 
detector is that each image point has associated with it a 

local area of similar brightness. As simply illustrated in Fig. 
1, by counting the number of pixels that have almost the 
same grayvlaue with the nucleus in the circle, the nucleus is 
decided whether it is an interest point or not. 

Fig. 2 and Fig. 3 show interest points detected on the same 
painting but under rotation. We can find most of the interest 
points are repeated. What’s more, SUSAN detector is also 
robust against all disturbance factors such as scale and 
extraneous noise. 

B. A Novel Local Invariant Descriptor 
In order to match the interest points of an object model 

and of a scene image, we need a discriminative local 
description of each interest point, which was proved to be 
the key step of the algorithm during the experiments. The 
quality of the local descriptor will have a great influence in 
the final performance of the algorithm. Different descriptors 
have been presented in the literature, such as Gabor filters 
[3], wavelets [15], Gaussian derivatives [3][9][10][11] and 
etc. Among all of them, Gaussian derivatives have been 
frequently used due to their desirable properties, such as 
robustness to minor scale changes (up to 20%), possible 
extension to obtain a rotational invariant and a mutliscale 
approach when a larger scale variation is expected. 
Therefore, we also employed Gaussian derivatives in our 
approach. 

The image in a neighborhood of a point can be described 
by the set of its derivatives [16]. But the computation of the 
derivatives is usually ill-conditioned as it lacks robustness 
due to the presence of noise in the image. Simply, consider 
the functions f(x) and F(x)=f(x)+εsin(ωx). F(x) and f(x) are 
very close for a small ε, but f’(x) can be very different from 
F’(x) if ω is big. So a high frequency noise can significantly 
modify the first order derivative and the higher order 
derivatives even more. The stable computation of 
derivatives is achieved by convolution with Gaussian 
derivatives [17]. Such a set of derivatives is named “local 
jet” in [16] and defined as follows: 

Let I be an image and σ a given scale. The “local jet” of 
order N at a point x=(x,y) is defined by 
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The σ of the Gaussian function determines the quality of 
smoothing. It also coincides with a definition of scale-space, 
which we will later find is very important for our multiscale 
approach. 

Now let us discuss our novel local invariant descriptor 

 
 

Fig. 1 Principle of SUSAN detector 
 

       
 

Fig. 2 Interest points of a painting detected by SUSAN 
Fig. 3 Interest points of the same painting in Fig. 2 but rotated 



 
 

 

based on local jet specifically. A complete set of differential 
invariants can be computed to locally characterize a signal, 
which has been theoretically studied in [16] and [17]. The 
set of differential invariants used in our experiments is 
limited to 2nd order because the higher order derivatives 
will introduce a large computational load inappropriate for 
real-time implementation and they are also sensitive to high 
frequency noise. The differential invariants are stacked in a 
vector denoted by V which is given in Einstein summation 
convention as shown in (2-2). We can note that the 
descriptor V is rotation invariant and its first component 
represents the average luminance, the second component the 
square of the gradient magnitude and the fourth the 
Laplacian. 
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where Li is the element of the local jet.  
As pointed in [10] and [11], such a local description was 

usually not discriminative enough. In [11], the solution was 
to apply the filters at multiple scales. This, however, led to a 
relatively large local region around the interest points; and it 
is undesired in our application where robustness against 
partial occlusion and other local disturbances is crucial. And 
in [10], the solution was to include the local jets of some 
other points near the interest points in the local descriptor as 
well. This did make the descriptor more discriminative, but 
lost invariance to rotated objects because the extra points 
could not be correctly localized when rotation happens in a 
scene, which greatly degrades its practicability. It is also a 
potential drawback we want to avoid. To make the 
descriptor discriminative enough, the local derivative 
information of some extra points near the interest points is 
also introduced here. But instead of uninformed choice of 
the extra points like in [10], in our algorithm these 
non-interest points are localized based on the gradient 
information at the interest points. More specifically, we 
propose to use four extra points equally distributed at the 
gradient orientation and its perpendicular direction on a 
circle with its center placed at the interest points, as 
illustrated in Fig. 4. Thus a composed jet, which consists of 
25 elements, is formed to describe the local image patch 
around the interest points. So V in (2-2) should be replaced 
by V{i} (i=0,1,2,3,4) where V{0} represents the previous 
local invariant at the interest points. Since the gradient is 
invariant to placement, rotation and scale changes, this 
descriptor is also guaranteed to be invariant to these changes. 
(But it is necessary to make some amendment in order to 
obtain invariance to scale changes; see subsection E) With 

such a characterization, the discrimination of the local 
invariant descriptor is greatly increased without losing any 
favourable properties of the Gaussian derivatives. To make 
the gradient computation more stable, in our experiments the 
average gradient in a small neighborhood of an interest point 
was used instead of the specific gradient at the interest point.  

What’s more, we know there are two ways for Gaussian 
derivatives to obtain a rotation invariant descriptor: one is to 
produce a rotation invariant template, and the other is to 
steer the derivatives to a special direction. Here we chose the 
first one because of its less computational complexity but 
slight inefficiency compared with the latter, which is 
favourable for hardware implementation. And during our 
tests, we have tried to decrease the dimension of the 
descriptor by excluding some elements from the local 
descriptor V{i}, but it was proved not to be worthwhile due 
to certain degradation in the discrimination of the descriptor. 
Therefore, we can see this novel local invariant is a tradeoff 
between discrimination, robustness and computation cost. 

C. Matching of Local Descriptors 
After obtaining the local descriptor of interest points, the 

object model is matched with the scene image on a point to 
point basis. A robust matching method is very helpful to 
eliminate extraneous noise and discriminate between 
different interest points. And here we provide a new 
matching method adapted correspondingly to the novel local 
invariant descriptor introduced above. 

In [9], the Mahalanobis distance is used as the matching 
criterion, but the computation is prohibitively complex for 
realtime implementation in despite of its good precision. So 
usually the normalized dot-production (or correlation) is 
used to represent the matching degree in real applications 
because the dot-production operation can be efficiently 
implemented using convolution by hardware. But as we 
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Fig. 4 The novel local invariant (the arrow denotes the gradient orientation 

at the interest point) 



 
 

 

found, it was undesired and also unreasonable to directly 
compute as usual the correlation of two composed sets 
which here consist of 5 different points, 25 elements, 
respectively, because these 5 points are uncorrelated and the 
intensities of their derivatives can be very different from 
each other. Considering it, in our experiments the composed 
sets are segmented so that the five points are matched one by 
one according to their location with regard to the interest 
points using the gradient information, and the average 
correlation value is taken as their similarity criterion.  

What’s more, we note that sometimes instability of the 
gradient information is inevitable and even the gradients at 
two close points can be very different where an abrupt 
grayvalue change happens. Taking it into consideration, we 
try to make the matching more robust by excluding the worst 
matching result of the four non-interest neighbor points 
(generally, the interest point is relatively stable due to its 
speciality as we know above). The specific matching 
strategy can be described by (2-3). 
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where V{0} denotes the differential invariants of interest 
points and V{1…4} denote the differential invariants of the 
other four non-interest points, respectively.  From (2-3), we 
can see the worst matched one among the four non-interest 
points is excluded from the computation of the final 
matching result dfinal. 

Here we present an example to show the effectiveness of 
our matching method. Fig. 5 gives an object and a scene 
image where the object is rotated by 152 degree, which 
almost represents the most difficult case for recognition. Fig. 
6 provides the novel local descriptors of the two 
corresponding interest points marked in Fig. 5. In Fig. 7, the 
correlation histogram by the usual correlation method and 
the histogram after the exclusion of the worst matched points 
are provided. As it is shown, this routine makes the mean 
correlation value bigger, but the discrimination keeps high. 
There are few points whose correlation values are higher 
than 0.9 in both cases, and the number even decreased in the 
second one though it does not always happen. And by each 
of the methods, the highest correlation value is achieved by 
the real corresponding one indicated by the small circle in 
the scene image in Fig.5, and here the value by the new 
method is even slightly higher than the one by the usual 
method. So this example effectively demonstrated the 
robustness and discrimination of the new matching method 
though it was obtained at some certain expense of the mean 
correlation value.  

More specifically, for each local invariant at an interest 

point x of the model, the local invariant at an interest point x’ 
in the scene image is determined such that dfinal(V(x, σ),V(x’, 
σ)) is minimal provided that the correlation exceeds 0.9. The 
process is then reversed. Thus we obtain two lists of 
matched points. Finally, only those points which choose 
each other mutually are kept. 

D. Geometric Constraints 
When an object lies in a very complex background or 

there are many similar ones in a scene image, there is a 
probability that some interest points of the object may be 
close to several points in the scene and it may lead to false 
matching. Our tests confirmed that even a good matching of 
local invariants in last subsection was sometimes 
insufficient to discriminate many similar points. With regard 
to it, some researchers [16][18] suggested using longer 
vectors to decrease this probability. But the use of higher 

 

          
 

Fig.5 A interest point of a model and the corresponding one in a scene image 

(indicated by a  small circle) 

     
 

  Fig. 6 The normalized local invariants of the two corresponding interest 

points in Fig. 5 

 

 
Fig. 7 The correlation histograms using the usual method (left) and the new 

method (right) 



 
 

 

order derivatives is not practical for our application. We 
don’t either employ global features since they are usually 
sensitive to extraneous features and partial occlusion, and 
also time-consuming. Instead, we prefer to take the local 
geometric constraints used in [19] and [9] but in a simplified 
version. The basic idea is that the local shape configurations 
will keep consistent under a similarity transformation and 
scale change. More specifically, after the matching step in 
last subsection, we compare the angles between an interest 
point and its p nearest interest points as simply demonstrated 
in Fig. 8. If half of the neighbor interest points passed the 
angle test (i.e. α1 approximates α2 in Fig. 8), then the 
matching is confirmed, or else it will be rejected. With such 
a constraint, the recognition reliability of the algorithm was 
definitely increased.  

E. Multiscale Approach 
For a large scale change, it can equivalent to a scale 

change of the Gaussian derivatives; and this makes a 
multiscale approach possible [20][9][10]. For two images I1 
and I2 where I2  is only changed by a scale factor α, i.e. I1(x) 
= I2(u) =I2(αx), there exists 
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where
1... ni iG is the derivatives of the Gaussian. So by 

adjusting the scale of the Gaussian derivatives σ 
proportionally to the image scale factor α, we can obtain a 
local invariant descriptor at different scales. Since the 
multiscale invariants have been well addressed in the 
previous literature, we hereby don’t discuss it in detail any 
more. What has to be mentioned is that it is necessary for our 
novel local invariant also to accordingly adjust the radius of 
the circle on which the four non-interest points lie, so that 
the composed local descriptors can keep invariant at 
different scales. 

III. EXPERIMENTAL RESULTS AND CONCLUSION 
To demonstrate the performance of the algorithm, 

experiments have been conducted to test its recognition rate. 
Some of the images in the experiments are derived from the 
literature so that we can have an intuitive comparison about 

their difference and respective performance. And the rest 
images taken by ourselves are usually daily objects, which 
are typical for robot vision tests, such as landmark, 
extinguisher, lamp, etc. The algorithm has shown a high 
recognition ability and good robustness to object rotation, 
scale change, minor viewpoint variation, partial occlusion 
and extraneous noise. 

In the experiments, we first applied a Gaussian filter (σ = 
1) to smooth the scene image before detection of interest 
points and gradient computation. Because the multiplication 
of derivatives, which is necessary to obtain the rotational 
invariance, increases the instability of the local descriptor, a 
relatively large σ is needed for Gaussian derivatives 
calculation; and we set σ = 2 during the tests. Although a 
larger σ might make the multiplication in the descriptor 
more stable, it would also decrease the discrimination 
severely. For the same reason, the matching rate of interest 
points is usually relatively low where there exist rotated 
objects. The whole computation time is about 0.3 second by 
a Pentium III 800MHz processor, which can nearly satisfy 
realtime requirements. 

During the experiments, we found that a matching rate of 
interest points higher than 30 percent could lead to a reliable 
recognition result. It can be explained by the good 
discrimination of the local invariant. The algorithm showed 
a very strong recognition ability during the tests whenever 
the objects were partially visible, in a complex background, 
or with a minor viewpoint variation. Only in a few cases 
where a scene image contained very little information of an 
object, the algorithm might fail to recognize the object 
correctly. Some typical experimental results are provided 
below with all the initially extracted interest points marked 
by white squares and the final matched ones marked by 
black squares. 

Fig. 9 gives an example of a 2-D painting where the object 
was rotated and a small part was lost. A 62 percent matching 
rate was finally obtained for it. In Fig.10, the reading lamp 
was in a very complex background, part of it was covered 
and there also existed a view variation of about 15 degree. It 
finally resulted in a 46 percent matching rate. In Fig. 11, the 
extinguisher was taken at different distances in order to 
provide a scale change (about 1.5). It also underwent a small 

 

 
 

Fig. 8 Geometric constraint based on angle tests 

 

             
 

Fig. 9 A painting rotated by 152° and part lost 



 
 

 

view variation and relatively low resolution, which finally 
resulted in a 67 percent matching rate. 

From above, we can see the novel local invariant 
descriptor shows very good performance and robustness in 
recognition. And its application in mobile robot vision will 
necessarily be very promising because of its special quality. 
But there are still much work remained, such as to further 
increase the discrimination of the local descriptor, make it 
more stable in various view conditions and facilitate its 
realtime implementation. And more extensive tests should 
be conducted to verify its recognition ability in different 
conditions. We are also interested to implement the 
algorithm in a real mobile robot in order to see its 
applicability and precision in realtime localization and 
recognition. Some global methods can possibly be combined, 
for example, to deal with the situation that several objects 
exist in one scene image. 
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Fig. 10 A reading lamp in a very complex background, partially occluded 

and with a view variation of about 15° 

         
Fig. 11 An extinguisher at different scales, with a small view variation and 

low resolution 
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