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Abstract— We present robust stability results for discrete-
time nonlinear systems using certainty equivalence output
feedback, particularly those that employ a model predictive
control (MPC) formulation to generate the feedback control
law. To this end, we discuss nominal robustness properties of
general discrete-time nonlinear systems, including those that
use discontinuous control laws in the feedback loop. This is
important for systems employing MPC since the method can,
and sometimes necessarily does, result in discontinuous control
laws. Coupling assumptions of nominal robustness with certain
uniform observability or detectability assumptions (for each of
which we give an observer), we assert that, in particular, MPC
is robustly globally asymptotically stabilizing when used in a
certainty equivalence output feedback structure. Finally, we
give an example to illuminate our results.

I. INTRODUCTION

A. Background

The presence or lack of robustness properties of model
predictive control (MPC) algorithms is of key importance
for their application to discrete-time systems with output
feedback structure. In [19], the authors show that discrete-
time MPC is stabilizing in the presence of (decaying) pertur-
bations, such as those that can come from an observer, when
the control law is assumed to be Lipschitz. In [15], more
explicit results are given for stability of the interconnection
of a weak detector with an MPC-stabilized closed-loop
system3 when the feedback and observer are assumed to be
Lipschitz. In [9], the authors present a different framework
for dealing with these robustness issues that does not make
Lipschitz (or even continuity) assumptions on the feedback
control law. The purpose of this paper is to show that
those results are applicable to the output feedback problem.
Additionally, we hope to convey the importance of general
robustness properties of discrete-time (full-state or output)
feedback systems that employ discontinuous control laws in
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the feedback loop. These properties are crucial to the use of
nonlinear MPC (whether employed in an output feedback
setting or not), as the method often results in discontinuous
feedback laws, sometimes purposefully due to the fact that
continuous control laws cannot stabilize some systems.

B. Problem Motivation

We consider the problem of using dynamic output feed-
back to stabilize the origin of a nonlinear control system

x+ = f(x, u), y = h(x, u), (1)

where (1) is referred to as the plant, the functions f and
h defining the plant are continuous, x ∈ R

n is the state of
the plant, u ∈ R

m is the control input, and y ∈ R
p is the

measured output. We are also be interested in looking at
perturbations to (1) of the form x+ = f(x, u) + d, y =
h(x, u) + e, where d ∈ R

n and e ∈ R
p are, respectively,

additive disturbance and measurement error, both of which
we assume to be sufficiently small. Our approach is to
use certainty equivalence state feedback; i.e., a given state
feedback controller is implemented using an estimate of
the state. The estimate is generated by a finite-dimensional
dynamical system, often called an observer, that is driven
by the plant’s control input and measured output.

We assume that we can find a state feedback control
law u = κ(x) such that the origin of the system x+ =
f(x, κ(x)) is globally asymptotically stable (GAS)4. Be-
cause we do not necessarily assume that κ(·) is continuous,
we need to assume a bit more about the stability of this
system, namely, that it is nominally robust. One of our
primary motivations for studying this problem is that cer-
tain MPC algorithms produce discontinuous state feedback
control laws that yield stability without nominal robustness
(e.g., see [7]) and therefore have little chance of working
when implemented with output feedback and in the presence
of measurement error. Nevertheless, our output feedback
results are not predicated on the state feedback control law
coming from model predictive control.

4We focus on GAS for ease of exposition. Our results can be adapted
to the case of local asymptotic stability (LAS).



II. NOMINAL ROBUSTNESS

A. The basic idea

In this section, we present results for a closed-loop
system

x+ = f(x, κ(x)) (2)

for which a compact set A is asymptotically stable. We
consider sets A because it allows for more generality and
doesn’t add significantly to the notational burden. For a
given compact set A ⊂ R

n and a vector x ∈ R
n, we define

|x|A := infz∈A |x − z|. When A = {0}, |x|A = |x|, so
the reader who is distracted by the use of a set A may
substitute |x|A by |x| in all of the subsequent expressions.
In everything that follows we consider global asymptotic
stability of A, but local results are similar.

We use functions of class K, class K∞ and class KL
to characterize asymptotic stability. A function α : R≥0 →
R≥0 belongs to class K if it is continuous, zero at zero, and
strictly increasing. It belongs to class K∞ if it belongs to
class K and is unbounded. A function β : R≥0 × R≥0 →
R≥0 belongs to class KL if it is nondecreasing in its
first argument, nonincreasing in its second argument, and
lims→0 β(s, t) = limt→∞ β(s, t) = 0.

Definition 0: For the system (2), the set A is globally
asymptotically stable with continuous Lyapunov function if
there exists a continuous function V : R

n → R≥0, class-
K∞ functions α1, α2 and a continuous, positive definite
function ρ such that

α1 (|x|A) ≤ V (x) ≤ α2 (|x|A) (3)

and V (f(x, κ(x)) ≤ V (x) − ρ (|x|A) for all x ∈ R
n. �

Note that, since A is compact and V is continuous, (3)
is equivalent to the statement that V is positive definite
with respect to A and proper. We emphasize that GAS and
the existence of a continuous Lyapunov function are not
necessarily equivalent when κ(·) is discontinuous. This is
made clear in [12], where the close relationship between
nominal robustness and the existence of a continuous (in
fact, smooth) Lyapunov function is illuminated.

There are various ways to characterize nominal robust-
ness. Roughly speaking, the Lyapunov function should
decrease along solutions even in the presence of sufficiently
small measurement error, i.e., κ(x) is replaced by κ(x+e),
and sufficiently small additive disturbances, i.e., f(x, u)
is replaced by f(x, u) + d, with |e| and |d| small. Later
on we also call e and d inner and outer perturbations,
respectively. It is reasonable to expect nominal robustness
when a continuous Lyapunov function exists and κ(·) is
locally bounded since we can use continuity of f(·, u), V (·),
and ρ(|·|A) to make the following approximations for small
perturbations:

V (f(x, κ(x + e)) + d) − V (x)

≈ V (f(x + e, κ(x + e)) + d) − V (x)

≈ V (f(x + e, κ(x + e))) − V (x + e)

≤ −ρ (|x + e|A) ≈ −ρ (|x|A) .

B. Mathematical characterizations

In this and later sections we use the notation wi
j :=

[

w(i)T . . . w(i + j)T
]T

for i ≤ j. We denote wj := w0
j ,

w := w0
∞, and use the definition ‖w‖ := supk |w(k)|.

For the system x+ = f(x, κ(x + e)) + d, we denote
the solution k steps into the future under the influence
of perturbation sequences e and d by φ(k, x, e,d). Notice
that φ(0, x, e,d) = x. We use φ(k, x,d) when e = 0. We
sometimes use x(k) to denote a solution when the context
regarding the input is clear and we want to distinguish
between different subsystems. The initial condition is then
x(0) in this case. Finally, we denote the unit ball with
B = {s ∈ R

n : |s| ≤ 1}.
We now define several concepts with the aim of making

the notion of nominal robustness more precise.
Definition 1: For the system (2), the set A is said to

be robustly globally asymptotically stable (RGAS) if there
exist a class-KL function β and a continuous positive
definite function % such that for the system x+ = f(x, κ(x+
e)) + d under the constraint max {|e(k)|, |d(k)|} ≤
% (|φ(k, x, e,d)|A) for all k ≥ 0, the solutions satisfy
|φ(k, x, e,d)|A ≤ β(|x|A, k) for all k ≥ 0. �

Definition 2: For the system (2), the set A is said to be
semiglobally practically asymptotically stable (SPAS) in the
worst case size of inner and outer perturbations if there ex-
ists a class-KL function β and for each pair of strictly pos-
itive real numbers (δ,∆) there exists a strictly positive real
number ε such that for the system x+ = f(x, κ(x+e))+d

under the constraints |x|A ≤ ∆ and max {‖e‖, ‖d‖} ≤ ε,
the solutions satisfy |φ(k, x, e,d)|A ≤ max {β(|x|A, k), δ}
for all k ≥ 0 �

Definition 3: For the system (2), the set A is said to
be semiglobally practically asymptotically stable (SPAS) in
the worst case size of outer perturbations if there exists a
class-K∞ function ρ and for each pair of strictly positive
real numbers (δ,∆) there exist ε ∈ R>0 and k ∈ Z>0

such that for the system x+ = f(x, κ(x)) + d under
the constraints |x|A ≤ ∆ and ‖d‖ ≤ ε, the solutions
satisfy |φ(k, x,d)|A ≤ max {ρ(|x|A), δ} for all k ≥ 0 and
|φ(k, x,d)|A ≤ δ for all k ≥ k. �

Definition 4: For the system (2), the set A is said to be
attenuated input-to-state stable (AISS) if there exists a con-
tinuous nonincreasing function H : R≥0 → R>0, H(·) ≡ 1
on a neighborhood of the origin, a class-KL function β,
and a class-K function γ such that the solutions of the
system x+ = f(x, κ(x + H(|x|A)e)) + H(|x|A)d satisfy
|φ(k, x, e,d)|A ≤ max {β(|x|A, k), γ (‖e‖) , γ (‖d‖)} for
all k ≥ 0. �

Definition 5: For the system (2), the set A is
said to be integral input-to-state stable (IISS) if
there exist a class-KL function β and class-K
functions σe and σd such that for the system x+ =
f(x, κ(x + e)) + d, the solutions satisfy |φ(k, x, e,d)|A ≤

max
{

β(|x|A, k),
∑k−1

i=0 σe(|e(i)|),
∑k−1

i=0 σd(|d(i)|)
}

for
all k ≥ 0. �



Proposition 1: Suppose f(·, ·) is continuous and κ(·) is
locally bounded. Then the following statements are equiv-
alent: For the system (2), the compact set A is

S0: globally asymptotically stable with a continuous Lya-
punov function;

S1: robustly globally asymptotically stable;
S2: semiglobally practically asymptotically stable in the

worst case size of inner and outer perturbations;
S3: semiglobally practically asymptotically stable in the

worst case size of outer perturbations;
S4: attenuated input-to-state stable;
S5: integral input-to-state stable. �

III. IMPLICATIONS OF NOMINAL ROBUSTNESS FOR

OUTPUT FEEDBACK

A. Certainty equivalence assumption

In this section, we make assumptions on closed-loop
systems formed by implementing a certainty equivalence
control law that uses an observer output in place of the
state and give robust stability results. We do not presuppose
that the feedback control law κ comes from an MPC
formulation. In later sections, we construct observers for
control systems that are uniformly completely observable
(Section IV-A) or uniformly detectable (Section IV-B).

B. Dynamic output feedback structure

Our dynamic output feedback will have the general form

η+ = g(η, u, y), x̂ = Υ(η), u = κ(x̂), (4)

where κ(·) is the certainty equivalence control law coming
from a state feedback algorithm. We can write the observer
in the general form η+ = G(η, y), x̂ = Υ(η) and the
interconnection as

x+ = f(x, κ(Υ(η)))
η+ = G(η, h(x, κ(Υ(η)))) .

(5)

In the presence additive disturbances, the interconnection is

x+ = f(x, κ(Υ(η))) + d1

η+ = G(η, h(x, κ(Υ(η))) + e) + d2 .
(6)

We use X := [xT ηT ]T for the composite state and d =
[dT

1 dT
2 ]T as the composite additive disturbance. In the case

of observability, our closed-loop systems will satisfy the
following assumption:

Assumption 1: For the closed-loop system (6) there exist
an integer r ≥ 1, class-K∞ functions ρ and γ, a class-
KL function β, and for each pair of strictly positive real
numbers (δ,∆) there exists ε > 0 such that if ‖X‖ ≤ ∆
and max {‖e‖, ‖d‖} ≤ ε, then, for all k ≥ 0,

|x(k) − x̂(k)| ≤ max {ρ (|X(0)|) · max {0, r − k} , δ}
|η(k)| ≤ max{β(|X(0)|, k),

γ (max {‖x‖, ‖x − x̂‖}) , δ}.

�

In the case of detectability, our closed-loop will satisfy the
following assumption:

Assumption 2: For the closed-loop system (6) there exist
a class-K∞ function γ, class-KL functions β1 and β2, and
for each pair of strictly positive real numbers (δ,∆) there
exists ε > 0 such that if ‖X‖ ≤ ∆ and max {‖e‖, ‖d‖} ≤
ε, then, for all k ≥ 0,

|x(k) − x̂(k)| ≤ max {β1(|X(0)|, k), δ}
|η(k)| ≤ max{β2(|X(0)|, k),

γ (max {‖x‖, ‖x − x̂‖}) , δ}.

�

Remark 1: The observers in the case of detectability have
a slightly stronger property than this, that η(k) = x̂(k) and
|X(0)| can be replaced by |x(0)− x̂(0)|, but these stronger
properties aren’t needed for the statements below. �

C. Closed-loop conclusions

We now state two closed-loop robust stability results.
Later, we use these results to assert robust stability for
output feedback systems. Although we do not presuppose
the feedback law κ comes from an MPC formulation, we
do need to make the following assumption in order to state
our results here.

Assumption 3: The function κ : R
n → R

m is locally
bounded and the origin of x+ = f(x, κ(x)) is RGAS. �

Proposition 2: Under Assumptions 2 and 3, if the func-
tion σe from the equivalence between RGAS and IISS, for
some β, and the function β1 coming from Assumption 2
are such that σe(β1(s, ·)) is summable for all s, then the
origin of the closed-loop system (5) is RGAS. �

The next result follows directly from Proposition 2 by
observing that, with the definition β1(s, k) := ρ(s) ·
max {0, r − k}, the function σe(β1(s, ·)) is summable for
all s since β1(s, ·) has finite support.

Corollary 1: Under Assumptions 1 and 3, the origin of
the closed-loop system is RGAS. �

IV. OBSERVABILITY, OBSERVERS AND DYNAMIC

OUTPUT FEEDBACK

In this section we discuss dynamic output feedback sys-
tems satisfying certain detectability/observability properties
that, when used with the given observers, satisfy either
Assumption 1 or 2. We then give the corresponding results
to Corollary 1 and Proposition 2, respectively.

A. Uniform complete observability

1) Notation and Definition: For the system (1) we use
φ(k, x,u`

k−1) (a slight deviation from above) to denote
the solution at time k starting at x produced by the input
sequence (u(`), . . . , u(`+k−1)). Also, we define the vector

hr(x,u`
r) :=









h(x, u(`))
h(φ(1, x,u`

0), u(` + 1))
:

h(φ(r, x,u`
r−1), u(` + r))









.

The following definition is similar to concepts explored
in [10] and [18] (see [5] and [22] for related concepts in
continuous time):



Definition 6: The system (1) is said to be uniformly
completely observable (UCO) if there exist an integer r

and a continuous mapping Ψ : R
p(r+1)×m(r+1) → R

n such
that

x = Ψ(hr(x,ur),ur) (7)

for all x and all input sequences ur. �

The existence of a function satisfying (7) has been discussed
in [6] (in the context of continuous time nonlinear systems
with discrete measurements). For a given input sequence ui

and initial state x we define the output sequence y(i) :=
h(φ(i, x,ui−1), u(i)). The dependence of y(i) on x and
ui is left implicit. The following fact results from time
invariance and the definition of solution.

Lemma 1: For a system that is UCO with integer r,

φ(k, x,uk−1) =

φ
(

r + 1,Ψ
(

yk−r−1
r ,uk−r−1

r

)

,uk−r−1
r

)

for each k ≥ r + 1. �

2) A deadbeat observer: We consider a system in the
form of (1) and assume that it is UCO. Consider the
following dynamical system

ξ+
1 = ξ2

:
ξ+
r = ξr+1

ξ+
r+1 = y

ζ+
1 = ζ2

:
ζ+
r = ζr+1

ζ+
r+1 = u

(8)

with dynamic output feedback controller

u = κ(x̂); x̂ = φ (r + 1,Ψ(ξ, ζ) , ζ) . (9)

This matches the form of (4) with η :=
[

ξT , ζT
]T

, and we
have the following result:

Lemma 2: Define:

η :=

[

η1

η2

]

=

[

ξ

ζ

]

,

g(η, u, y) :=









0r×1 Ir
0 01×r

0r+1×r+1

0r+1×r+1
0r×1 Ir

0 01×r









η +





















0
...
y

0
...
u





















,

Υ(η) := φ(r + 1, Ψ(η1, η2), η2) , and
G(η, y) := g(η, κ(Υ(η)), y) ,

where Ii is an i-by-i identity matrix and 0i×j is an i-by-j
zero matrix. If h(0, 0) = 0, Ψ(0, 0) = 0, and κ is locally
bounded and satisfies lim supx→0 |κ(x)| = 0, then the
closed-loop system formed by the interconnection (6) of the
dynamic output feedback controller (8) and the system (1) in
the presence of measurement error and additive disturbances
satisfies Assumption 1. �

The following is an immediate consequence of Corollary
1 and Lemma 2.

Corollary 2: Suppose the system (1) is UCO, h(0, 0) =
0, Ψ(0, 0) = 0, lim supx→0 |κ(x)| = 0, and Assumption
3 holds. Then the output feedback controller (8) intercon-
nected with the system (1) is RGAS. �

B. Uniform detectability

In this section we discuss a general notion of detectability
expressed in terms of the existence of a Lyapunov function
(cf. weakly detectable definition [24], a local version of the
definition is used in [15] ).

Definition 7: The system (1) is said to be uniformly
detectable if there exist a continuous function Γ : R

n ×
R

m × R
p 7→ R

n such that Γ(0, 0, 0) = 0, a continuous
function W : R

n×R
n 7→ R≥0, class-K∞ functions α1, α2,

and a continuous positive definite function α3 such that for
all (x, x̂, u) ∈ R

n×n×m,

α1(|x − x̂|) ≤ W (x, x̂) ≤ α2(|x − x̂|)

W (x+, x̂+) − W (x, x̂) ≤ −α3(|x − x̂|),

where x̂+ := Γ(x̂, u, h(x, u)). �

The corresponding dynamic output feedback controller is

u = κ(x̂); x̂+ = Γ(x̂, u, h(x, u)). (10)

This controller has the structure of (4) if we choose η = x̂

and Υ(η) = η. We then have the following result.
Lemma 3: Define Υ(η) := η, G(η, y) := Γ(η, κ(η), y),

and η := x̂. If the feedback function κ is locally bounded,
then the closed-loop system formed from the interconnec-
tion (6) of the dynamic output feedback controller (10) and
the system (1) in the presence of measurement error and
additive disturbances satisfies Assumption 2. �

We can now state a corollary that follows from Proposi-
tion 2 and Lemma 3.

Corollary 3: Suppose the system (1) is uniformly de-
tectable, κ is locally bounded (that is, the suppositions of
Lemma 3 hold), and that Assumption 3 holds. Then if the
function σe coming from the equivalence between RGAS
(from Assumption 3) and IISS, for some β, and the function
β1 corresponding to the conclusion of Lemma 3 are such
that σe(β1(s, ·)) is summable for all s, then the output
feedback controller (10) interconnected with the system (1)
is RGAS. �

V. GUARANTEEING ASSUMPTION 3 WITH MODEL

PREDICTIVE CONTROL

In order to apply Corollary 2 or 3, we must show that
Assumption 3 holds. First, we recall results (e.g., from
[13]) on the existence of state feedback laws that guarantee
Assumption 3 holds for systems that can be driven to the
origin asymptotically using open loop controls. If the open-
loop controls vanish as the trajectories approach the origin,
then κ(·) can be taken to satisfy lim supx→0 |κ(x)| = 0.
The feedback laws are constructed from solutions to an
appropriate infinite horizon optimal control problem. Next,
we give some conditions on finite horizon model predictive
control problems that generate feedback laws such that both
Assumption 3 holds and lim supx→0 |κ(x)| = 0.



A. Infinite horizon model predictive control

The following definition parallels [13, Definition 6]:
Definition 8: The system x+ = f(x, u) is said to

be asymptotically controllable to the origin with locally
bounded controls if there exist β ∈ KL, α ∈ K, µ ≥ 0, and
for each x ∈ R

n a sequence u such that for each k ≥ 0

|φ(k, x,u)| ≤ β(|x|, k)

|u(k)| ≤ α(|φ(k, x,u)|) + µ .
(11)

The system is said to be asymptotically controllable to the
origin with vanishing controls when µ = 0. �

The next theorem is based on [13, Theorem 2], which
is established using an appropriate infinite horizon optimal
control problem.

Theorem 1: If the system x+ = f(x, u) is asymptotically
controllable to the origin with locally bounded controls then
there exists a feedback function κ satisfying Assumption 3.
Moreover, if the system is asymptotically controllable to
the origin with vanishing controls, then κ can be taken to
satisfy lim supx→0 |κ(x)| = 0. �

Proof. Using the continuity of f and α, [13, Theorem 2]
is applicable and there exists a smooth, positive definite
radially unbounded function V : R

n → R≥0 such that, for
each x ∈ R

n,

min
u∈[α(|x|)+µ]B

V (f(x, u)) ≤ V (x)e−1 . (12)

We let λ ∈ [e−1, 1) and then for each x ∈ R
n we let κ(x) ∈

[α(|x|) + µ]B satisfy V (f(x, κ(x))) ≤ λV (x). With this
feedback function, Assumption 3 is satisfied. Also, when
µ = 0 we get lim supx→0 |κ(x)| = 0. �

The following corollary comes from combining Theorem
1 with Corollary 2 (cf. [20], [21], and [23]).

Corollary 4: Suppose the system (1) is asymptotically
controllable to the origin with vanishing controls and is
UCO with h(0, 0) = 0 and Ψ(0, 0) = 0. Then the system
(1) can be made RGAS by dynamic output feedback. �

B. Finite horizon model predictive control

The solution to a general infinite horizon optimization
problem is typically computationally intractable; conse-
quently, finite horizon optimization algorithms, such as
finite-horizon MPC, are often used instead. However, not
every finite horizon optimization algorithm yields a robustly
stabilizing control even if it is strengthened with so-called
“stability constraints” such as terminal set constraints (see,
e.g., [7] for examples of nonrobustness). For an overview
of relevant MPC concepts and typically employed MPC
methods, see [2] and [16] (for a more complete discussion
of the methods used in this paper, see [8] ). In this section
we study a certain class of MPC algorithms that renders the
origin of the closed-loop RGAS if the optimization horizon
is chosen long enough. We assume that the optimization
problem that yields the MPC feedback law is globally
feasible, i.e., a solution exists for all x ∈ R

n, for a long
enough horizon length.

We use the cost function

JN(x, uN−1) := g(φ(N, x, uN−1)) (13)

+

N−1
∑

k=0

`(φ(k, x, uN−1), u(k)),

constructed from the terminal cost g : R
n 7→ R≥0 and the

stage cost ` : R
n ×R

m 7→ R≥0. We do not require g to be
a local control Lyapunov function; unlike the typical MPC
setting, our stability results do not depend on g explicitly.
We consider the optimization problem

VN(x) := inf
uN−1

JN(x, uN−1) (14)

subject to

{

u(k) ∈ U , k ∈ {0, 1, . . . , N − 1}
φ(N, x, uN−1) ∈ X ,

where VN(x) is the value function, U ⊆ R
m is the control

input set , and X ⊆ R
n is the terminal constraint set. The

terminal constraint set can be, for example, the origin X =
{0}, the whole space X = R

n (which corresponds to the
case without a terminal constraint), the interior of a sublevel
set of some Lyapunov function X = {z ∈ R

n : V (z) ≤ c},
or some hyperplane containing the origin.

Whenever the infimum is achieved by an admissible
control input sequence, the MPC feedback law κN : R

n 7→
U is a function that returns the first element of the se-
quence given the current state, i.e., κN(x) = u(0), where
JN(x, uN−1) = VN(x). In the following assumptions on the
MPC algorithm, we consider a continuous proper indicator
function ς : R

n 7→ R≥0, that is, there exist class-K∞

functions ας , ας such that ας(|x|) ≤ ς(x) ≤ ας(|x|) for
all x ∈ R

n.
Assumption 4: The functions g and ` are continuous. �

Assumption 5: For all u ∈ U , `(x, u) ≥ ς(x). �

Assumption 6: For each x there exists an admissible
control input sequence u∗

N−1
such that JN(x, u∗

N−1
) =

VN(x) provided (14) has a solution for x. �

Assumption 7: There exists a ≥ 1 such that for all N ≥
1, VN(x) ≤ aς(x) whenever x is feasible for VN(x). �

Assumption 8: Either the control input set U is compact,
or supi |u(i)| → ∞ implies JN(x, uN−1) → ∞. �

Assumption 9: There exists a continuous positive definite
function ρ` : R

n × R
m 7→ R≥0 such that `(x, u) +

`(f(x, u), v) ≥ ρ`(x, u) for all v ∈ U . �

Under these assumptions, we can establish the following
result, a similar version of which appears in [9] along with
more general results. It is also a special case of the result in
[8] when there is no terminal constraint, that is, X = R

n.
Theorem 2: Consider the system x+ = f(x, u) under

Assumptions 4-8 and further assume that there exists a
horizon length M ≥ 1 such that the optimization problem
(14) has a solution for all x ∈ R

n. Then, for all horizons
N > a2 + M − 1, κ is locally bounded, and the origin
of the MPC closed-loop x+ = f(x, κN(x)) is RGAS.
Furthermore, if, in addition to the above assumptions,
Assumption 9 holds, then lim supx→0 |κN(x)| = 0. �



VI. EXAMPLE

Consider the following system:

x+ =

[

x+
1

x+
2

]

=

[

x1 + x3
2

x2 + u3

]

=: f(x, u),

y = x3
1 =: h(x).

(15)

Note that the linearization is neither detectable nor stabi-
lizable; however, the nonlinear system is stabilizable and
UCO. The state can be reconstructed by a deadbeat observer
as in (8):

ξ+
1 = ξ2

ξ+
2 = y

ζ+
1 = ζ2

ζ+
2 = u

(16)

with the continuous output map

x̂ = φ (2,Ψ(ξ, ζ) , ζ) ,Ψ(ξ, ζ) :=

[

ξ
1

3

1

(

ξ
1

3

2 − ξ
1

3

1

)
1

3

]

(17)
Given any input sequence v1, if we let h(x, u) =
h(x), then h1(x,v1) = [h(x) h(f(x, v(0)))]T and x =
Ψ(h1(x,v1),v1) for all x ∈ R

n. Hence (15) is UCO.
We now formulate an MPC algorithm to stabilize (15)

using the terminal equality constraint X = {0}. We pick the
costs `(x, u) = ς(x) := |x1|+ |x2|

3 and g(x) = 0. Since `

and g are continuous, Assumption 4 holds. Since `(x, u) =
ς(x), Assumption 5 holds. The state of the system can be
driven to the origin from any initial condition in two steps
with the feedback law κ(x) = −(x2 + (x1 + x3

2)
1/3)1/3.

This resulting control input sequence is admissible, hence
we have Assumption 6. Since the deadbeat control law
above cannot be better than the optimal control law, we
can use it to obtain the upper bound VN(x) ≤ 3ς(x) for all
horizons N ≥ 2. Then, Assumption 7 holds with a = 3.
Observe that supi |u(i)| → ∞ implies JN(x, uN−1) → ∞
since the stage cost `(x, u) = ς(x) is positive definite
in x. Therefore, Assumption 8 is satisfied. Finally, since
`(x, u) + `(f(x, u), v) = |x1|+ |x2|

3 + |x1 + x3
2|+ |x2 +

u3|3 =: ρ`(x, u) is positive definite, Assumption 9 holds.
Since any initial condition can be driven to the origin in
two steps, Theorem 2 can be applied with M = 2 and we
conclude that for all N > 32 + 2 − 1 = 10, Assumption 3
holds and lim supx→0 |κN |(x) = 0. Finally, since h(0) = 0,
Ψ(0, 0) = 0, by Corollary 2 we conclude the origin of the
interconnection of the MPC-generated controller and the
observer (16-17) is RGAS for all N > 10.

VII. CONCLUSIONS

We have shown that discrete-time nonlinear feedback
systems that employ discontinuous feedback control laws
can be used in a certainty equivalence output feedback
structure. We have given an MPC formulation along with
two observer structures that together satisfy the conditions
required to make the origin of the systems in question
RGAS and have applied these ideas to an example.
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