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Abstract

In this paper, we consider the development of a systematic
optimization process that can be used to locate sensors in
distributed parameter systems. We focus on two compo-
nents in this process: developing a performance metric,
and invoking optimization algorithms to find the best lo-
cation of sensors according to this metric. In choosing a
metric, we incorporate the notion of a worst-case, spatially
distributed disturbance. The included numerical study uses
a variety of second-order parabolic problems.

1. Introduction

A practical engineering concern in the design of control
systems is the location of actuators and sensors. Actuator
placement has been the subject of numerous studies (see,
e.g., the survey papers by van de Wal and de Jager [11] and
Kubrusly and Malebranche [10]). Optimization techniques
have been proposed for optimal actuator placement by the
authors in [7], [2] and [6]. The dual problem of optimal
sensor location has been studied for distributed parameter
systems through the use of functional gains [3, 9, 1]. These
gains are the kernel of the feedback operator. The philos-
ophy is that regions where these kernel functions have the
most “support” are the regions where sensors need to be
located. This idea is formally presented in [8] where the
domain is subdivided according to weights associated with
the gains. These subdivisions suggest sensor locations.

Our approach constructs a performance measure based
on either the observability grammian, the solution to the
filter Riccati equation or a transfer function in the state es-
timation problem. The latter allows us to consider worst-

case distributed disturbances. In all of these cases, the
value of the performance measure depends on the location
of the sensor. Although we plot the entire performance in-
dicator for our one-dimensional example problems, in prac-
tical applications, one would rely on an optimization algo-
rithm to determine the best place to locate the sensors.

The problem is presented in Section 2 along with a
mathematical description of the dynamics that describe the
class of dynamical systems under consideration. The main
results are summarized in Section 3 and numerical results
are presented in Sections 4 and 5. Conclusions and future
work follow in Section 6.

2. Problem statement

We consider a class of parabolic partial differential
equations expressed by

∂x
∂t

(t,ξ) = A(ξ)x(t,ξ)+b(ξ)u(t)+d(ξ)ν(t)

y(t) =
Z

Ω
c(ξ)x(t,ξ)dξ+w(t),

(1)

whereA(ξ) is a strongly elliptic operator [5],ξ ∈ Ω ⊂ R
n

(n = 1,2,3) denotes the spatial variable,x(t,ξ) is the solu-
tion, u(t) the control signal,b(ξ) the distribution function
of the actuator,d(ξ) the distribution function of the dis-
turbance entering the system andw(t) the temporal com-
ponent of the disturbance. It is assumed that partial state
measurements are possible at regions of the spatial domain
via the outputy(t) with c(ξ) denoting the output distribu-
tion function that describes the type and location of the
sensing devices. Associated with the above are the cor-
responding boundary conditions (Dirichlet, Neumann or
mixed) and given initial conditionsx(0,ξ) = x0(ξ). The
above distributed parameter system may be placed in an



abstract framework [4] via the general evolution equation

ẋ(t) = Ax(t)+ B1ν(t)+ B2u(t)

z(t) = C (θ)x(t)+w(t),
(2)

wherex ∈ X (= L2(Ω)) is the state of the system,X the
state space (Hilbert space),u denotes the control signal,ν
denotes the system disturbance,y∈ Y the measured output
signal andw the measurement noise. The output operator
C (·) is parameterized by the candidate sensor locationsθ ∈
Θ to emphasize the dependence of the output operator on
the sensor location. The set of candidate sensor locations
Θ is defined via

Θ =
{

θ ∈ Ω : (C (θ),A) is approx. observable
}

. (3)

We are now in a position to define the problem under con-
sideration.

Problem statement: The problem at hand is to choose
the sensor location from the setΘ such that is produces the
“best” possible state estimator against all possible spatial
distributions of disturbances d(ξ) and which provides an
estimator with a desired spatial robustness.

3. Main Results

We follow different approaches for the sensor location
that either enhance the observability properties of the sys-
tem or improve its ability to provide a better state estimator.

3.1. Enhanced observability

The resulting “optimal” sensor locations should be such
that they at least provide enhanced observability. Thus one
may search in the setΘ for the sensor positions that yield
the locations that make the system “more” observable.

Using enhanced observability measures, one may
choose the “optimal” sensor locationsθ from the setΘ that
maximize the boundα = α(θ) in

〈Wob(θ)φ,φ〉X ≥ α‖φ‖2
X , φ ∈ X , (4)

where Wob(θ) denotes theθ-parameterizedobservabilty
Gramian operatordefined via

〈Wob(θ)φ1,Aφ2〉X + 〈Aφ1,Wob(θ)φ2〉X =

−〈C (θ)φ1,C (θ)φ2〉X , θ ∈ Θ,
(5)

for φ1,φ2 ∈ D(A). In other words, the “best” sensor loca-
tions are given via

θopt = arg sup
θ∈Θ

α(θ) , (6)

whereα(θ) is given via (1), (2). It should be noted that un-
der conditions on self-adjointness and boundedness of the
Gramian operator, one may replace the coercivity bound by
the trace of the operator.

3.2. Optimal state estimator

Since the immediate goal is the construction of an opti-
mal state estimator, it seems then a natural progression to
require that the sensor location results in the “best” possi-
ble state estimator. Towards that end, we propose a sensor
location-parameterized optimal (Kalman) estimator

˙̂x(t) =
(

A −L(θ)C (θ)
)

x̂(t)+ B2u(t)+ L(θ)y(t), (7)

where the filter operatorL(θ) , S(θ)C ∗(θ)W−1, andS(θ)
is the sensor-parameterized positive operator solution tothe
filter Riccati operator equation

〈A∗φ,S(θ)ψ〉X + 〈S(θ)φ,A∗ψ〉X + 〈φ,B1B∗
1ψ〉X

−〈φ,S(θ)C ∗(θ)W−1C (θ)S(θ)ψ〉X = 0, θ ∈ Θ,
(8)

for φ,ψ ∈ D(A∗). Therefore, the best optimal sensor loca-
tion is found as the one that minimizes theθ-parameterized
mean reconstruction error and which is expressed in terms
of the trace of the variance operator

E
[
〈x(t)− x̂(t),x(t)− x̂(t)〉2

]
= trace

[
S(θ)

]
. (9)

This optimal sensor scheme is given below via

θopt = arg inf
θ∈Θ

trace
[
S(θ)

]
. (10)

3.3. Robustness of I/O map

We now consider frequency criteria for the selection of
the optimal sensor location as it pertains to the optimal fil-
ter. Towards that end, we consider thestate estimation er-
ror e(t) , x(t)− x̂(t) given by

ė(t) =
(

A −L(θ)C (θ)
)

e(t)+ B1ν(t)−L(θ)w(t), (11)

or alternatively via

e(t)= T (t,t0;θ)e(0)+
Z t

0
T (t,τ;θ)

(
B1ν(τ)−L(θ)w(τ)

)
dτ,

where T (t,t0;θ) denotes theθ-parameterizedC0 semi-
group generated byA − L(θ)C (θ). The goal here is to
select the sensor location so that the effects ofν(t) on the
state errore(t) are minimized. A measure of this may be
taken as the transfer functionTeν from ν(t) to e(t), param-
eterized by the sensor location, and given by

Teν(s;θ) = I
(

sI − (A −L(θ)C (θ))
)

B1. (12)



In a similar fashion, we propose the following for the opti-
mal sensor location

ξopt = arg min
ξ∈Θ

‖Teν(s;θ)‖2. (13)

4. Finite dimensional implementation and nu-
merical considerations

The above scheme is approximated via an exponential
detectability-preserving scheme. The corresponding sensor
location optimal measures are given below.

4.1. Enhanced observability

One now solves for theθ-parameterized Gramian
Wob(θ) given by

ATWob(θ)+Wob(θ)A = −CT(θ)C(θ) (14)

and the associated optimization is

θopt = arg max
θ∈Θ

trace
[
Wob(θ)

]
. (15)

4.2. Optimal state estimator

The associated filter matrix Riccati equation is

AΣ(θ)+ Σ(θ)AT −Σ(θ)CT(θ)W−1C(θ)Σ(θ)+B1BT
1 = 0

(16)
and the sensor optimization is given by

θopt = arg min
θ∈Θ

trace
[
Σ(θ)

]
. (17)

4.3. Robustness of I/O map

The finite dimensional state error equation is now given
by

ė=
(

A−L(θ)C(θ)
)

e+B1ν(t)−L(θ)w(t) (18)

and theH 2 norm of the associated transfer function is given
by

‖Teν(s;θ)‖2 =
√

trace(Wc(θ)), (19)

whereWc(θ) is the controllability gramian of the pair(A−
L(θ)C(θ),B1) and is found via the solution to the Lyapunov
equation
(

A−L(θ)C(θ)
)

Wc(θ)+Wc(θ)
(

A−L(θ)C(θ)
)T

=−B1B
T
1 .

(20)
Therefore, the best sensor is found via

θopt = arg min
θ∈Θ

[
Wc(θ)

]
. (21)

Remark 4.1 It should be noted that one may use theH ∞

norm in(13)or (19),(21) instead of theH 2, to arrive at

θopt = arg min
θ∈Θ

‖Teν(s;θ)‖∞.

The latter is more attractive from a computational point of
view as it is computationally easier to calculate it.

5. Numerical results

We report results of a study in which a suboptimal pro-
cedure was used in the 1-D heat equation with Dirich-
let boundary conditions. Specifically, a sensor location-
parameterized state estimator was considered and subse-
quently theH ∞ and/orH 2 norms of the transfer function
Teν(s) were considered for a range of distributionsd(ξ) that
include distributions of the eigenfunctions. The details of
this study are as follows: Specifically, we consider the par-
tial differential equation

∂x
∂t

(t,ξ) = 0.01
∂2x
∂ξ2(t,ξ)+b(ξ)u(t)+d(ξ)ν(t)

x(t,0) = x(t,L),

y(t) =

Z L

0
δ(ξ−θ)x(t,ξ)dξ+w(t) = x(t,θ)+w(t)

which has eigenfunctions and eigenvalues given byφk(ξ) =

sin
(

kπξ
L

)
, λk = −k2π2, k ≥ 1. Then, using a Galerkin

scheme, we approximate the above PDE to arrive at the
finite dimensional system

ẋ = Ax+B1w+B2u

z= C(θ)x.

Various disturbance distribution functions that have the
sameL2 norm, i.e.

Z

Ω
|d(ξ)|2dΩ = 1,

are used to find the sensor locations. Therefore, the set
of admissible distribution functions for disturbances to be
considered, is be chosen as

D =

{
d ∈ C (Ω) :

Z

Ω
|d(ξ)|2 dΩ = 1

}
.

Six different distribution functionsd(ξ) are used in this
study to demonstrate the effects of spatial variability on es-
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Figure 1. Distributions of disturbances normalized with re-
spect to

R L
0 |di(ξ)|2 dξ = 1.

timator robustness and sensor location

d1(ξ) = χ[0,0.5L](ξ)sin(2πξ/L)

= χ[0,0.5L](ξ)φ2(ξ),

d2(ξ) =
1√

2πσ2
exp

(
− 1

2

(
(ξ−µ2)

σ2

)2)
,

d3(ξ) = sin(2πξ/L)

= φ2(ξ),

d4(ξ) =
(

χ[0,0.3L](ξ)+ χ[0.6L,0.9L](ξ)
)

sin(10πξ/L)

=
(

χ[0,0.3L](ξ)+ χ[0.6L,0.9L](ξ)
)

φ10(ξ),

d5(ξ) =
1√

2πσ5
exp

(
− 1

2

(
(ξ−µ5)

σ5

)2)
,

d6(ξ) = 1,

whered(ξ) are related to the disturbance operator via

〈B1ν(t),φ〉X =

Z L

0
d(ξ)φ(ξ)dξ ν(t).

These normalized disturbance distributions are depicted in
Figure 1.

5.1. Time domain criteria

In the first part of our investigation, we consider an
optimal estimator measure which minimizes the sensor

location-parameterized Gramian (14). As expected, it pre-
dicts the midpoint as the optimal sensor location. Similarly,
the filter covariance in (17) in Figure 3 considers this for all
6 disturbance distributions. In this case, one observes that
the optimal location is different for different disturbance
distributions. For example, distributiond2(ξ) (Fig. 3b) pre-
dicts the midpoint as the optimal location whereasd3(ξ)
(Fig. 3c) considers this location as the worst possible loca-
tion.

5.2. Frequency domain criteria

The two normsH 2 andH ∞ of Teν(s;θ) are considered
here for sensor placement. Figure 4 depicts theH 2 norm
of theθ-parameterized transfer function (19) and Figure 5
depicts the correspondingH ∞ norm. Both provide similar
results for the optimal sensor locations.

5.3. Estimator time evolution

To further demonstrate the effects of sensor location on
the state error, we consideredd(ξ) = d3(ξ) and simulated
the plant and the associated state estimator with a sen-
sor placed in the optimal location ford3, which according
to Figure 5 is atξ = 0.25L, and with a sensor placed at
ξ = 0.5L. The latter is indeed an optimal location for either
a uniform distribution or a Gaussian centered at the mid-
dle of the spatial domain,but it is a non-optimal location
for d3(ξ). Figure 6 depicts the evolution of the state error,
where it is observed that the optimal sensor location results
in a faster convergence than a non optimal one.

6. Conclusions and future work

This work studies the problem of optimal sensor loca-
tions. For the problem of developing a sensor for the heat
equation, the measure based on the observability gram-
mian (trace[Wob(θ)]) found the best location in the center
of the domain. However, this was independent of any dis-
tribution of disturbances. When spatially distributed distur-
bances are taken into account, the measures (trace[Σ(θ)])
or (‖Teν(s;θ)‖) give more practical information. In our last
experiment, we show the impact that an optimally placed
sensor can have on the closed-loop system. For future work
(to be included in the final version of this paper), we intend
to study the use of gradient-based optimization algorithms
to find the minima of these performance measures. In ad-
dition, we will look at systems in higher dimension.
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