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Abstract— In this paper, a direct adaptive control for drug
infusion of biological systems is presented. The proposed
controller is accomplished using our adaptive network called
Fuzzy Rules Emulated Network (FREN). The structure of
FREN resembles the human knowledge in the form of fuzzy
I F-THEN rules. After selecting the initial value of network’s
parameters, an on-line adaptive process based on Lyapunov’s
criteria is performed to improve the controller performance.
The control signal from FREN is designed to keep in the region
which is calculated by the modified Sliding Mode Control
(SMC). The simulation results indicate that the proposed algo-
rithm can satisfy the setting point and the robust performance.

I. INTRODUCTION

The infusion of sodium nitroprusside in order to lower
blood pressure in patients after surgery is an example of
the drug infusion problem. There are two general methods
for administering the drug [1]. The first one is a bolus
injection and the second is a continuously controlled release
of the drug. The controller must find the correct dose to
decrease the blood pressure to the desired level with out the
risk of a drug overdose. The model of a patient’s response
have been represented in [2]. This model has been used by
several controller design studies. The model reference adap-
tive controller was introduced in [3]. Many multiple-mode
adaptive controllers were presented in [4] and [5]. A robust
direct model reference adaptive controller was described in
[6], in which the control of a dog’s mean arterial blood
pressure was investigated. Unfortunately, theirs result are
based on a linearized nonlinear model and need the accurate
mathematical model.

In this paper, our adaptive controller inspired by the hy-
brid Sliding Mode Control(SMC) [7], [8], [9] and a recently
proposed adaptive controller calledFuzzy Rules Emulated
Network (FREN) [10], [11] is presented to cope those
problems. The mathematical model of the controlled drug
system is not necessary. The structure of FREN resembles
the human knowledge in the form of fuzzy control rules
and its initial setting of network parameters is intutively
selected. After setting its parameters, an on-line adaptation
is performed during its operation to fine tune the values.
Hence, the controller is able to adapt itself to the change
of environment. During the control effort is generated by
FREN, the stability can be guaranteed by the bound signals
calculated by the modified SMC.

This paper is organized as follows. Section II introduces
the overview of the drug infusion model. The bound of the

C. Treesatyapun is with Faculty of Electrical Engineering,Chiang-Mai,
Thailand.tree471@yahoo.com

control effort is presented in section III. Then, in section
IV, the structure of FREN is introduced. Its usage as a
controller is explained in the next subsection. During the
operation, all FREN’s parameters are adjusted in order to
minimize the control error signal. This adaptive method
based on the steepest descent or gradient search is presented
in subsection IV-B. The criteria for learning rate selection is
discussed next. Then the computer simulation results when
applying FREN to control the change in blood pressure
to the infusion rate of sodium nitroprusside are shown in
section V. In the final section, some conclusions are given.

II. T HE DRUG INFUSION MODEL

In [2], a model of a patient’s response to the infusion
of sodium nitroprusside has been perforned. The transfer
function is

∆Pd(s)

I(s)
=

Ke−Tis(1 + αe−Tcs)

τs + 1
, (1)

where∆Pd(s) is the change in mean arterial blood pressure
in mmHg and I(s) is the drug infusion rate inmlh−1.
Other parameters can be defined as follows:
K Sensitivity of the patient to the drug

(

mmHg

mlh−1

)

,

Ti Initial transport delay(sec),
Tc Recirculation transport delay(sec),
α Recirculation(−),
τ Lag time constant(sec).

In this paper, the simulation will be done with a discret-time
model. Let∆Pd(k) andI(k) be thekth sampling of∆pd(t)
andi(t), where∆pd(t) andi(t) are invert Laplace transform
of ∆Pd(s) and I(s), respectively. The plant simulation is
depicted in Fig. 1, where∆Pd(k) andI(k) are denoted by
Y (s) and U(s), respectively. The disturbance is generated
to follow the patient’s environment as shown in Fig. 2.
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Fig. 1. Drug system

From (1), the controlled drug system can be rewritten as

∆Pd(k +1) = f(Pd(k), φ)+ g(Pd(k), φ)I(k)+d(k), (2)

or in state equation form as
[

x1(k + 1)
x2(k + 1)

]

=

[

0 1
0 0

] [

x1(k)
x2(k)

]

+

[

0
g(.)

]

u(k) +

[

0
f(.)

]

+

[

0
d(k)

]

,

(3)
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Fig. 2. Disturbance of patient environment and condition

where x2(k) = ∆Pd(k), x1(k) = ∆Pd(k − 1), u(k) is the control
signal I(k), f(.) and g(.) are unknown nonlinear functions andd(k) is
the bounded disturbance. The system in Eq. (3) with only boundaries of
f(.), g(.) andd(k) is used to design the proposed controller as shown in
the next section.

III. T HE REGION OF THE CONTROL EFFORT

The control effort range is determined by using the modified SMCbased
on the discrete-time domain. The generalNth-order nonlinear discrete-
time plant can be written as
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d(k),

or
x(k + 1) = Ax(k) + Bku(k) + Fk + Dk. (4)

Defines(k) as

s(k) = c

[

x(k) − xd(k)

]

= ce(k), (5)

where xd(k) be the desired value ofx at time k and c =
[

c1 · · · cN

]

∈ RN is a constant matrix,f : RN → R and
di(k) for i = 1, 2, ..., N is unknown disturbance. Note thatcT must not
orthogonal toe, and the roots of the polynomiacN + cN−1z−1 + · · ·+
c1z−(N−1) = 0 must be kept in the unit circle. From Eq. (4) and (5),
s(k + 1) can be obtained as

s(k + 1) = cAx(k) + cBku(k) + cϕk − cxd(k + 1), (6)

whereϕk = Fk + Dk. Define the Lyapunov function

V (k) = s2(k), (7)

and

∆V (k) = V (k + 1) − V (k),

= s2(k + 1) − s2(k). (8)

For stability we must have

∆V (k) < 0 ⇒ s2(k + 1) < s2(k), (9)

thus
[

s(k + 1) + s(k)

][

s(k + 1) − s(k)

]

< 0. (10)

Assuming that|ϕk| < Φq , cBk > 0 and

A = cxd(k + 1) − cAx(k). (11)

From Eq. (10), there are two possible cases as follows:
Case I: s(k + 1) + s(k) > 0 and s(k + 1) − s(k) < 0
We obtain

−A + cBku(k) + cϕk + s(k) > 0, (12)

−A + cBku(k) + cϕk − s(k) < 0. (13)

Eq. (12) and (13) lead to

A− cϕk − s(k)

cBk

< u(k) <
A− cϕk + s(k)

cBk

. (14)

Since

u1p(k) =
A + cΦq + s(k)

cBk

>
A− cϕk + s(k)

cBk

,

u1n(k) =
A− cΦq − s(k)

cBk

<
A− cϕk − s(k)

cBk

,

we can conclude that

u1n(k) < u(k) < u1p(k). (15)

Sinceu1p(k) > u1n(k), it is required that

s(k) > −cNΦq . (16)

Case II: s(k + 1) + s(k) < 0 and s(k + 1) − s(k) > 0
We obtain

−A + cBku(k) + cϕk + s(k) < 0, (17)

−A + cBku(k) + cϕk − s(k) > 0. (18)

Eq. (17) and (18) yield

A− cϕk + s(k)

cBk

< u(k) <
A− cϕk − s(k)

cBk

. (19)

Since

u2p(k) =
A + cNΦq − s(k)

cBk

>
A− cϕk − s(k)

cBk

,

u2n(k) =
A− cNΦq + s(k)

cBk

<
A− cϕk + s(k)

cBk

,

again we can conclude that

u2n(k) < u(k) < u2p(k). (20)

Sinceu2p(k) > u2n(k), it is required that

s(k) < cNΦq . (21)

The control effortu(k) will be determined within this boundary using the
adaptive network called FREN to be introduced in the next section.



IV. FREN AS CONTROLLER

A. Fuzzy Rules Emulated Network
A general fuzzy inference system can be represented by the IF-THEN

rules. For a single input system, these rules may be written as,

RULE i: IF Iinput IS Ai THEN Bi = (hi − ki)µAi
+ ki

where Iinput denotes the crisp input of this fuzzy system. This rule
indicates that ife belongs to the fuzzy setAi with the membership value
of µAi

then the fuzzy value of the output of this rule, denoted byBi, is
equal to the linear function ofhi andki called Linear Consequence (LC)
parameters. After all rules have been processed, the crisp output Ooutput

is calculated by

Ooutput =

N
∑

i=1

Bi, (22)

whereN denotes the number of fuzzy rules. When using the proposed
FREN as a controller, the structure of the control system becomes as shown
in Fig. 3. The FREN receives the error signalE(k) and computes the

Fig. 3. Control system using FREN

control signalu(k). The plant control signalu(k) is obtained by

u(k) = Ooutput, (23)

where Ooutput is the output of FREN in (22) andE(k) is the input
to FREN orIinput. As an example of how the initial value of FREN’s
parameters are selected, consider the following 4 fuzzy control rules,

RULE 1 IF E IS PL THEN u IS PL
RULE 2 IF E IS PM THEN u IS PM
RULE 3 IF E IS NM THEN u IS NM
RULE 4 IF E IS NL THEN u IS NL.

Assume that the error signalE ∈ [−1, 1] and the calculated lower and
upper bound of the control effort are -2 and 2, respectively,i.e. uk ∈
[−2, 2]. The value of the control effort,uk can be set by parameters in
LC (e.g. hi and ki for i = 1, 2, 3, 4.) In this example,h1 is set to the
upper bound(h1 = 2) andh4 is set to the lower bound(h4 = −2). The
other parameters areh2 = h1

2
= 1, h3 = h4

2
= −1, and ki = 0 for

i = 1, 2, 3, 4. Then, MF parameters are selected to cover the error range.
The initial setting of all parameters can be given as:

Rule1 : A1 = µ1(E) = 1
1+exp[20(E+0.35)]

; B1 = 2A1,

Rule2 : A2 = µ2(E) = exp
(

−[E−0.25
0.15

]2
)

; B2 = A2,

Rule3 : A3 = µ3(E) = exp
(

−[E+0.25
0.15

]2
)

; B3 = −A3,

Rule4 : A4 = µ4(E) = 1
1+exp[−20(E−0.35)]

; B4 = −2A4.

The results of this setting are shown in Fig. 4. Notice that the control
effort uk is within [-2,2].

B. Adaptation algorithm
Since the initial setting of FREN parameters are just rough estimation

based on a human expert experience, it is necessary to fine tunethese
values in order to cope with environmental change and to improve system
performance. In this work, an adaptive technique based on thesteepest
descent technique is proposed to adjust all parameters during system
operation. Firstly, we define the objective function as

ξ(k) =
1

2

(

r(k) − y(k)
)2

, (24)

where r(k) and y(k) are the reference and the plant’s output signal at
time k respectively. The objective is to adjust all of FREN’s parameters

i.e. shapes of membership function and linear consequences, in order to
minimize Eq. (24). The value of parameterPi is updated at each time step
by

Pnew
i = Pi + ∆Pi = Pi − ηi

∂ξ

∂Pi

, (25)

whereηi is called the learning rate of thei-th parameter. The term∂ξ/∂Pi

is calculated from
∂ξ

∂Pi

=
∂ξ

∂y

∂y

∂u

∂u

∂Pi

, (26)

whereu is the control signal, i.e. the output of the controllerO. Thus

∂u

∂Pi

=
∂O

∂Pi

. (27)

This term can be analytically obtained since the network structure is
already known.

Other terms in Eq.(26) are approximated by

∂y

∂u
= Yp ≈

y(k) − y(k − 1)

u(k) − u(k − 1)
, (28)

and
∂ξ

∂y
= y(k) − r(k) = −E(k). (29)

Finally, Eq (25) becomes

Pnew
i = Pi + ηiE(k)Yp

∂O

∂Pi

. (30)

C. Learning Rate Selection
The difficulty in using the adaptive method based on the steepest descent

technique is on the selection of appropriate value for the learning rate. Too
large value of the learning rate may reduce system stability whereas too
small value reduces the system adaptation performance. In this subsection,
we discuss how to select an appropriate learning rate which guarantees the
stability in Lyapunov’s sense. Consider the following Lyapunov function

V (k) =
1

2

(

r(k) − y(k)

)2

=
1

2
E2(k). (31)

The change of Lyapunov function is given by

∆V (k) = V (k + 1) − V (k)

=
1

2

(

E2(k + 1) − E2(k)

)

= ∆E(k)

(

E(k) +
1

2
∆E(k)

)

, (32)

where∆E(k) = E(k + 1) − E(k) is the change of error. This can be
approximated by

∆E(k) =
∆E(k)

∆Pi

∆Pi ≈
∂E(k)

∂Pi

∆Pi, (33)

for small ∆Pi.
The term∂E(k)/∂Pi can be calculated by

∂E(k)

∂Pi

=
∂E(k)

∂y

∂y

∂O

∂O

∂Pi

= −Yp
∂O

∂Pi

. (34)

since∂E(k)/∂y = −1 and∂y/∂O = ∂y/∂u = Yp.
Using ∆Pi from Eq.(30), the change of the Lyapunov function can

then be written as

∆V (k) = −ηi

(

E(k)Yp
∂O

∂Pi

)2
{

1 −
1

2
ηi

(

Yp
∂O

∂Pi

)2
}

. (35)

According to the stability condition,∆V (k) must be less than zero, this
yields

0 < ηi < 2

(

Yp
∂O

∂Pi

)

−2

. (36)

The learning rateηi should lie in the range indicated by the above relation
in order to guarantee system stability.
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Fig. 4. FREN parameters setting

V. SIMULATION RESULTS

The proposed controller is tested on 3 different patients, the insensitive,
the nominal and the sensitive patient. The parameters in Eq. (1) are set as
the following:

Parameters Sensitive Nominal Insensitive Units

K −9 −0.714 −0.178
(

mmHg

mlh−1

)

,

Ti 20 30 60 (sec),
Tc 30 45 75 (sec),
α 0 0.4 0.4 (−),
τ 30 40 60 (sec).

The sampling time for this simulation is set to 1sec. The target presure
is set to decrease 30mmHg. Denoting the errore = ∆Psetting − ∆P
andu as the control drug rate, the fuzzy control rules of FREN are given
by,

RULE 1 IF e IS PL THEN u IS PL
RULE 2 IF e IS PM THEN u IS PM
RULE 3 IF e IS NM THEN u IS NM
RULE 4 IF e IS NL THEN u IS NL.

The simulation system is illustrated in Fig. 5. The initial membership
functions and LC of FREN are shown in Fig. 6. Both LC and menbership
function parameters are adjusted by using Eq. (30). After thelearnaing
phase around 2,500 epoch, the final membership functions and LCof
FREN for the insensitive, the nominal and the sensitive patient are shown
on Figs. 7, 8 and 9, respectively. The simulation results of those cases are
shown in Fig. 10. In this simulation, the sensitive patient reachs the set
point around 10 min. For the insensitive patient case, the blood pressure
level reachs the set point in 25min.
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Fig. 6. Initial setting: Membership functions and LC
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Fig. 7. Final learning: Membership functions and LC of insensitive patient
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VI. CONCLUSIONS

A discrete-time adaptive controller has been introduced to control
the drug infusion stated in [2]. This controller is contructed with our
adaptable network (FREN) combined with a modified SMC to calculate
the control effort bounds. While the control effort is generated by FREN,
the control signal must be kept in these bounds. Three the different patients
conditions (sensitive, nominal and insensitive) are used totest the controller
performance. Finally, from the simulation result, the proposed controller
can provide a good response.
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