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Abstract— This paper builds on the model and results of
[1], and extends them to the case of differentiated prices,
again for the single link case. It introduces a hierarchical
network game with one service provider and multiple users of
different types, where the service provider is allowed to charge
different prices to users of different types. The service provider
plays with the users a Stackelberg (leader-follower) game,
while among users themselves, they play a Nash game. The
paper establishes for a general network with multiple links the
existence of a unique Nash equilibrium along with the existence
of a unique Stackelberg solution. The economics of providing
large capacity and price differentiation is examined especially
in the single link case and for a many-user regime. One
important result is that optimum price differentiation leads
to a more egalitarian distribution of resources at fairer prices
and improves the service provider’s revenue and network
performance. Moreover, the service provider has an incentive
to increase the capacity proportionally with the number of
additional users admitted.

Index Terms— Internet pricing, Price differentiation, Many-
User limit, Stackelberg game, Noncooperative game, Quality-
of-Service, Flow control

I. INTRODUCTION

Control of the Internet has become an important research
topic recently, driven by the need to avoid congestion due
to the increasing use of network resources and to provide
Quality of Service (QoS) guarantees. One branch of network
control is routing, which assumes that the total flow of each
user is fixed [6], [7]. Another one is flow control under fixed
routes. This paper belongs to the latter category and can be
viewed as a continuation of the research reported earlier in
[1] and [2].

In general, flow control needs to be combined with
appropriate pricing. Also, among the users and Internet
Service Providers (ISPs), competition and optimization are
commonplace. All these problems can be captured well
within the framework of game theory [3]. They may be
studied from noncooperative [1], [2], [8] or cooperative [9]
perspectives. While it has been shown in [9] that all players
(users and ISPs) are better off by cooperation, arbitration
is needed for this scheme, and hence a large portion
of research is focused on the noncooperative framework,
including the work here.
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It has been pointed out in [1] that as the number of
users and the capacity of the network become large, the
probability of queue build-up is small and the economics
of providing large capacity from the ISP’s point of view
becomes a relevant issue, as examined there for a single
link network. A more complex linear network model was
then studied in [2]. While adopting the models used in [1],
[2], this paper extends the network game from the uniform
price scenario to a differentiated one and presents some
new results. The impact of price differentiation on users,
ISPs and performance of the network is studied to meet the
requirement for today’s Internet to provide differentiated
services and QoS guarantees [10], [11].

The paper is organized as follows. In Section II, the prob-
lem is formulated for a general network which is modeled
as a two-level hierarchical game and the uniqueness of Nash
equilibrium is established for fixed prices set by ISP. The
study first focuses on a single link network for a special
case in Section III and then on a more general single link
case in Section IV. In both cases, a comparative study of
uniform price and differentiated price cases are conducted,
especially in a many-user regime. The paper ends with some
discussions and conclusions.

II. PROBLEM FORMULATION

A. General Network

We assume that there is a single service provider, which
is addressed as “the network”. 1 In a general network model,
denote the set of users as I = {1, · · · , I}, and the set of
links as L = {1, · · · , L}. Link l, l ∈ L, has a capacity cl.
For User i, i ∈ I, xi is his transmission rate and Li ⊆ L
is the set of links xi traverses. By accessing the network
at a rate xi, User i achieves a utility of wi log(1 + kixi),
wi, ki > 0. 2 However, he has to pay to the service provider
for usage of the network, and we let pli denote the price per
unit bandwidth charged to User i for using link l, l ∈ Li.
He also faces a cost 1

cl−x̄l
due to congestion, where x̄l =

1The model can be extended to a network with multiple competitive
service providers, which will be discussed in the conclusion section of
this paper.

2In [1], a utility function wi log(1 + xi) is adopted for User i, which
originates from the concept of proportionally fair resource allocation [4],
[5]. Here ki is introduced for the scalability of xi.



∑

i:l∈Li
xi. User i has a (net) utility 3

Fi = wi log(1 + kixi) −
∑

l∈Li

1

cl − x̄l
− vixi

∑

l∈Li

pli (1)

and the network collects the revenue

R =
∑

l∈L

∑

i:l∈Li

plixi =
∑

i∈I
xi

∑

l∈Li

pli. (2)

B. Two-Level Hierarchical Game

The problem constitutes a two-level hierarchical network
game [3]. The upper level is a Stackelberg game with the
network being the leader and the users being the followers.
In this game, the network determines prices such that
the users will respond with certain transmission rates to
maximize the total revenue. Usually, the prices can be
decided in two ways: a uniform price for any user along
any link (fixed-rate pricing) or differentiated prices for
different users along different links. The former one is
simple and largely adopted currently while the latter has
its own advantages, which is one focus of this paper. For
convenience, we refer to these two schemes as UniPri and
DiffPri, respectively.

At the lower level is an I-player noncooperative game:
given prices, User i chooses the value of xi to maximize
his utility Fi subject to xi ≥ 0 and the capacity constraints
x̄l < cl, l ∈ L, i ∈ I. The solution to this is captured in
the following theorem:

Theorem 1: (Existence of Unique Nash Equilibrium) For
each fixed set of prices, the I-player noncooperative game
admits a unique Nash equilibrium solution.

Proof: Following the approach of [1], we add to Fi

the quantity
∑

j 6=i

wj log(1 + kjxj) −
∑

l/∈Li

1

cl − x̄l
−

∑

j 6=i

vjxj

∑

l∈Lj

plj

and obtain a common function for all users:

F =
∑

i∈I
wi log(1 + kixi)−

∑

i∈I
vixi

∑

l∈Li

pli −
∑

l∈L

1

cl − x̄l
.

Since the added quantity for Fi is not related to xi, this
will not change the Nash equilibrium. Thus, the original I-
player game is equivalent to the noncooperative game where
all users have a common objective function F . Furthermore,
we have

Fxixi
= − wik

2
i

(1 + kixi)2
−

∑

l∈Li

2

(cl − x̄l)3
< 0, i ∈ I,

Fxixj
= −

∑

l∈Li∩Lj

2

(cl − x̄l)3
< 0, i, j ∈ I, j 6= i.

Therefore, the Hessian matrix of F is negative definite and
thus F is strictly concave, which implies that the I-player
game admits a unique Nash equilibrium.

3Here we could have included a multiplicative weight parameter in the
second term, but instead, without any loss of generality, we include such
a parameter, vi, in the third term. This also eases the analysis.

III. COMPLETE SOLUTION FOR A SPECIAL SINGLE

LINK CASE

A. Uniform Price

We consider a single link network with a capacity nc
shared by n users. A special case with c = 1 is studied
in this section and the analysis will be extended to a
general c in the following one. Denote the set of users as
N := {1, · · · , n} and the network charges a uniform price
p per unit bandwidth for each user. A complete solution for
this is obtained in [1], which we reproduce here since the
underlying expressions will be needed in our comparative
study later. Given the price p, User i determines xi to
maximize his utility

Fi = wi log(1 + xi) −
1

n − x̄
− pxi, i ∈ N,

where x̄ :=
∑n

j=1
xj . A positive Nash equilibrium solution

exists if and only if (Fi)xi
= 0, i ∈ N , admits a positive

solution. If it is so, we have

1

(nc − x̄)2
+ p =

wi

1 + xi
=

w̄

n + x̄
, i ∈ N, (3)

where w̄ :=
∑n

j=1
wj . Now proceeding to the leader’s

problem where the network chooses the price to maximize
its revenue R = px̄, from the one-to-one correspondence
between x̄ and p in (3), it follows that this is equivalent to
maximizing R with respect to x̄. It can be easily verified
that Rx̄x̄ < 0 and thus R is strictly concave with respect
to x̄ at (0, n). Furthermore, R is negative unbounded at the
upper end of the interval. Then letting Rx̄ = 0, the optimal
positive solution involving the throughput, congestion cost,
flows, price and revenue per unit bandwidth for the uniform
price case is obtained as follows:

x∗
av−u = 1 − 2

1 + (n2wav)
1

3

, (4)

d∗u =
1

n − nx∗
av−u

=
1 + (n2wav)

1

3

2n
, (5)

x∗
i−u =

wi

wav
(x∗

av−u + 1) − 1, i ∈ N, (6)

p∗u =
wav

2
(1 + (n2wav)−

1

3 ) − 1

4n2
(1 + (n2wav)

1

3 )2, (7)

r∗u = p∗ux∗
av−u =

wav

2
− 3

4n2
(n2wav)

2

3 +
1

4n2
, (8)

if and only if

wi >
2(n2wav)

2

3 + 2n2wav

4n2
, ∀ i ∈ N, (9)

where wav := w̄
n and xav := x̄

n .
Asymptotically, with n growing large, the necessary

and sufficient condition (9) for the solution to be positive
becomes

wi >
wav

2
, ∀ i ∈ N. (10)



Under this condition, we have, asymptotically,

x∗
av−u(n) ∼ 1 − 2wav

− 1

3 n− 2

3 , (11)

d∗u(n) ∼ 1

2
wav

1

3 n− 1

3 , (12)

x∗
i−u(n) ∼ 2wi

wav
(1 − wav

− 1

3 n− 2

3 ) − 1, i ∈ N, (13)

p∗u(n) ∼ wav

2
+

1

4
wav

2

3 n− 2

3 , (14)

r∗u(n) ∼ wav

2
− 3

4
wav

2

3 n− 2

3 . (15)

Generally, condition (9) may not be satisfied. Then, the
solution can be obtained in the following way. Order the
users such that wi > wj only if i < j. For any integer
ñ ≤ n, include only the first ñ users in the game, and carry
out the analysis as in the previous case but by replacing n
by ñ. Let n∗ be the largest such ñ, so that the necessary
and sufficient condition for a positive solution is satisfied.
It is shown in [1] that the problem admits a unique solution
which is the positive solution for the game with the first
n∗ players appended by x∗

i−u = 0, i > n∗. In other words,
only those users with large enough wi’s are admitted with
positive transmission rates.

B. Differentiated Prices

Now the problem remains the same, except that the
network may charge different prices for different users. Let
pi be the price per unit bandwidth for User i, i ∈ N . The
users’ utilities are:

Fi = wi log(1 + xi) −
1

n − x̄
− pixi, i ∈ N.

From (Fi)xi
= 0, i ∈ N ,

pi =
wi

1 + xi
− 1

(n − x̄)2
, i ∈ N.

Similarly, the revenue R =
∑n

j=1
pjxj is maximized with

respect to (x1, · · · , xn). Since the Hessian matrix of R is
negative definite, R is strictly concave. Furthermore, since
R ↓ −∞ as x̄ ↑ n, the above optimization problem admits
a unique solution. Rxi

= 0, i ∈ N , implies
√

(n − x̄)3

n + x̄
=

1 + xi√
wi

=
n + x̄

v̄
1

2

, i ∈ N,

where v̄
1

2 :=
∑n

j=1

√
wj , and then it follows that the

optimal solution is:

x∗
av−d = 1 − 2

1 + (nv
1

2

av)
2

3

, (16)

d∗d =
1 + (nv

1

2

av)
2

3

2n
, (17)

x∗
i−d =

√
wi

v
1

2

av

(x∗
av−d + 1) − 1, i ∈ N, (18)

p∗i−d =
√

wi
v

1

2

av

2
(1 + (nv

1

2

av)−
2

3 ) − 1

4n2
(1 + (nv

1

2

av)
2

3 )2,

i ∈ N, (19)

r∗d = wav − 1

2n2
(nv

1

2

av)2 − 3

4n2
(nv

1

2

av)
4

3 +
1

4n2
, (20)

where v
1

2

av := v̄
1

2

n . The necessary and sufficient condition
for the solution to be positive is

wi >
2(nv

1

2

av)
4

3 + (nv
1

2

av)2 + (nv
1

2

av)
2

3

4n2
, ∀ i ∈ N. (21)

For large n, (21) becomes

√
wi >

v
1

2

av

2
, ∀ i ∈ N. (22)

Then it follows that, asymptotically,

x∗
av−d(n) ∼ 1 − 2(v

1

2

av)−
2

3 n− 2

3 , (23)

d∗d(n) ∼ 1

2
(v

1

2

av)
2

3 n− 1

3 , (24)

x∗
i−d(n) ∼ 2

√
wi

v
1

2

av

(1 − (v
1

2

av)−
2

3 n− 2

3 ) − 1, i ∈ N, (25)

p∗i−d(n) ∼
√

wi

2
(v

1

2

av + (v
1

2

av)
1

3 n− 2

3 ) − 1

4
(v

1

2

av)
4

3 n− 2

3 ,

i ∈ N, (26)

r∗d(n) ∼ wav − 1

2
(v

1

2

av)2 − 3

4
(v

1

2

av)
4

3 n− 2

3 . (27)

If (21) is not satisfied, then the solution can be obtained
in the same way as previously stated for UniPri, i.e. an
admission policy can be devised.

C. Comparison of the Two Pricing Schemes

1) Comparison of Conditions for the Positive Solution:
Theorem 2: For the special single link case, the users

admitted with positive transmission rates for UniPri must
also be admitted for DiffPri. In other words, more users
with smaller wi’s may be possibly admitted due to price
differentiation.

Proof: We have the inequality

n2wav =
∑

i,j

wi + wj

2
≥

∑

i,j

√
wi

√
wj = (nv

1

2

av)2. (28)

Thus, if we can show that n2wav ≥ (nv
1

2

av)
2

3 , then (9) leads
to (21). In fact, if (9) holds, it follows that n2wav > 1.
Hence we consider two possibilities: if nv

1

2

av ≤ 1, obviously
n2wav > (nv

1

2

av)
2

3 ; if nv
1

2

av > 1, then (nv
1

2

av)2 > (nv
1

2

av)
2

3

and we arrive at the same result. Therefore, (21) also holds,
and consequently nv

1

2

av > 1.
2) Same Number of Users Admitted: Based on (28), we

can compare the optimal solutions for the two schemes
given by (4) to (8) and (16) to (20).

Throughput: x∗
av−u ≥ x∗

av−d.
Congestion Cost:

d∗u ≥ d∗
d. (29)

Individual Flows: x∗
i−u given by (6) is “proportional” to

wi and equals x∗
av−u if and only if wi = wav . x∗

i−d given



by (18) depends on
√

wi and equals x∗
av−d if and only if

√
wi = v

1

2

av . Furthermore, we have






x∗
i−u > x∗

i−d if wi > wx,
x∗

i−u = x∗
i−d if wi = wx,

x∗
i−u < x∗

i−d if wi < wx,
(30)

where

wx :=
wav

2(x∗
av−d + 1)2

(v
1

2

av)2(x∗
av−u + 1)2

=
wav

4

3 [1 + (n2wav)
1

3 ]2

(v
1

2

av)
2

3 [1 + (nv
1

2

av)
2

3 ]2
.

(31)
Prices: 





p∗u < p∗i−d if wi > wp,
p∗u = p∗i−d if wi = wp,
p∗u > p∗i−d if wi < wp,

(32)

where

wp :=
1

{v
1

2

av[1 + (nv
1

2

av)−
2

3 ]}2

{ wav[1 + (n2wav)−
1

3 ]

− 1

2n2
[1 + (n2wav)

1

3 ]2 +
1

2n2
[1 + (nv

1

2

av)
2

3 ]2 }2
. (33)

Remarks on wx and wp: First, as a direct result of (28),
wx ≥ wav . Then note that

√
wmaxv

1

2

av ≥ wav ≥
√

wminv
1

2

av. (34)

Therefore, wx ≤ [wav
4

3 /(v
1

2

av)
2

3 ] · [(n2wav)
2

3 /(nv
1

2

av)
4

3 ] =

(wav/v
1

2

av)2 ≤ wmax. On the other hand, comparing wp with
w is equivalent to comparing (n2wav)[1 + (n2wav)−

1

3 ] +
1

2
[1+(nv

1

2

av)
2

3 ]2 with (n
√

w)(nv
1

2

av)[1+(nv
1

2

av)−
2

3 ]+ 1

2
[1+

(n2wav)
1

3 ]2. By substituting wx and (v
1

2

av)2 for w in the
above formula, respectively, and using (28) and (34), we
can easily verify that wx ≥ wp ≥ (v

1

2

av)2. In summary,

wmax ≥ wx ≥ wp, wav ≥ (v
1

2

av)2 ≥ wmin. (35)

Revenue: r∗u ≤ r∗d.
Individual Utilities: Intuitively, for those users with small

wi’s, by price differentiation, both the congestion cost and
the individual prices get decreased, which is beneficial to
such users and thus increases their individual utilities as
a result. For all the other users, although the congestion
decreases likewise, their individual prices get higher and
the larger wi is, the more the difference between p∗i−d and
p∗u becomes. There is a tradeoff between the decrease of
congestion and the increases of individual prices.

Detailed analysis is as follows. For some i such that wp ≥
wi ≥ wmin, given the optimal solution for DiffPri, let User
i’s flow xi−d be x∗

i−u instead of x∗
i−d and all the other

users’ flows remain unchanged; then his utility becomes:

Fi−d(xi−d = x∗
i−u) = wi log(1 + x∗

i−u)

− 1

n − (nx∗
av−d − x∗

i−d + x∗
i−u)

− p∗i−dx
∗
i−u.

Since x∗
i−u ≤ x∗

i−d and x∗
av−u ≥ x∗

av−d, consequently
nx∗

av−u ≥ nx∗
av−d − x∗

i−d + x∗
i−u. Also, p∗u ≥ p∗i−d.

Hence, F ∗
i−u ≤ Fi−d(xi−d = x∗

i−u). On the other hand, by
the definition of Nash equilibrium, Fi−d(xi−d = x∗

i−u) ≤
F ∗

i−d. Therefore, F ∗
i−u ≤ F ∗

i−d.
As a conclusion, there exists a threshold wF (though the

explicit expression is hard to be obtained) such that

wmax ≥ wF ≥ wp, (36)

and






F ∗
i−u > F ∗

i−d if wi > wF ,
F ∗

i−u = F ∗
i−d if wi = wF ,

F ∗
i−u < F ∗

i−d if wi < wF .
(37)

3) More Users Admitted with Price Differentiation:
Generally, more users can be admitted for DiffPri than for
UniPri. Order all the users such that wi > wj only if
i < j. Let n be the largest integer such that the first n
users are admitted for UniPri, and n̂ be the largest integer
for DiffPri. Assume n < n̂. Also note that when only
the first n users are present, by applying DiffPri, all of
them will still be admitted. We denote the above three
cases as UniPri(n), DiffPri(n̂) and DiffPri(n), respectively.
DiffPri(n) is introduced to help compare the other two
cases from the previous results obtained for UniPri(n) and
DiffPri(n). The notation for DiffPri(n̂) is the same as for
DiffPri(n), except with a hat above.

Throughput: Obviously,

1 < nv
1

2

av < n̂v̂
1

2

av and v
1

2

av ≥ v̂
1

2

av. (38)

Then by (16),
x∗

av−d < x̂∗
av−d, (39)

though we do not know how x∗
av−u compares with x̂∗

av−d.
Congestion Cost: By (38) and the fact that n < n̂, we

have 2n[1 + (n̂v̂
1

2

av)
2

3 ] < 2n̂[1 + (nv
1

2

av)
2

3 ]. Then from (17)
and (29), d∗

u ≥ d∗
d > d̂∗d, which means that users will always

be better off in congestion cost with differentiated prices.
Individual Flows: From (18), (38) and (39), x∗

i−d <
x̂∗

i−d, 1 ≤ i ≤ n. Thus, the same pattern as (30) can
be expected for x∗

i−u versus x̂∗
i−d, except that the threshold

will get larger.
Revenue: Note that the link capacity is n for UniPri(n)

and DiffPri(n) and n̂ for DiffPri(n̂). Thus, instead of com-
paring the revenue per unit capacity, here we compare the
total revenue which the network tries to maximize.

It is hard, if not impossible, to compare R∗
d = n · r∗d

with R̂∗
d = n̂ · r̂∗d from (20). However, if we let R

′∗
d be the

optimal revenue for the network with only a capacity of n
but all the n̂ users presented, then R̂∗

d ≥ R
′∗
d because of a

larger capacity and R
′∗
d ≥ R∗

d because of more users. Thus,
R∗

u ≤ R∗
d ≤ R̂∗

d. The network will be better off under price
differentiation.

4) Asymptotic Analysis: For UniPri(n) and DiffPri(n̂),
the analysis of asymptotic behavior will lead to a better
understanding. As n → ∞ and n̂ → ∞, we denote the
limits of (10) to (15) and (22) to (27) by adding a ‘∼’
above, correspondingly.



Throughput: As n ↑ ∞, x̃∗
av−u ↑ 1; as n̂ ↑ ∞, x̃∗

av−d ↑ 1.
Thus, x̃∗

av−u
∼= x̃∗

av−d. Furthermore, ˜̄x
∗
u ∼ n as n ↑ ∞ and

˜̄x
∗
d ∼ n̂ as n̂ ↑ ∞. So ˜̄x

∗
u ≤ ˜̄x

∗
d.

Congestion Cost: It follows from (28) and (38) that

wav ≥ (v̂
1

2

av)2. (40)

Thus, d̃∗u ≥ ˜̄d
∗
d.

Individual Flows: x̃∗
i−u ↑ 2wi

wav
− 1 as n ↑ ∞ and x̃∗

i−d ↑
2
√

wi

v̂
1

2
av

− 1 as n̂ ↑ ∞. Therefore,







x̃∗
i−u > x̃∗

i−d if wi > w̃,
x̃∗

i−u = x̃∗
i−d if wi = w̃,

x̃∗
i−u < x̃∗

i−d if wi < w̃,
(41)

where

w̃ :=
(

wav/v̂
1

2

av

)2 ≥ wav. (42)

Prices: p̃∗u ↓ wav

2
as n ↑ ∞ and p̃∗i−d ↓

√
wi

2
v̂

1

2

av as n̂ ↑ ∞.
Again,







p̃∗u < p̃∗i−d if wi > w̃,
p̃∗u = p̃∗i−d if wi = w̃,
p̃∗u > p̃∗i−d if wi < w̃.

(43)

Although wx in (31) is greater than wp in (33) in general,
the two thresholds share the same limit w̃ as the number of
users goes to infinity.

Revenue: r̃∗u ↑ wav

2
as n ↑ ∞ and r̃∗d ↑ ŵav − 1

2
(v̂

1

2

av)2 as
n̂ ↑ ∞. If n ∼= n̂, then wav

∼= ŵav . By (40), r̃∗u ≤ r̃∗d.
Individual Utilities: From the above results, we know

immediately that if wi < w̃, F̃ ∗
i−u < F̃ ∗

i−d and if wi = w̃,
F̃ ∗

i−u ≤ F̃ ∗
i−d. Therefore,







F̃ ∗
i−u > F̃ ∗

i−d if wi > w̃F ,

F̃ ∗
i−u = F̃ ∗

i−d if wi = w̃F ,

F̃ ∗
i−u < F̃ ∗

i−d if wi < w̃F ,

(44)

where w̃F ≥ w̃.

D. Recap

As a conclusion, we can deduce the following general
features for the network problem from the foregoing anal-
ysis, and particularly from the asymptotic analysis. First,
the total flow is higher under DiffPri than UniPri, and
thus congestion is alleviated. Also, price differentiation is
beneficial to the network for the improved revenue as well
as to those users with small wi’s for the reduced prices and
increased flows. However, for those users with large wi’s,
their utilities get decreased by price differentiation.

Second, both for UniPri and DiffPri, as the number
of admitted users increases, the throughput and the flows
increase, the congestion is reduced, the prices decrease and
the revenue is improved. Therefore, the network has an
incentive to increase the capacity to accommodate more
users as possible, which also benefits the users in return.

IV. GENERAL SINGLE LINK IN A MANY-USER REGIME

A. Uniform Price

Now we have a more general single link problem with c
not necessarily equal to 1. The users’ utilities are:

Fi = wi log(1 + kixi) −
1

nc − x̄
− pxi, i ∈ N.

Following the same analysis as before, and letting k−1
av :=

1

n

∑n
j=1

1

kj
, it follows that the unique positive optimal

solution is given by:

wavk−1
av

(k−1
av + xav)2

− c + xav

n2(c − xav)3
= 0, (45)

p =
wav

k−1
av + xav

− 1

n2(c − xav)2
, (46)

if and only if

wiki >
wav

k−1
av + xav

, ∀ i ∈ N. (47)

It does not seem to be possible to obtain explicit expres-
sions for this case. However, if wav and k−1

av converge as
n → ∞, then from (45) a positive solution exists for large
n if and only if limn→∞ n2(c−xav)3 = α for some α > 0.
Thus, xav ∼ c − α

1

3 n− 2

3 , and by substituting this in (45),

α =
2c(c + k−1

av )2

wavk−1
av

, (48)

x∗
av−u(n) ∼ c − α

1

3 n− 2

3 , (49)

d∗u(n) =
1

nc − nx∗
av−u(n)

∼ α− 1

3 n− 1

3 , (50)

x∗
i−u(n) ∼ wi

wav
(c + k−1

av ) − 1

ki
− wi

wav
α

1

3 n− 2

3 , (51)

p∗u(n) ∼ wav

c + k−1
av

+ (
2c

k−1
av

− 1)α− 2

3 n− 2

3 , (52)

r∗u(n) =
p∗u(n)x∗

av−u(n)

c
∼ wav

c + k−1
av

− 3α− 2

3 n− 2

3 .(53)

The necessary and sufficient condition is:

wiki >
wav

c + k−1
av

+
2c

k−1
av

α− 2

3 n− 2

3 , ∀ i ∈ N. (54)

B. Differentiated Prices

Let z
1

2

av := 1

n

∑n
j=1

√

wj

kj
. Assume k−1

av and z
1

2

av converge

as n → ∞. Then the positive solution for large n is:

β =
2c(c + k−1

av )2

(z
1

2

av)2
, (55)

x∗
av−d(n) ∼ c − β

1

3 n− 2

3 , (56)

d∗d(n) =
1

nc − nx∗
av−d(n)

∼ β− 1

3 n− 1

3 , (57)

x∗
i−d(n) ∼

√

wi/ki

z
1

2

av

(c + k−1

av ) − 1

ki
−

√

wi/ki

z
1

2

av

β
1

3 n− 2

3 ,

(58)

p∗i−d(n) ∼ z
1

2

av

√
wiki

c + k−1
av

+ (
2c
√

wiki

z
1

2

av

− 1)β− 2

3 n− 2

3 , (59)



r∗d(n) ∼ wav

c
− (z

1

2

av)2

c(c + k−1
av )

− 3β− 2

3 n− 2

3 , (60)

if and only if: ∀ i ∈ N ,

√

wiki >
z

1

2

av

k−1
av + x∗

av−d(n)
∼ z

1

2

av

c + k−1
av

+
2c

z
1

2

av

β− 2

3 n− 2

3 .

(61)

C. Comparison of the Two Pricing Schemes

Theorem 3: The same conclusion as in Theorem 2 can be
reached for the general single link in a many-user regime.

Proof: (61) is equivalent to: wiki > (z
1

2

av)2/(c +
k−1

av )2 + [4c/(c + k−1
av )]β− 2

3 n− 2

3 . Furthermore, we have
n

∑

i=1

n
∑

j=1

1

2

[(

√

wi

kj

)2
+

(

√

wj

ki

)2] ≥
n

∑

i=1

n
∑

j=1

√

wi

kj

√

wj

ki
,

or equivalently,
wavk−1

av ≥
(

z
1

2

av

)2
. (62)

Thus, wav/(c + k−1
av ) ≥ (z

1

2

av)2/[k−1
av (c + k−1

av )] >

(z
1

2

av)2/(c + k−1
av )2, which means (54) leads to (61).

Hereinafter assume that the number of admitted users
for UniPri and that for DiffPri are asymptotically the same,
as n → ∞. Qualitatively this is actually not a restrictive
assumption, because similar results can be obtained even
without this simplification.

Throughput: As n ↑ ∞, x∗
av−u(n) ↑ c and x∗

av−d(n) ↑ c.
Thus, x̃∗

av−u
∼= x̃∗

av−d.
Congestion Cost: A byproduct of (62) is α ≤ β. Hence,

d̃∗u ≥ d̃∗d.
Individual Flows: As n ↑ ∞, x∗

i−u(n) ↑ wi

wav
(c+ k−1

av )−
1

ki
and x∗

i−d(n) ↑
√

wi/ki

z
1

2
av

(c + k−1
av ) − 1

ki
. Therefore,







x̃∗
i−u > x̃∗

i−d if wiki > w̃k,

x̃∗
i−u = x̃∗

i−d if wiki = w̃k,

x̃∗
i−u < x̃∗

i−d if wiki < w̃k,

(63)

where

(wiki)max ≥ w̃k :=
(

wav/z
1

2

av

)2 ≥ (wiki)min. (64)

Prices: As n ↑ ∞, p∗u(n) ↓ wav/(c+k−1
av ) and p∗i−d(n) ↓

z
1

2

av

√
wiki/(c + k−1

av ). Therefore,






p̃∗u < p̃∗i−d if wiki > w̃k,

p̃∗u = p̃∗i−d if wiki = w̃k,

p̃∗u > p̃∗i−d if wiki < w̃k.

(65)

Revenue: As n ↑ ∞, r∗u(n) ↑ wav/(c+k−1
av ) and r∗d(n) ↑

wav/c − (z
1

2

av)2/[c(c + k−1
av )]. By (62), r̃∗u ≤ r̃∗d.

Individual Utilities: From the above results, we have






F̃ ∗
i−u > F̃ ∗

i−d if wiki > w̃kF ,

F̃ ∗
i−u = F̃ ∗

i−d if wiki = w̃kF ,

F̃ ∗
i−u < F̃ ∗

i−d if wiki < w̃kF ,

(66)

where
w̃kF ≥ w̃k. (67)

V. CONCLUDING REMARKS

The contributions of this paper are multifold. First, the
existence of a unique Stackelberg/Nash equilibrium is es-
tablished for a general network modeled as a two-level
hierarchical game. Second, the results in [1] are extended
to a differentiated price scenario, showing that the revenue
per unit bandwidth improves as more users join the network
and as a result the service provider has an incentive to
increase the capacity in proportion to the number of users,
which will in return make the users’ utilities better off.
The network performance enhances as well in terms of
congestion. Last but not the least, one focus of this paper
has been to compare differentiated pricing with uniform
pricing, and this has led to some conclusive results. With
price differentiation, both the service provider and the users
with small utility parameters are better off whereas the users
with relatively higher utility weight parameters are worse
off. We also have smaller congestion cost and a larger
number of users admitted for service as a result of price
differentiation. Hence, optimum price differentiation leads
to a more egalitarian distribution of the resources at fairer
prices, which is much intuitive for the design of pricing
schemes for the Internet.

For future research, these results can be extended to
encompass the linear network model in [2]. Also, they
can be extended to more general models which capture
competition among multiple service providers, that is, a
game with multiple leaders and multiple followers.
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