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Abstract: We consider a general high-gain scaling tech-
nique for global control of strict-feedback-like systems. Un-
like previous results, the scaling utilizes arbitrary powers
(instead of requiring successive powers) of the high gain pa-
rameter with the powers chosen to satisfy certain inequali-
ties depending on system nonlinearities. The scaling induces
a weak-Cascading Upper Diagonal Dominance (w-CUDD)
structure on the dynamics. The analysis is based on our
recent results on the w-CUDD property and uniform solv-
ability of coupled state-dependent Lyapunov equations. The
proposed scaling provides extensions in both state-feedback
and output-feedback cases. The state-feedback problem is
solved for a class of systems with certain ratios of nonlin-
ear terms being polynomially bounded. The controller has
a simple form being essentially linear with state-dependent
dynamic gains and does not involve recursive computations.
In the output-feedback case, the scaling technique is applied
to the design of the observer which is then coupled with a
backstepping controller. The results relax the assumption in
our earlier papers on cascading dominance of upper diagonal
terms. However, since the required upper diagonal cascad-
ing dominance in observer and controller contexts are dual,
it is not possible to use a dual high-gain observer/ controller
in the proposed design preventing the bounds on uncertain
functions from being of the more general form in our earlier
work. A topic of further research is to examine the possibil-
ity of a scaling (perhaps utilizing more than one high gain
parameter) that achieves bidirectional cascading dominance.

I. Introduction

The class of systems considered in this paper is
ẋi = φi(t, y, x2, . . . , xi) + φ(i,i+1)(y)xi+1 , i = 1, . . . , s − 1

xs+i = φs+i(t, y, x2, . . . , xs+i) + φ(s+i,s+i+1)(y)xs+i+1

+µi(y)u , i = 0, . . . , n − s ; xn+1 = 0 (1)

where x = [x1, . . . , xn]T ∈ Rn is the state and u ∈ R is
the input. φ(i,i+1) and µi are continuous functions with

φ(n,n+1) ≡ 0. φi are time-varying uncertain functions.1 s
is the relative degree of the system. We consider both state
(y = x) and output-feedback (y = x1) problems.

Among the control design methodologies developed in the
literature for various classes of nonlinear systems ([1–3] and
references therein), backstepping and its robust and adaptive
variants are particularly suited for lower triangular systems.
While (1) is not, in general, in lower triangular form in the
state-feedback case (y = x), a variant of robust backstepping
under certain assumptions on φi and φ(i,i+1) can be applied.

Assuming that φi are known and linear in the unmea-
sured states, i.e., φi = φ(i,1)(x1)+

∑

i

j=2
φ(i,j)(x1)xj , the gen-

eralized output-feedback canonical form [4] is obtained which
reduces to the standard output-feedback canonical form [1–
3] if φ(i,j), j ≥ 2 are constants. In [5], this system class
was considered with φ(i,j)’s being bounded. This restriction
was removed in [6] using an observer of order n(n + 3)/2
with gains generated through a matrix Differential Riccati
Equation (DRE). In [4], assuming that a constant positive-
definite matrix can be found to satisfy a certain inequality, a

1φi can depend on all states and input. However, φi are shown in
(1) to be functions only of subsets of the state to emphasize the
state dependence of the bounds to be introduced on φi.

solution was proposed of dynamic order (n− 1) and the ob-
server structure recovered the standard linear reduced-order
observer for linear systems. A sufficient condition for the
existence of a matrix satisfying the required inequality was
shown to be the CUDD condition requiring the upper di-
agonal terms φ(i,i+1) to be larger than φ(i,j) and φ(i+1,i+2)

(to within constant factors) [4]. Adaptive extensions of the
results in [4] and [6] were considered in [7] assuming that
parametric uncertainties appear in output-dependent terms.
In [8], assuming that φ(i,i+1) = 1 for i = 1, . . . , n − 1, and
that φi, i = 1, . . . , n, are incrementally linearly bounded in
unmeasured states, the matrix DRE in [6] was collapsed to a
scalar DRE driven by x1 and governing a scalar parameter r
appearing as a dynamic high gain scaling. The scaling in [8]
differs from earlier high gain[9–11] results in two features: 1)
the dynamics of r are a scalar DRE driven by y guaranteeing
boundedness of r if y remains bounded (which is not guaran-
teed by the classical dynamic high gain scaling with ṙ = y2),
and 2) an additional scaling 1

rb is introduced in the scaled

observer error definition. In [12], the high gain scaling was
shown to essentially amplify the upper diagonal terms thus
inducing CUDD [4]. Furthermore, the additional scaling rb

was removed in [12] through the solution of a pair of coupled
Lyapunov equations. Motivated by duality considerations,
a dynamic high gain scaling based state-feedback controller
was designed in [13] and a dual high gain observer/controller
architecture was proposed in [14,15]. The removal of rb in
our earlier result proves important in the dual design.

In this paper, we consider a generalization of the scal-
ing technique by introducing arbitrary powers of the high
gain parameter. The standard scaling xi

rai+b with constants
a and b can scale the functions φi relative to the upper diag-
onal terms φ(i,i+1) as in [12]. However, this scaling does not
modify the relative magnitudes of the upper diagonal terms
since all upper diagonal terms are scaled by ra. Hence, it
was necessary to assume cascading dominance of upper diag-
onal terms [13,14]. In this paper, it is seen that a scaling xi

rqi

with arbitrary constants qi can scale ratios of upper diagonal
terms. Moreover, choosing constants qi appropriately, non-
linear functions φi can be scaled to obtain control designs
under weaker assumptions. The scaling technique and basic
results are presented in Section II. In Section III, polynomial
bounds on ratios of certain terms in the system dynamics are
shown to be sufficient to design a state-feedback high gain
based controller of an algebraically simple structure, being
essentially a linear feedback with state-dependent dynamic
gains and involving no recursive computations. The asso-
ciated Lyapunov function is simply quadratic in the scaled
states. The output-feedback problem is considered in Sec-
tion IV. The cascading dominance assumption on upper di-
agonal terms in [14] is not required in this design since the
cascading dominance is essentially achieved by the scaling.
The obtained output-feedback controller is applicable to the
largest class of systems for which output-feedback results are
currently available and includes the class of systems in [6] as
a special case. While [6] required a matrix DRE resulting
in a controller of order n(n + 3)/2, the proposed solution
is of order n. This confirms the expectation noted in the
conclusion of [4] that an nth order system linear in unmea-
sured states should be output-feedback stabilizable with a
dynamic observer/controller of order O[n].



II. Definitions and Basic Theorems

Definition 1: Let ρ be a positive constant. An n×n matrix
A is said to be w-CUDD(ρ) if the following hold:
1) A is in lower Hessenberg form, i.e.,2 A(i,j) ≡ 0 for j ≥ i+2.
2) The upper diagonal elements of A are non-zero, i.e.,
A(i,i+1) 6= 0, i = 1, . . . , n − 1.
3) The following inequalities hold:

|A(i,j)|
√

|A(i,i+1)||A(j−1,j)|
≤ ρ , i = 2, . . . , n − 1, j = 2, . . . , i

|A(n,j)|
√

|A(n−1,n)||A(j−1,j)|
≤ ρ , j = 2, . . . , n

|A(i,i+1)|

|A(i−1,i)|
≤ ρ , i = 2, . . . , n − 1. (2)

Definition 2: Let ρ be a positive constant. An n×n matrix
A is said to be dual w-CUDD(ρ) if the following hold:
1) A is in lower Hessenberg form, i.e., A(i,j) ≡ 0 for j ≥ i+2.
2) The upper diagonal elements of A are non-zero, i.e.,
A(i,i+1) 6= 0, i = 1, . . . , n − 1.
3) The following inequalities hold:

|A(i,j)|
√

|A(i,i+1)||A(j−1,j)|
≤ ρ , i = 2, . . . , n − 1, j = 2, . . . , i

|A(i,1)|
√

|A(i,i+1)||A(1,2)|
≤ ρ , i = 1, . . . , n − 1

|A(i−1,i)|

|A(i,i+1)|
≤ ρ , i = 2, . . . , n − 1. (3)

The w-CUDD and dual w-CUDD concepts are dual in the
sense that a matrix A is w-CUDD(ρ) if and only if the ma-

trix Ã = QAT Q is dual w-CUDD(ρ) where Q is the matrix
with 1’s on the anti-diagonal and zeros elsewhere. The w-
CUDD and dual w-CUDD concepts appear in the observer
and controller contexts, respectively, for systems of form (1).
The duality between these concepts can be used to map the-
orems from one context to the other and essentially results
in a unified observer and controller design procedure.

Theorem 1: Let θ be a variable ranging over some set
Θ. Let A(θ) be an n × n matrix function of θ. Let
D1(θ), . . . , Dn(θ) be scalar real-valued functions of θ. As-

sume that positive constants D and D exist such that
D ≤ Di(θ) ≤ D, i = 1, . . . , n, for all θ ∈ Θ. Define
D = diag[D1(θ), . . . , Dn(θ)]T . Let C = [1, 0, . . . , 0] be a
1 × n vector. Assume that a positive constant ρ exists such
that A(θ) is w-CUDD(ρ) for every θ ∈ Θ. Assume also that
for each i ∈ {1, . . . , n−1}, the sign of A(i,i+1)(θ) is indepen-
dent of θ. Then, an n×1 vector G(θ), a constant symmetric
positive-definite matrix P , and positive constants ν1, ν2, and
ν2 exist such that for all θ ∈ Θ,

P [A(θ) + G(θ)C] + [A(θ) + G(θ)C]T P ≤ −ν1|A(n−1,n)(θ)|I (4)

ν
2
I ≤ PD(θ) + D(θ)P ≤ ν2I. (5)

Let A(i,i+1)(θ) and A(i,i+1)(θ), i = 1, . . . , n − 1, be posi-

tive functions of θ satisfying A(i,i+1)(θ) ≤ |A(i,i+1)(θ)| ≤

A(i,i+1)(θ), i = 1, . . . , n −1, for all θ ∈ Θ. Let A(i,1)(θ), i =
1, . . . , n, be positive functions of θ satisfying |A(i,1)(θ)| ≤

A(i,1)(θ) for all θ ∈ Θ. Then, the choice of G(θ) to sat-

isfy (4) needs to depend only on A(i,i+1)(θ) and A(i,i+1)(θ),

i = 1, . . . , n, and A(i,1)(θ), i = 1, . . . , n. Furthermore, G(θ)

can be picked such that a positive constant G exists satisfy-
ing

|G(θ)| ≤ G

[

max{A(1,2)(θ), . . . , A(n−1,n)(θ)}

2If A is a matrix, A(i,j) denotes its (i, j)th element.

+
max{A

2

(1,1)(θ), . . . , A
2

(n,1)(θ)}

min{A
(1,2)

(θ), . . . , A
(n−1,n)

(θ)}

]

. (6)

Theorem 2: Let θ be a variable ranging over some set
Θ. Let A(θ) be an n × n matrix function of θ. Let
D1(θ), . . . , Dn(θ) be scalar real-valued functions of θ. As-

sume that positive constants D and D exist such that
D ≤ Di(θ) ≤ D, i = 1, . . . , n, for all θ ∈ Θ. Define
D = diag[D1(θ), . . . , Dn(θ)]T . Let B = [0, . . . , 0, 1]T be an
n × 1 vector. Assume that a positive constant ρ exists such
that A(θ) is dual w-CUDD(ρ) for every θ ∈ Θ. Assume
also that for each i ∈ {1, . . . , n − 1}, the sign of A(i,i+1)(θ)
is independent of θ. Then, a 1 × n vector K(θ), a constant
symmetric positive-definite matrix P , and positive constants
ν1, ν2, and ν2 exist such that for all θ ∈ Θ,

P [A(θ) + BK(θ)] + [A(θ) + BK(θ)]T P ≤ −ν1|A(1,2)(θ)|I (7)

ν
2
I ≤ PD(θ) + D(θ)P ≤ ν2I. (8)

Let A(i,i+1)(θ) and A(i,i+1)(θ), i = 1, . . . , n − 1, be posi-

tive functions of θ satisfying A(i,i+1)(θ) ≤ |A(i,i+1)(θ)| ≤

A(i,i+1)(θ), i = 1, . . . , n− 1, for all θ ∈ Θ. Let A(n,j)(θ), j =
1, . . . , n be positive functions of θ satisfying |A(n,j)(θ)| ≤

A(n,j)(θ) for all θ ∈ Θ. Then, the choice of K(θ) to sat-

isfy (7) needs to depend only on A(i,i+1)(θ) and A(i,i+1)(θ),

i = 1, . . . , n, and A(n,j)(θ), j = 1, . . . , n. Furthermore, K(θ)

can be picked such that a constant K > 0 exists satisfying

|K(θ)| ≤ K

[

max{A(1,2)(θ), . . . , A(n−1,n)(θ)}

+
max{A

2

(n,1)(θ), . . . , A
2

(n,n)(θ)}

min{A
(1,2)

(θ), . . . , A
(n−1,n)

(θ)}

]

. (9)

Remark 1: The proofs of Theorems 1 and 2 can be found
in [16] and are omitted for brevity. In the particular case
where A has nonzero entries only on the upper diagonal,
solvability of the coupled Lyapunov equations was proved in
[12]. The solvability of the single Lyapunov equation (4) as-
suming CUDD was shown in [4]. Theorem 1 can be thought
of as a result on assignability of observer gains so that the
system matrix A(θ)+G(θ)C is uniformly stable in the sense
that a common quadratic Lyapunov function demonstrating
stability exists for the entire family A(θ) + G(θ)C, θ ∈ Θ.
Theorem 2 which is a dual of Theorem 1 can be similarly
interpreted in the context of assignment of controller gains.

Theorem 3: Let A(θ, β) be an n×n matrix function of θ =
[θ1, . . . , θn] ∈ Rn and β ∈ Rm. Assume that a positive func-
tion f(β) exists such that A(θ, β) is w-CUDD(f(β)) for all
θ ∈ Rn, β ∈ Rm. Let ρ be any positive constant. Then, posi-
tive constants q1, . . . , qn exist such that for every θ ∈ Rn and
β ∈ Rm, the matrix Ã(r, θ, β) = T (r)A(θ, β)T−1(r) is w-

CUDD(ρ) for all r ≥ f(β)
ρ

where T (r) = diag( 1
rq1 , . . . , 1

rqn
).

Proof of Theorem 3: Define

qi = 1 +
1

2
(n − 1)n −

1

2
(n − i)(n − i + 1) , i = 1, . . . , n. (10)

The matrix Ã is easily seen to satisfy Properties 1 and 2
in Definition 1. To verify Property 3, note that the (i, j)th

element of Ã is given by Ã(i,j) = rqj−qiA(i,j). Hence,
|Ã(i,j)|

√

|Ã(i,i+1)||Ã(j−1,j)|
= r

qj+qj−1−qi−qi+1
2

|A(i,j)|
√

|A(i,i+1)||A(j−1,j)|

= r
(j−i−1)(2n−i−j+1)

2
|A(i,j)|

√

|A(i,i+1)||A(j−1,j)|

≤
f(β)

r
, i = 2, . . . , n − 1, j = 2, . . . , i



|Ã(n,j)|
√

|Ã(n−1,n)||Ã(j−1,j)|
= r

qj+qj−1+qn−1−3qn

2
|A(n,j)|

√

|A(n−1,n)||A(j−1,j)|

=
1

r
1+(n−j+1)2

2

|A(n,j)|
√

|A(n−1,n)||A(j−1,j)|

≤
f(β)

r
, j = 2, . . . , n

|Ã(i,i+1)|

|Ã(i−1,i)|
= r

(qi+1+qi−1−2qi)
|A(i,i+1)|

|A(i−1,i)|

=
1

r

|A(i,i+1)|

|A(i−1,i)|
≤

f(β)

r
, i = 2, . . . , n−1. (11)

If r ≥ f(β)
ρ

, it readily follows that Ã is w-CUDD(ρ).

Theorem 4: Let A(θ, β) be an n × n matrix function of
θ = [θ1, . . . , θn] ∈ Rn and β ∈ Rm. Assume that a pos-
itive function f(β) and non-negative constants ζ(i,j,k), i =
2, . . . , n, j = 2, . . . , i, k = 1, . . . , i, exist such that the follow-
ing inequalities hold3 for all θ ∈ Rn and β ∈ Rm:

|A(i,j)|
√

|A(i,i+1)||A(j−1,j)|
≤ f(β)[1 +

i
∑

k=1

|θk|
ζ(i,j,k) ], i = 2, . . . , n−1,

j = 2, . . . , i

|A(i,1)|
√

|A(i,i+1)||A(1,2)|
≤ f(β)[1 +

i
∑

k=1

|θk|
ζ(i,1,k) ] , i = 1, . . . , n − 1

|A(i−1,i)|

|A(i,i+1)|
≤ f(β)[1 +

i
∑

k=1

|θk|
ζ(i,i+1,k) ] , i = 2, . . . , n − 1. (12)

Let ρ be any positive constant. Then, positive constants
q1, . . . , qn, and a positive function R(θ, β) exist such that

for every θ ∈ Rn and β ∈ Rm, the matrix Ã(r, θ, β) =
T (r)A(T−1(r)θ, β)T−1(r) is dual w-CUDD(ρ) for all r ≥
R(θ, β) where T (r) = diag( 1

rq1 , . . . , 1
rqn

).

Proof of Theorem 4: The matrix Ã is easily seen to
satisfy Properties 1 and 2 in Definition 2. Note that
the (i, j)th element of Ã is given by Ã(i,j)(r, θ, β) =

rqj−qiA(i,j)(T
−1(r)θ, β). Pick q1 to be any arbitrary con-

stant. q2, . . . , qn can be recursively obtained to satisfy the
inequalities

qi+1 ≥ max

{

[

2−qi+qj +qj−1+2 max{qkζ(i,j,k)|k = 1, . . . , i}

]

,

[

2−qi−q2+ 3q1+ 2 max{qkζ(i,1,k)|k = 1, . . . , i}

]

,

[

1+2qi−qi−1+max{qkζ(i,i+1,k)|k = 1, . . . , i}

]

}

. (13)

Defining

R(θ, β) = max

{

1,
f(β)

ρ
max{[1+

i
∑

k=1

θ
ζ(i,j,k)

k
] | i = 2, . . . , n,

j = 2, . . . , i, k = 2, k = 1, . . . , i}

}

, (14)

we see through inequalities similar to (11) that Ã(r, θ, β) is
dual w-CUDD(ρ) for all r ≥ R(θ, β) and all θ ∈ Rn, β ∈ Rm.

III. State-Feedback Control

A. Assumptions
Assumption A1: Observability, controllability, and uni-
form relative degree of (1), i.e.,
|φ(i,i+1)(x)| ≥ σ > 0 , 1 ≤ i ≤ n − 1 ; |µ0(x)| ≥ σ>0 ∀x ∈ R

n
. (15)

3For notational convenience, we drop the arguments of functions
whenever no confusion will result.

Furthermore, the sign of each φ(i,i+1), i = 1, . . . , n − 1, is
independent of its argument.

Assumption A2: The inverse dynamics of (1), i.e.,
żi = φs+i(t, Υ, [v1, y2]

T
, v2, . . . , vs, z1, . . . , zi)

+φ(s+i,s+i+1)([v1, y2]
T

)zi+1−
µi([v1, y2]

T )

µ0([v1, y2]T )
φ(s,s+1)([v1, y2]

T
)z1

+µi([v1, y2]
T

)v0 , 1 ≤ i ≤ n − s (16)

with zn−s+1 =0 being a dummy variable are Bounded-Input-
Bounded-State (BIBS) stable with states (z1, . . . , zn−s) and
inputs (Υ, v0, . . . , vs) where4 y2 = [z1, . . . , zn−s]

T .

Assumption A3: The functions φi can be bounded as

|φi(t, y, x2, . . . , xi)| ≤

i
∑

j=1

φ(i,j)(x)|xj | , i = 1, . . . , s (17)

with φ(i,j), i = 1, . . . , s, j = 1, . . . , i, being known continuous
nonnegative functions. Nonnegative functions γ(i,j)(x1) and
nonnegative constants ζ(i,j,k), i = 2, . . . , n, j = 2, . . . , i, k =
1, . . . , i, exist such that for all x ∈ Rn

|φ(i,j)(x)|
√

|φ(i,i+1)(x)||φ(j−1,j)(x)|
≤γ(i,j)(x1)

i
∑

k=1

|xk|
ζ(i,j,k), i=2, . . . , n−1,

j = 2, . . . , i

|φ(i,1)(x)|
√

|φ(i,i+1)(x)||φ(1,2)(x)|
≤ γ(i,1)(x1)

i
∑

k=1

|xk|
ζ(i,1,k) , i=1, . . . , n−1

|φ(i−1,i)(x)|

|φ(i,i+1)(x)|
≤ γ(i−1,i)(x1)

i
∑

k=1

|xk|
ζ(i,i+1,k) , i = 2, . . . , n − 1. (18)

Furthermore, a positive function φ̂(1,2)(x1) and nonnegative
constants ε(i,j), i = 1, . . . , n − 1, j = 1, 2, exist such that

|φ(i,1)(x)|≤ ε(i,1)φ̂(1,2)(x1)
√

|φ(1,2)(x)||φ(2,3)(x)|, i=2, . . . , n−1

|φ(i,2)(x)|≤ ε(i,2)φ̂(1,2)(x1)
√

|φ(1,2)(x)||φ(2,3)(x)|,i=1, . . . , n−1. (19)

B. Controller Design
Define ξ2 = x2 + ζ(x1) ; ξi = xi , i = 3, . . . , s ; ξ =

[ξ2, . . . , ξs]
T where ζ(x1) = ζ1(x1)x1 is a design freedom to

be chosen later. The control input u is designed to be

u =
1

µ0(x)

[

−φ(s,s+1)(x)xs+1 − K(r, x)ξ
]

. (20)

where r ≥ 1 is a dynamic high gain scaling parameter whose
dynamics will be designed later and K(r, x) is an (n− 1)× 1
gain vector to be specified later. Under the action of the
control law, (20), the dynamics of ξ are given by

ξ̇ = [Ac + BcK + HCc]ξ + Φ + Ξ (21)

Ac =







0 φ(2,3) 0 . . . 0
0 0 φ(3,4) . . . 0

.

.

.
. . .

0 φ(s−1,s)
0 0 . . . 0







(22)

Bc = [0, . . . , 0, 1]
T

, Cc = [1, 0, . . . , 0] , Φ = [φ2, . . . , φs]
T

(23)

H = [{ζ
′

1(x1)x1 + ζ1(x1)}φ(1,2)(x), 0, . . . , 0]
T

(24)

Ξ =

[

{[ζ
′

1(x1)x1+ζ1(x1)][φ1−φ(1,2)(x)ζ1(x1)x1]}, 0, . . . , 0

]T

. (25)

ζ′
1(x1) denotes the partial derivative evaluated at x1 of ζ1.

The dynamic high gain scaling parameter r is initialized
greater than 1. The dynamics of r designed during the sta-
bility analysis will ensure that r is non-decreasing.

C. Stability Analysis
Define

Mi = [ε(i,1) + ε(i,2)|ζ1(x1)|]φ̂(1,2)(x1) ; M = [M2, . . . , Ms] (26)

4In the output-feedback case, the required assumption on the inverse
dynamics is Assumption A2 with y2 being the empty vector.



Φ =







φ(2,2) 0 0 . . . 0
φ(3,2) φ(3,3) 0 . . . 0

.

.

.
. . .

φ(s−1,2) . . . φ(s−1,s−1) 0
φ(s,2) . . . φ(s,s)







(27)

Ξ =

[

1
√

|φ(1,2)(x)|
{|ζ

′

1(x1)x1 + ζ1(x1)|[φ(1,1)(x)

+|φ(1,2)(x)ζ1(x1)|]}, 0, . . . , 0

]T

. (28)

It is easily seen that the matrix A(ξ, x1) = (Ac + Φ +
HCc) satisfies the assumptions of Theorem 4. Hence, if
ρ is any given positive constant, nonnegative constants
q1, . . . , qs−1, and a positive function Rζ(T (r)ξ, x1) ≥ 1 ex-
ist such that T (r)A(ξ, x1)T

−1(r) is dual w-CUDD(ρ) for all
r ≥ Rζ(T (r)ξ, x1) where T (r) = diag( 1

rq1 , . . . , 1
r

qs−1 ). As
noted in Theorem 4, q1 can be picked arbitrarily. Hence,
without loss of generality, we set q1 = 1. Also, since the
construction in Theorem 4 recursively assigns lower bounds
on q2, . . . , qs−1, we set q2 ≥ 4. Note that Rζ depends on the
choice of the function ζ and this dependence is indicated in
the subscript. Define η = T (r)ξ. The dynamics of η are

η̇ = T (r)[Ac + BcK + HCc]T
−1

(r)η + T (r)Φ + T (r)Ξ −
ṙ

r
Dcη (29)

where Dc = diag(q1, . . . , qs−1). Using Theorem 2, a 1×(s−1)

vector K̃(r, x), a symmetric positive-definite matrix Pc, and
positive constants νc, νc, and νc exist such that for all r ≥
Rζ(T (r)ξ, x1) and all x ∈ Rn

Pc{T (r)[Ac + Q1ΦQ2 + HCc]T
−1

(r) + BcK̃}

+{T (r)[Ac+Q1ΦQ2+HCc]T
−1

(r)+BcK̃}
T

Pc≤−
νc

rq1−q2
|φ(2,3)(x)|I

ν
c
I ≤ PcDc + DcPc ≤ νcI (30)

where Q1 and Q2 are arbitrary (s − 1) × (s − 1) diagonal
matrices with each diagonal entry +1 or −1. Furthermore,
by Theorem 2, the choice of K̃ does not need to depend on Q1

and Q2. K(r, x) is defined as K(r, x) = rqs−1K̃(r, x)T (r) so

that BcK̃ = T (r)BcKT−1(r). Closed-loop stability can be
demonstrated using the Lyapunov function V = 1

2
x2

1+ηT Pcη
whose derivative satisfies

V̇ = x1[φ1+φ(1,2)x2]−
ṙ

r
η

T
(PcDc+DcPc)η+2η

T
Pc(TΦ+TΞ)

+η
T

{

PcT [Ac+BcK+HCc]T
−1

+T
−1

[Ac+BcK+HCc]
T

TPc

}

η. (31)

The term 2ηT PcT (r)Φ can be upper bounded as5

|Φ|e ≤e M
√

|φ(1,2)(x)||φ(2,3)(x)||x1| + ΦT
−1

(r)|η|e

2η
T

PcT (r)Φ ≤ |φ(2,3)(x)|[|η
T

Pc|eT (r)M ]
2

+ |φ(1,2)(x)|x
2
1

+2η
T

PcQ1T (r)ΦT
−1

(r)Q2η

≤
1

r2
λ

2
max(Pc)|M |

2
|φ(2,3)(x)||η|

2
+ |φ(1,2)(x)|x

2
1

+2η
T

PcT (r)Q1ΦQ2T
−1

(r)η (32)

where Q1 and Q2 are (s−1)× (s−1) diagonal matrices with
each diagonal entry +1 or −1 such that |Pcη|e = Q1Pcη and
|η|e = Q2η. The last inequality in (32) follows using r ≥ 1,
T (r) is a diagonal matrix containing negative powers of r,
and two diagonal matrices commute. Similarly,

|Ξ|e ≤e Ξ
√

|φ(1,2)(x)||x1|

2η
T

PcT (r)Ξ ≤
1

r2
λ

2
max(Pc)|Ξ|

2
|η|

2
+ |φ(1,2)(x)|x

2
1. (33)

Using (32) and (33), (31) reduces to
V̇ ≤ −x

2
1φ(1,2)(x)ζ1(x1) + |φ(1,2)(x)|γ(1,1)(x1)|x1|

(2+ζ(1,1,1))

5|β|e denotes a matrix of the same dimension as β with each ele-
ment replaced by its absolute value. ≤e denotes an element-wise
inequality between two matrices of equal dimension. λmax(P ) with
P being a square symmetric matrix denotes the maximum eigen-
value of P .

−
ṙ

r
η

T
(PcDc + DcPc)η + r

2
ε
2
(1,2)φ̂

2
(1,2)(x1)|φ(2,3)(x)||η|

2

+η
T

{

PcT (r)[Ac + BcK + HCc + Q1ΦQ2]T
−1

(r)

+T
−1

(r)[Ac + BcK + HCc + Q1ΦQ2]
T

T (r)Pc

}

η

+3|φ(1,2)(x)|x
2
1 +

1

r2
λ

2
max(Pc)[|M |

2
|φ(2,3)(x)| + |Ξ|

2
]|η|

2
(34)

Note that |Ξ| ≤ Ξ
√

|φ(2,3)(x)| with

Ξ = |ζ
′

1(x1)x1+ζ1(x1)|ε(1,2)φ̂(1,2)(x1)[γ(1,1)|x1|
ζ(1,1,1) +|ζ1(x1)|].(35)

Define

Rζ(η, x1)=max

{

Rζ ,
4ε2(1,2)φ̂

2
(1,2)

νc

,

(

4λ2
max(Pc)[|M |2 + Ξ

2

]

νc

)
1
5
}

.(36)

By the definition of Rζ , the function Rζ is not smaller than
unity for any argument. Recalling that q2−q1 ≥ 3, it follows
from (30) that if r ≥ Rζ(η, x1), then

η
T

{

PcT (r)[Ac + BcK + HCc + Q1ΦQ2]T
−1

(r)

+T
−1

(r)[Ac + BcK + HCc + Q1ΦQ2]
T

T (r)Pc

}

η

+r
2
ε
2
(1,2)φ̂

2
(1,2)(x1)|φ(2,3)(x)||η|

2

+
1

r2
λ

2
max(Pc)[|M |

2
|φ(2,3)(x)|+|Ξ|

2
]|η|

2
≤−

νc

2
r
3
|φ(2,3)(x)||η|

2
. (37)

The design freedom ζ1 is picked to satisfy6

ζ1(x1) =
1

σ
sign(φ(1,2))[3σ+σγ(1,1)(x1)|x1|

ζ(1,1,1) +ζ
∗

(x1)] (38)

where ζ∗ is a function of x1 with infx1∈R ζ∗(x1) > 0. The
dynamics of the high gain parameter r are designed as

ṙ =

{

∆(r, x) if r < Rζ(η, x1)

0 if r ≥ Rζ(η, x1)
(39)

∆(r, x) =
r

ν
c

{

r
∗

+ 2λmax(Pc)
rqs−1

rq1

[

||Ac+BcK+HCc|| + ||Φ||

]

+r
2
ε
2
(1,2)φ̂

2
(1,2)|φ(2,3)|+

1

r2
λ

2
max(Pc)

[

|M |
2
+Ξ

2
]

|φ(2,3)|

}

(40)

with r∗ being a positive constant. Using (34), (38), (39),

and (40), if r < Rζ(η, x1), the derivative of the Lyapunov

function V satisfies V̇ ≤ −x2
1ζ

∗(x1)−r∗|η|2. If r ≥ Rζ(η, x1),

we have V̇ ≤ −x2
1ζ

∗(x1) −
νc

2
r3|φ(2,3)(x)||η|2. Hence, V is

a non-increasing function of time implying that x1 and η
are bounded. Thus, Rζ(η, x1) is bounded. Hence, r remains
bounded and since r is initialized greater than 1, r(t) ≥ 1 for
all time. The boundedness of ξ and hence, x2, . . . , xs follows
from boundedness of r. Invoking the BIBS Assumption A2,
all closed-loop states remain bounded. Also, x1 and η, and
hence x1, . . . , xs go to zero asymptotically. Strengthening
Assumption A2 to include a minimum-phase assumption, all
closed-loop states (except r) go to zero asymptotically.

Theorem 5: Under Assumptions A1-A3, the proposed dy-
namic state-feedback compensator achieves global stability
of system (1) and x1, . . . , xs go to zero asymptotically. Fur-
thermore, under a minimum-phase assumption on the in-
verse dynamics, x1, . . . , xn, and u go to zero asymptotically.

Remark 2: To make the dynamics of r smooth upto any
number of derivatives l, dynamics (39) can be replaced by

ṙ = q(Rζ −r)∆(r, x) where q is a nonnegative l-times contin-
uously differentiable function such that q(b) = 1 if b > 0 and
q(b) = 0 for b < −εr with εr being any positive constant.

IV. Output-Feedback Control

In this section, we consider output-feedback control of sys-
tem (1) with output y = x1. The output-feedback design in
this section is based on Assumptions A1, A2, and A3’.

6By assumption, φ(1,2)(x) assumes the same sign for all x ∈ Rn.



A. Assumptions

Assumption A3’: Continuous functions φ̂i(t, x1, . . . , xi)
and nonnegative functions φ(i,j) are known such that
|φi(t, x1, 0, . . . , 0)| ≤ φ(i,1)(x1)|x1| , 1 ≤ i ≤ n

|φ̂i(t, x1, x̂2, . . . , x̂i) − φi(t, x1, x2, . . . , xi)| ≤ φ(i,1)(x1)|x1|

+

i
∑

j=2

φ(i,j)(x1)|x̂j − xj | , 2 ≤ i ≤ n. (41)

Remark 3: As seen from Theorems 1 and 2, the cascading
dominance of upper diagonal terms required in observer and
controller contexts are dual. The observer design requires
upper diagonal terms nearer to the output to be larger while
the controller design requires upper diagonal terms closer to
the input to be larger. Hence, it is not, in general, possi-
ble to design a high gain observer and high gain controller
using the proposed scaling technique. The output-feedback
design in this section uses the proposed scaling technique for
the observer which is then coupled with a backstepping con-
troller. This constrains the functions φi to be incrementally
linear in unmeasured states and prevents them from having
the more general bound in [15]:
|φ̂i(t, x1, x̂2, . . . , x̂i) − φi(t, x1, x2 . . . , xi)| ≤ φ(i,1)(x1)|x1|

+

i
∑

j=2

φ(i,j)(x1)[|x̂j |+

i
∑

j=2

|x̂j−xj |] , i=2, . . . , n. (42)

The term
∑i

j=2
|x̂j | which would need to be compensated for

by the controller design cannot be handled in a backstepping-
based design because, while backstepping can efficiently as-
sign gains to the output, the gains to other states cannot
be assigned arbitrarily since states farther from the output
appear in increasingly complicated combinations in the re-
cursive design procedure and generated Lyapunov function.
In contrast, the high gain controller of [15] which is simi-
lar to the state-feedback controller in Section III utilizes a
Lyapunov function quadratic in the state estimates and pro-
vides robustness both to uncertainties φi satisfying (42) and
to appended ISS dynamics driven by all states.

B. Observer Design
A reduced-order observer for the system (1) is given by7

˙̂xi = φ̂i(t, x1, x̂2 + f2(r, x1), . . . , x̂i + fi(r, x1))

+φ(i,i+1)(x1)[x̂i+1 + fi+1(r, x1)] + µi−s(x1)u

−gi(r, x1)[x̂2 + f2(r, x1)] − ṙhi(r, x1) , 2 ≤ i ≤ n (43)

where r is a dynamic high gain scaling parameter, fi(r, x1)
are design functions of x1, and

gi(r, x1) = φ(1,2)(x1)
∂fi(r, x1)

∂x1

, hi(r, x1) =
∂fi(r, x1)

∂r
. (44)

The dynamics of r are of the form ṙ = w(r, x1) with w being
s-times continuously differentiable. Defining the observer
errorsei = x̂i + fi(r, x1) − xi , 2 ≤ i ≤ n, (45)

the observer error dynamics are, 2 ≤ i ≤ n,

ėi = φ̃i − φi+φ(i,i+1)(x1)ei+1+gi(r, x1)
φ1

φ(1,2)(x1)
−gi(r, x1)e2 (46)

with en+1 = 0 being a dummy variable where, for notational
convenience, we have introduced
φ̃i = φ̂i(t, x1, x̂2 + f2(r, x1), . . . , x̂i + fi(r, x1)) , i = 2, . . . , n. (47)

In matrix form, the dynamics of e = [e2, . . . , en]T are
ė = Φ̃ + [Ao + GC]e (48)

Φ̃ = [Φ̃2, . . . , Φ̃n]
T

; Φ̃i = φ̃i − φi + gi(r, x1)
φ1

φ(1,2)

(49)

Ao =







0 φ(2,3) 0 . . . 0
0 0 φ(3,4) . . . 0

.

.

.
. . .

0 φ(n−1,n)
0 0 . . . 0







(50)

7For simplicity of notation, we introduce the dummy variables
x̂n+1 = fn+1 = gn+1 = 0 and µi ≡ 0 for i < 0.

G(r, x1) = [g2(r, x1), . . . , gn(r, x1)]
T

, C = [1, 0, . . . , 0]. (51)

C. Controller Design
Define ξi = x̂i + fi(r, x1) , i = 2, . . . , s. The controller is

designed through backstepping[2] using the subsystem with
states (x1, ξ2, . . . , ξs) whose dynamics are
ẋ1 = −φ(1,2)(x1)e2 + φ1(t, x1) + φ(1,2)(x1)ξ2

ξ̇i = −gi(r, x1)e2 + φ̂i(t, x1, ξ2, . . . , ξi) + gi(r, x1)
φ1(t, x1)

φ(1,2)(x1)

+φ(i,i+1)(x1)ξi+1 , i = 2, . . . , s − 1

ξ̇s = −gs(r, x1)e2 + φ̂s(t, x1, ξ2, . . . , ξs) + gs(r, x1)
φ1(t, x1)

φ(1,2)(x1)

+φ(s,s+1)(x1)[x̂s+1 + fs+1(r, x1)] + µ0(x1)u. (52)

Step 1: The backstepping is commenced using the Lyapunov
function V1 = 1

2
η2
1 with η1 = x1 yielding

V̇1 = −x1φ(1,2)e2 + x1φ1 + x1φ(1,2)ξ2

≤ −α(r, x1)x
2
1 − ζ1η

2
1 + φ(1,2)η1η2 +

e2
2

4r2
(53)

where ζ1 > 0 is a constant, α is a smooth positive function,
η2 = ξ2 − ξ∗2(r, x1), and

ξ
∗

2 (r, x1) = −
[r2x1φ2

(1,2)(x1)+φ(1,1)(x1)x1+ζ1x1+α(r, x1)x1]

φ(1,2)(x1)
. (54)

Step i (2 ≤ i ≤ s − 1): Assume that at step (i − 1), a
Lyapunov function Vi−1 has been designed such that

V̇i−1 ≤ −α(r, x1)x
2
1 − (1 −

i − 2

2s
)ζ1η

2
1 −

i−1
∑

j=2

ζjη
2
j

+φ(i−1,i)ηi−1ηi +
(i − 1)e2

2

4r2
(55)

where ηj = ξj − ξ∗j (r, x1, ξ2, . . . , ξj−1), j = 2, . . . , i, with ξ∗j
being functions designed in the previous steps of backstep-
ping. Defining Vi = Vi−1 + 1

2
η2

i ,

V̇i ≤−α(r, x1)x
2
1−(1−

i − 1

2s
)ζ1η

2
1−

i
∑

j=2

ζjη
2
j +φ(i,i+1)ηiηi+1+

ie2
2

4r2

where ηi+1 = ξi+1 − ξ∗i+1(r, x1, ξ2, . . . , ξi) and

ξ
∗

i+1 = −
1

φ(i,i+1)(x1)

{

ζiηi + φ(i−1,i)ηi−1 + φ̂i(t, x1, ξ2, . . . , ξi)

−
∂ξ∗

i

∂r
w(r, x1) −

∂ξ∗

i

∂x1

φ(1,2)(x1)ξ2 −

i−1
∑

j=2

∂ξ∗

i

∂ξj

[φ̂j(t, x1, ξ2, . . . , ξj)

+φ(j,j+1)(x1)ξj+1] + r
2
ηi

[

− gi(r, x1) +
∂ξ∗

i

∂x1

φ(1,2)(x1)

+

i−1
∑

j=2

∂ξ∗

i

∂ξj

gj(r, x1)

]2

+
s

2ζ1

ηi

[

gi(r, x1)

φ(1,2)(x1)
−

∂ξ∗

i

∂x1

−
1

φ(1,2)(x1)

i−1
∑

j=2

∂ξ∗

i

∂ξj

gj(r, x1)

]2

φ
2
(1,1)(x1)

}

. (56)

Step s: At this step, the control input u is designed as

u =
φ(s,s+1)(x1)

µ0(x1)

[

ξ
∗

s+1(r, x1, ξ2, . . . , ξs) − x̂s+1 − fs+1(r, x1)

]

(57)

where ξ∗s+1 is obtained from (56) with i = s + 1. The Lya-
punov function Vs = 1

2

∑s

j=1
η2

i satisfies

V̇s ≤ −α(r, x1)x
2
1 −

1

2
ζ1η

2
1 −

s
∑

j=2

ζjη
2
j +

se2
2

4r2
. (58)

D. Stability Analysis
Define

Mi = φ(i,1)(x1) + |gi(r, x1)|
φ(1,1)(x1)

|φ(1,2)(x1)|
; M = [M2, . . . , Mn]

T



Φ =







φ(2,2) 0 0 . . . 0
φ(3,2) φ(3,3) 0 . . . 0

.

.

.
. . .

φ(n−1,2) . . . φ(n−1,n−1) 0
φ(n,2) . . . φ(n,n)







(59)

The matrix Ao + Φ satisfies the assumptions of Theorem 3.
Hence, given any positive constant ρ, nonnegative constants
q1, . . . , qn−1, and a positive function R(x1) ≥ 1 exist such

that T (r)[Ao + Φ]T−1(r) is w-CUDD(ρ) for all r ≥ R(x1)
where T (r) = diag( 1

rq1 , . . . , 1
r

qn−1 ). From the construction
in Theorem 3, q1 can be taken to be 1 and qn − qn−1 = 1.
Using Theorem 1, a (n − 1) × 1 vector G̃(r, x1), a symmet-
ric positive-definite matrix Po, and positive constants νo, νo,
and νo exist such that for all r ≥ R(x1) and all x1 ∈ R
Po{T (r)[Ao + Q1ΦQ2]T

−1
(r) + G̃C}

+{T (r)[Ao+Q1ΦQ2]T
−1

(r)+G̃C}
T

Po ≤ −
νo

rqn−1−qn
|φ(n−1,n)|I

ν
o
I ≤ PoDo + DoPo ≤ νoI (60)

where Do = diag(q1, . . . , qn−1) and Q1 and Q2 are arbitrary
diagonal (n− 1)× (n− 1) matrices with each diagonal entry

+1 or −1. By Theorem 1, the choice of G̃ does not need to
depend on Q1 and Q2. G(r, x1) = [g2(r, x1), . . . , gn(r, x1)]

T

is defined as G(r, x1) = r−q1T−1(r)G̃(r, x1) so that G̃C =
T (r)GCT−1(r). fi, i = 2, . . . , n, are obtained as

fi(r, x1) =

∫

x1

0

gi(r, π)

φ(1,2)(π)
dπ. (61)

The dynamics of ε
4
= T (r)e are

ε̇ = T (r)Φ̃ + T (r)[Ao + GC]T
−1

(r)ε −
ṙ

r
Doε. (62)

The derivative of the Lyapunov function Vo = εT Poε satisfies

V̇o = 2ε
T

PoT (r)Φ̃ + ε
T
{PoT (r)[Ao + GC]T

−1
(r)

+T
−1

(r)[Ao + GC]
T

T (r)Po}ε −
ṙ

r
ε

T
[PoDo + DoPo]ε. (63)

The term 2εT PoT (r)Φ̃ can be upper bounded as

|Φ̃i| ≤

i
∑

j=2

φ(i,j)|ej | + [φ(i,1) + |gi|
φ(1,1)

|φ(1,2)|
]|x1|

|Φ̃|e ≤e Φ|e|e + M |x1|

2ε
T

PoT (r)Φ̃ ≤ 2|ε
T

Po|eT (r)[ ΦT
−1

(r)|ε|e + M |x1|]

≤ 2ε
T

PoT (r)Q1ΦQ2T
−1

(r)ε +
νoσ

2
|ε|

2

+
2

νoσ
λ

2
max(Po)|M |

2
x
2
1 (64)

where Q1 and Q2 are diagonal matrices with each diagonal
entry +1 or −1 such that |Poε|e = Q1Poε and |ε|e = Q2ε.

The dynamics of the high gain parameter are designed as

ṙ = q(R − r)∆(r, x1) with initial value r(0) ≥ 1 (65)

∆(r, x1) =
r

ν
o

{

r
∗

+2λmax(Po)
rqn−1

rq1

[

||Ao+GC||+||Φ||

]

+
νoσ

2

}

(66)

with r∗ being any positive constant. q is a nonnegative s-
times continuously differentiable function such that q(b) = 1
if b > 0 and q(b) = 0 if b < −εr with εr being a positive
constant. Using (60), (64), (65), and (66), (63) reduces to

V̇o ≤ −min(
νoσ

2
, r

∗

)|ε|
2

+
2

νoσ
λ

2
max(Po)|M |

2
x
2
1. (67)

The controller design freedom α(r, x1) is picked to satisfy

α(r, x1) ≥
2s∗

νoσ
λ

2
max(Po)|M |

2

=
2s∗

νoσ
λ

2
max(Po)

n
∑

i=2

[

φ(i,1)(x1)+|gi(r, x1)|
φ(1,1)(x1)

|φ(1,2)(x1)|

]2

.(68)

where

s∗ =
s
4

+ 1

min( νoσ

2
, r∗)

(69)

Defining the overall Lyapunov function V = Vs + s∗Vo, dif-
ferentiating, and noting that e2 = rq1ε2 = rε2,

V̇ ≤ −|ε|
2
−

1

2
ζ1η

2
1 −

s
∑

j=2

ζjη
2
j . (70)

Using (70), ε, x1, η2, . . . , ηs are bounded. Boundedness
of x1 implies boundedness of R(x1), and hence of r and
e = T−1(r)ε. Boundedness of x̂i, i = 2, . . . , s, follows from
boundedness of η2, . . . , ηs, x1, and r. Invoking the BIBS As-
sumption A2, xs+1, . . . , xn are bounded. Hence, all closed-
loop states are bounded. Moreover, from (70), noting that

φ̂i(t, 0, . . . , 0) = 0, it follows that e2, . . . , en, x1, x2, . . . , xs go
to zero asymptotically. If Assumption A2 is strengthened
to include a minimum-phase assumption, it is seen that all
closed-loop states (except r) go to zero asymptotically.

Theorem 6: Under Assumptions A1, A2, and A3’, the pro-
posed output-feedback compensator globally stabilizes sys-
tem (1) and makes observer errors and states x1, . . . , xs go
to zero asymptotically. Moreover, under a minimum-phase
condition on inverse dynamics, the observer errors, states
x1, . . . , xn, and control input u go to zero asymptotically.
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