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Abstract— Several extensions to neural network based adaptive
output feedback control of nonlinear systems are developed. An
extension that permits the introduction of e-modification in an error
observer based approach is given. For the case of non-affine systems,
we eliminate a fixed point assumption that has appeared in earlier
work, and clarify the role that knowledge of the sign of control
effectiveness plays in adaptive control.

I. I NTRODUCTION

This paper presents several extensions for augmenting a non-
linear controller, designed via input/output feedback linearization,
with a neural network (NN) based adaptive element, similar to
those described in [1], [2]. NN adaptive control combined with
feedback linearization [3], [4] is a popular method for control
of nonlinear systems. Extensions of the methods from [3], [4] to
state observer based output feedback control are treated in [5], [6].
However, these results are limited to systems with full relative
degree (vector relative degree = degree of the system) with the
added constraint that the relative degree of each output is less than
or equal to two. Moreover, since state observers are employed, the
dimension of the plant must be known. Therefore, methods that
rely on a state observer are vulnerable to unmodeled dynamics. In
[1], a direct adaptive approach is developed that does not make
use of a state observer and uses linearly-parameterized NNs to
compensate for modeling errors. In [2], these same limitations
are overcome by employing an error observer, in place of a state
observer. The only requirement in the latter two approaches is
that the relative degree of the regulated output be known. The
adaptive laws in the approaches in [1], [2] have been derived using
σ-modification. This paper provides proof of boundedness using
e-modification.

Another issue concerns knowledge of the sign of control ef-
fectiveness, which is a common assumption in adaptive control.
For an affine system with constant control effectiveness it is not
difficult to show that knowledge of the sign of control effectiveness
is needed to obtain a reasonable adaptive law. In [1], [2], [7],
this issue is addressed for the case of non-affine systems by
introducing a fixed point assumption for the mapping from the
adaptive signal to the modeling error. In [1] it is shown that this
mapping is a contraction if and only if the sign of the control
effectiveness is known and greater in magnitude than half the
actual value. Thus the requirement for knowledge of the sign of
the control effectiveness does not appear explicitly in the stability
analysis. Furthermore, the contraction mapping assumption may be
overly conservative. In [8] stability analysis for a non-affine system
for the case of state feedback is performed utilizing the mean
value theorem. In this approach the requirement for knowledge
of the sign of control effectiveness is explicit. The extension to

output feedback employing a high-gain observer is given in [9].
Here we adopt this approach to derive adaptation laws for the
formulations given in [1], [2], thereby removing the contraction
mapping condition.

The next section states the output feedback control problem and
clarifies the role of the sign of control effectiveness in adaptive
control of non-affine systems. Section III briefly explains the NN
universal approximation property. Section IV provides an exten-
sion of the error observer approach along with boundedness proofs.
Section V shows simulation results of the proposed methods for
a modified Van der Pol oscillator, and Section VI summarizes the
results and concludes this study.

II. PLANT DESCRIPTION

Consider the followingobservableand stabilizable nonlinear
SISO system:

ẋ = f (x, u)

y = h(x)
(1)

where x is the state of the system on a domainDx ⊂ <n,
and u, y ∈ < are the control and regulated output variables,
respectively. The functionsf andh may be unknown.

Assumption II.1 The functionsf : Dx×< → <n andh : Dx →
< are input/output feedback linearizable [10], and the outputy
has relative degreer for all (x, u) ∈ Dx ×<.

Based on this assumption, the system (1) can be transformed into
normal form [11]

χ̇ = f 0(ξ, χ)

ξ̇i = ξi+1 i = 1, · · · , r − 1

ξ̇r = hr(ξ, χ, u)

y = ξ1

(2)

whereξ = [ ξ1 . . . ξr ]T , hr(ξ, χ, u) = Lr
fh,andχ is the

state vector associated with the internal dynamics

χ̇ = f 0(ξ, χ) (3)

Assumption II.2 The internal dynamics in (3), withξ viewed as
input, are input-to-state stable. [12]

Assumption II.3 ∂hr(x, u)/∂u is continuous and non-zero for
every(x, u) ∈ Dx ×< and its sign is known.

The control objective is to synthesize an output feedback control
law such thaty(t) tracks a smooth reference model trajectory



yrm(t) within bounded error. Let̂hr(y, u) denote an approximate
model forhr(x, u) so that

hr(x, u) = ĥr(y, u) + ∆ (4)

where the modeling error is∆(x, u) = hr(x, u) − ĥr(y, u).

Assumption II.4 ∂ĥr(y, u)/∂u is continuous and non-zero for
every(y, u) ∈ Dy ×<.

Let the approximate function be recast as

v = ĥr(y, u) (5)

where v is called pseudo-control. Then the control law can be
defined directly from (5)

u = ĥ−1
r (y, v) (6)

The pseudo-control is composed of three signals:

v , y(r)
rm + vdc − vad (7)

wherey
(r)
rm is therth time derivative ofyrm(t), vdc is the output

of a linear dynamic compensator, andvad is an adaptive term
designed to cancel the modeling error.

The reference model can be expressed in state space form as

ẋrm = Armxrm + brmycom

yrm = Crmxrm

(8)

xrm ,
[

xrm ẋrm · · · x
(r−1)
rm

]T

Arm =










0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1
−a1 −a2 −a3 · · · −ar










, brm =










0
0
0
...

a1










,

Crm =
[
1 0 0 · · · 0 0

]

where xrm ∈ <r is the state vector of the reference model,
ycom ∈ < is a bounded external command signal, andArm is
Hurwitz.

Assumption II.5 ycom(t) is uniformly bounded so that

‖ycom(t)‖ 6 y∗
com, y∗

com > 0

Let e , yrm − y. Then

e(r) = −vdc + vad − ∆ (9)

For the caser > 1, the following linear dynamic compensator is
introduced to stabilize the dynamics in (9):

η̇ = Acη + bce, η ∈ <nc

vdc = ccη + dce
(10)

where nc is the order of the compensator. The vectore =
[ e ė · · · e(r−1) ]T together with the compensator stateη

will obey the following error dynamics:
[
η̇

ė

]

=

[
Ac bcc

−bcc A − bdcc

]

︸ ︷︷ ︸

Ā

[
η

e

]

︸︷︷︸

E

+

[
0nc×1

b

]

︸ ︷︷ ︸

b̄

(vad − ∆)

z =

[
Inc 0nc×r

01×nc c

]

︸ ︷︷ ︸

C̄

[
η

e

]

=

[
η

e

] (11)

where

A =










0 1 0 · · · 0
0 0 1 0
...

...
. . .

0 0 1
0 0 0 · · · 0










∈ <r×r, b =










0
0
...
0
1










∈ <r×1,

c =
[

1 0 0 · · · 0
]
∈ <1×r,

andz is a vector of available signals. With these definitions, the
tracking error dynamics in (11) can be rewritten in a compact
form:

Ė = ĀE + b̄(vad − ∆)

z = C̄E
(12)

whereAc, bc, cc, dc should be designed such thatĀ is Hurwitz.
Reference [1] points out that∆ depends onvad through (6) and

(7) and thatvad is designed to cancel∆. A contraction assumption
is introduced to guarantee the existence and uniqueness of a
solution for vad such thatvad = ∆(·, vad). As can be seen,
the contraction mapping assumption is satisfied if and only if
sgn( ∂ĥr(y,u)

∂u
) = sgn( ∂hr(x,u)

∂u
) and

∣
∣
∣

∂ĥr

∂u

∣
∣
∣ > 1

2

∣
∣ ∂hr

∂u

∣
∣. However,

knowledge of the sign of the control effectiveness is not employed
in the stability analysis.

Define the following signals

vl , y(r)
rm + vdc

v∗ , ĥr(y, h−1
r (x, vl))

(13)

Invertibility of hr(x, u) with respect to its second argument is
guaranteed by Assumption II.3. From (13), it follows thatvl can
be written as

vl = hr(x, ĥ−1
r (y, v∗)) (14)

and

vad − ∆(x, u) = vad − hr(x, u) + ĥr(y, u)

= vad − hr(x, ĥ−1
r (y, v)) + vl − vad

= −hr(x, ĥ−1
r (y, v)) + hr(x, ĥ−1

r (y, v∗))

(15)

Applying the mean value theorem [8], [9] to (15),

vad − ∆ = hv̄(v∗ − v)

= hv̄[ĥr(y, h−1
r (x, vl)) − vl + vad]

= hv̄[vad − ∆̄(x, vl)]

(16)

where∆̄ = vl − ĥr(y, h−1
r (x, vl)) and

hv̄ ,
∂hr

∂u

∂u

∂v

∣
∣
∣
∣
v=v̄

, v̄ = θv + (1 − θ)v∗, and 0 6 θ(v) 6 1

Assumptions II.3 and II.4 indicate thathv̄ = ∂hr

∂u
/ ∂ĥr

∂u
|v=v̄ is

either strictly positive or strictly negative.

Assumption II.6 hv̄ and d
dt

(
1

hv̄

)

are continuous functions inD.

According to this assumption, we can define

hB , max
x,u∈D

|hv̄|, H , max
x,u∈D

∣
∣
∣
∣

d

dt

(
1

hv̄

)∣
∣
∣
∣

(17)

Now we have the following error dynamics.

Ė = ĀE + b̄hv̄(vad − ∆̄(x, vl)) (18)



Since Ā is Hurwitz, then for anyQ > 0, there exists a unique
P > 0 that solves the Lyapunov equation:̄AT P + PĀ = −Q.

The adaptive term in (18) is designed as

vad = Ŵ T
σ(V̂ T

µ) (19)

where Ŵ and V̂ are the NN weights to be updated online in
accordance with one of the weight adaptation laws presented in
Section IV.

III. NN A PPROXIMATION OF THEINVERSION ERROR

The term “artificial NN” has come to mean any architecture
that has massively parallel interconnections of simple “neural”
processors [13]. Givenx ∈ D ⊂ <n1 , a nonlinearly-parameterized
(three layer) NN has an output given by

yi =

n2∑

j=1

[

wji σj

(
n1∑

k=1

vkjxk + θvj

)]

+ θwi,

i = 1, . . . , n3

(20)

where σj(·) is an activation function defined asσj(zj) =
1

1+e
−ajzj

, vkj are the first-to-second layer interconnection
weights,wji are the second-to-third layer interconnection weights,
and θvj , θwi are bias terms. Such an architecture is known to
be a universal approximator of continuous nonlinearities with
“squashing” activation functions [14], [15], [16]. This implies that
a continuous functiong(x) with x ∈ D ⊂ <n1 can be written as

g(x) = W T
σ(V T

x) + ε(x) (21)

whereD is a compact set andε(x) is the function reconstruction
error (also called “representation error” or “approximation error”).
In general, given a constant real numberε∗ > 0, g(x) is within
ε∗ range of the NN if there exist constant weightsV, W , such
that for all x ∈ D ⊂ <n1 , (21) holds with‖ε‖ < ε∗. The
following theorem extends the results found in [14], [15], [16] to
map the unknown dynamics of anobservableplant from available
input/output history.

Theorem III.1 [17] Given ε∗ > 0 and the compact setD ⊂
Dx × <, there exists a set of bounded weightsV, W and n2

sufficiently large such that a continuous function̄∆(x, vl) can
be approximated by a nonlinearly-parameterized NN

∆̄(x, vl) = W T
σ(V T

µ) + ε(µ, d),

‖W‖F < W ∗, ‖V ‖F < V ∗, ‖ε(µ, d)‖ < ε∗
(22)

using the input vector

µ(t) =
[
1 vl vT

d (t) yT
d (t)

]T ∈ <2N1−r+2, ‖µ‖ 6 µ∗

where

vd(t) =
[
v(t) v(t − d) · · · v(t − (N1 − r − 1)d)

]T

yd(t) =
[
y(t) y(t − d) · · · y(t − (N1 − 1)d)

]T

with N1 > n and d > 0.

Remark III.1 In the case of full relative degree(r = n), the
input to the NN need not include the pseudo control signal since
the states can be reconstructed without the use of control input,
and ∆̄ is not dependent onv. It should be noted that for the
case ofr < n, although there is no need to solve a fixed point
solution for vad to cancel∆̄, there exists a fixed point solution
problem for the NN output sincev is needed to reconstruct the

state x. This problem can be avoided by removing the current
time step pseudo control signal at the expense of increased NN
approximation error bound. A NN approximation bound can be
derived whenµ =

[
1 vl vT

d (t − d) yT
d (t)

]
is used as an

input to the NN [18].

IV. T HE ERROROBSERVERAPPROACH

In the case of full state feedback [19], [4], Lyapunov-like
stability analysis of the error dynamics in (18) results in update
laws for the adaptive control parameters in terms of the error
vectorE. In [5], [6] an adaptive state observer is developed for a
nonlinear plant to provide state estimates needed in the adaptation
laws. However, the stability analysis was limited to second order
systems with position measurements. To relax these assumptions,
we make use of a simple linear observer for the tracking error
dynamics in (18) [2]. This observer provides estimates of the
unavailable error signals for the update laws of the adaptive
parameters that will be presented in (26).

Consider the following full-order linear observer for the tracking
error dynamics in (18):

˙̂
E = ĀÊ + K (z − ẑ)

ẑ = C̄Ê,
(23)

whereK should be chosen in a way to makēA−KC̄ asymptot-
ically stable. The following remarks will be useful in the sequel.

Remark IV.1 One can also design a minimal order estimator that
treats theη component ofz as a noiseless measurement [20].

Remark IV.2 Additional measurements (if available) may also be
used in the inversion control, in the compensator design and in
the observer design [7].

The stability of the closed-loop system should be considered
along with the observer error dynamics. Let

Ã , Ā − KC̄, Ẽ , Ê − E. (24)

Then the observer error dynamics can be written:

˙̃
E = ÃẼ − b̄hv̄

[
vad − ∆̄

]
. (25)

and there exists a positive definite matrix̃P solving the Lyapunov
equation:ÃT P̃ + P̃ Ã = −Q̃ for arbitrary Q̃ > 0.

Introduce the largest convex compact set which is contained
in Dζ such thatBR , {ζ : ‖ζ‖ 6 R} , R > 0 where

ζ =
[

ET Ẽ
T

W̃ T (vecṼ )T

]T

∈ Dζ . We want to ensure
that a Lyapunov function level setΩβ is a positive invariant set
for the errorζ in Dζ by showing that the level setΩβ inside
BR contains a compact setΓ outside which a time derivative of
the Lyapunov function candidate is negative. A Lyapunov function
level setΩα is introduced to ensure thatΩβ is contained inBR,
and a ballBC is introduced to provide thatΩβ containsΓ. Before
we state theorems, we give assumptions that will be used in proofs
of the theorems.

The update law which we use in this section is a modification
of backpropagation. The algorithm was first proposed by Lewis
et.al.[19] in a state feedback setting. In [2], the error observer
was implemented in an output feedback setting to generate the
estimated error vector used as a teaching signal to the NN when
r > 2, and the adaptive law was incorporated withσ-modification.
The drawback ofσ-modification is that when the tracking error



becomes small,˙̂W,
˙̂
V are dominated by theσ-modification term in

(26) andŴ , V̂ are driven towards zero. Therefore, even if the NN
reconstruction error and Taylor series expansion higher order terms
are eliminated, the errors do not converge to zero. This drawback
motivates the use of another variation callede-modification, which
was suggested by Narendra and Annaswamy [21], [22]. The idea
is to multiply theσ-modification term by the norm of the tracking
error so that it tends to zero with the tracking error. The adaptive
law with e-modification is given by

˙̂
W = −ΓW

[

sgn(hv̄)(σ̂ − σ̂′V̂ T
µ)Ê

T
P b̄ + ke‖Ê‖Ŵ

]

˙̂
V = −ΓV

[

sgn(hv̄)µÊ
T
P b̄Ŵ T σ̂′ + ke‖Ê‖V̂

] (26)

whereΓV , ΓW > 0 andke > 0. Note that knowledge of the sign
of control effectiveness is explicit in the adaptive law.

For the boundedness proof we need the Taylor series expansion
of W T σ(V T µ) at W = Ŵ andV = V̂ . Define

W̃ , Ŵ − W, Ṽ , V̂ − V , Z̃ ,

[
W̃ 0

0 Ṽ

]

(27)

For the stability proof we will need the following representation:

vad − ∆ = Ŵ T
σ̂ − W T

(

σ̂ + σ̂′(V T
µ − V̂ T

µ) + O2
)

− ε

= W̃ T
(

σ̂ − σ̂′V̂ T
µ

)

+ Ŵ T σ̂′Ṽ T
µ + w̄

(28)

whereσ = σ(V T µ), σ̂ = σ(V̂ T µ), the disturbance term̄w =
W̃ T σ̂′V T µ − W TO2 − ε andO2 = O(−Ṽ T µ)2 = σ − σ̂ +
σ̂′Ṽ T µ. The following bounds are useful to prove the stability of
the proposed adaptive scheme:

‖W T
σ‖ 6

√
n2 + 1‖W‖, (29)

|ziσ
′
i(zi)| 6 δ = 0.224, (30)

‖W T σ̂′V̂ T
µ‖ 6 δ

√
n2 + 1‖W‖ (31)

The equality in (30) holds whenaizi = 1.543 [23]. Using the
above bounds, a bound for̄w over the compact setDµ can be
expressed:

‖w̄‖ = ‖W T
σ̃ − W T σ̂′V̂ T

µ + Ŵ T σ̂′V T
µ − ε‖

6 2
√

n2 + 1W ∗ + δ
√

n2 + 1W ∗ + ‖Ŵ‖a∗

4
V ∗µ∗ + ε∗

6 γ1‖Z̃‖F + γ2

where γ1 = a∗

4
Z∗µ∗, γ2 = ((2 + δ)

√
n2 + 1 + γ1)W

∗ + ε∗.
vad − ∆ can be shown to be bounded by

‖vad − ∆‖ = ‖Ŵ T
σ̂ − W T

σ − ε‖
6 α1‖Z̃‖ + α2

(32)

whereα1 =
√

n2 + 1 andα2 = 2
√

n2 + 1W ∗ + ε∗

Assumption IV.1 Let R > C
√

λmax(T )
λmin(T )

> C, whereλmax(T )

and λmin(T ) are the maximum and minimum eigenvalues of the
following matrix:

T ,







P 0 0 0

0 P̃ 0 0
0 0 Γ−1

W 0
0 0 0 Γ−1

V







, (33)

which will be used in a Lyapunov function candidate asL =

ζT Tζ, and C , max
(

2
q̄
Υ, Z̃∗

)

, where

κ2 = γ1‖P b̄‖ + α1(‖P̃ b̄‖hB + ‖P b̄‖)
κ3 = 2γ2‖P b̄‖ + 2α2(‖P̃ b̄‖hB + ‖P b̄‖) + keZ

∗2

Z̃∗ =

√

2Z∗2 +
4(n2 + 1)‖P b̄‖2

k2
e

Υ , 2κ2Z̃
∗ + κ3

(34)

Let α be the minimum value of the Lyapunov functionL on the
boundary ofBR and β be the maximum value of the Lyapunov
function L on the boundary ofBC . The following compact sets
are defined as

Ωα = {ζ ∈ BR | L 6 α = R2λmin(T )}
Ωβ = {ζ ∈ BR | L 6 β = C2λmax(T )}

(35)

Theorem IV.1 Let Assumptions II.1, II.2, II.3, II.4, II.5, IV.1
hold. If the initial errors belong to the compact setΩα defined
in (35), then the feedback control law given by (6) and the
adaptation law (26) ensure that the signalsE, Ẽ, W̃ and Ṽ in
the closed-loop system are ultimately bounded with the ultimate

boundC
√

λmax(T )
λmin(T )

.

Proof: Boundedness of all the error signals is shown in
two steps. First, boundedness of weight error signals is shown
employing a Lyapunov analysis, and then this result is used to
show boundedness of the tracking and observer error signals.

Consider the following candidate Lyapunov function for the
weight error signals

Lw =
1

2
W̃ T Γ−1

W W̃ +
1

2
tr(Ṽ T Γ−1

V Ṽ )

The time derivative ofLw is

L̇w = − W̃ T
[

sgn(hv̄)(σ̂ − σ̂′V̂ T
µ)Ê

T
P b̄ + ke‖Ê‖Ŵ

]

− tr{Ṽ T
[

sgn(hv̄)µÊ
T
P b̄Ŵ T σ̂′ + ke‖Ê‖V̂

]

}

= − sgn(hv̄)W̃ T
σ̂Ê

T
P b̄ − ke‖Ê‖{W̃ T Ŵ + tr(Ṽ T V̂ )}

Using −2tr(Z̃T Ẑ) 6 −‖Z̃‖2 + Z∗2

and
√

n2 + 1‖W̃‖‖P b̄‖ 6
ke

4
‖W̃‖2 + (n2+1)‖P b̄‖2

ke

L̇w 6
√

n2 + 1‖W̃‖‖Ê‖‖P b̄‖ − ke

2
‖Ê‖(‖Z̃‖2 − Z∗2

)

6 −‖Ê‖
{

ke

4
‖Z̃‖2 − ke

2
Z∗2

− (n2 + 1)‖P b̄‖2

ke

}

< 0 if ‖Z̃‖ >

√

2Z∗2 +
4(n2 + 1)‖P b̄‖2

k2
e

HenceZ̃ is bounded and its bound is denoted as‖Z̃‖ 6 Z̃∗

Consider the following Lyapunov function candidate for the
entire error system

L =

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
E

T PE + Ẽ
T
P̃ Ẽ + 2Lw



The time derivative ofL is

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
E

T PE

+

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣

(

−E
T QE + 2E

T P b̄hv̄(vad − ∆̄)
)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ b̄hv̄(vad − ∆̄)

+ 2W̃ T Γ−1
W

˙̃W + 2tr(Ṽ T Γ−1
V

˙̃V )

Applying the adaptive law (26) and the representation (28),

L̇ =
d

dt

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣
E

T PE +

∣
∣
∣
∣

1

hv̄

∣
∣
∣
∣

(

−E
T QE + 2Ê

T
P b̄hv̄w̄

)

− Ẽ
T
Q̃Ẽ − 2Ẽ

T
P̃ b̄hv̄(vad − ∆̄)

− 2sgn(hv̄)Ẽ
T
P b̄(vad − ∆̄)

− 2ke‖Ê‖(W̃ T Ŵ + tr(Ṽ T V̂ ))

Utilizing Assumption II.6,

L̇ 6 Hλmax(P )‖E‖2 − 1

hB
λmin(Q)‖E‖2

+ 2‖Ê‖‖P b̄‖(γ1‖Z̃‖ + γ2) − λmin(Q̃)‖Ẽ‖2

+ 2‖Ẽ‖(hB‖P̃ b̄‖ + ‖P b̄‖)(α1‖Z̃‖ + α2)

− 2ke‖Ê‖tr(Z̃T Ẑ)

Using q̄ , min[λmin(Q)

hB −Hλmax(P ), λmin(Q̃)], −2tr(Z̃T Ẑ) 6

−‖Z̃‖2 + Z∗2

6 Z∗2

, and‖Z̃‖ 6 Z̃∗.

L̇ 6 − q̄

2
(‖E‖ + ‖Ẽ‖)2 + 2κ2(‖E‖ + ‖Ẽ‖)Z̃∗

+ κ3(‖E‖ + ‖Ẽ‖)

whereκ2 = γ1‖P b̄‖+ α1(‖P̃ b̄‖hB + ‖P b̄‖), κ3 = 2γ2‖P b̄‖+

2α2(‖P̃ b̄‖hB + ‖P b̄‖) + keZ
∗2

. Combining terms to obtain

L̇ 6 − (‖E‖ + ‖Ẽ‖)
[ q̄

2
(‖E‖ + ‖Ẽ‖) − 2κ2Z̃

∗ − κ3

]

The following condition renderṡL < 0.

‖E‖ + ‖Ẽ‖ >
2

q̄
Υ

whereΥ = 2κ2Z̃
∗ +κ3. Thereforeζ remains inΩβ after a finite

time period.

V. NUMERICAL EXAMPLE

The efficacy of the adaptive output feedback controllers devel-
oped in Section IV is demonstrated using a modified Van der
Pol oscillator model treated in [1] with an additional constant
disturbance term iṅx2 equation.

ẋ1 = x2

ẋ2 = −2(x2
1 − 1)x2 − x1 + u + 1

ẋ3 = x4

ẋ4 = −x3 − 0.2x4 + x1

y = x1 + x3

(36)

The initial condition for the plant isx1(0) = 0.5, x2(0) =
2.5, x3(0) = 0, x4(0) = 0. The output has relative degreer = 2.
We assume that we have an approximate model as

ˆ̈y = u (37)

A second order reference model is selected with a natural
frequency of 1 rad/sec and damping ratio of 0.707. The linear
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Fig. 1. Output response with a linear compensator
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Fig. 2. Tracking performance with error observer approach

controller is designed such that the closed-loop poles of the
approximate model in (37) are placed at−3,−2 ± 2i.

vdc =
20(s + 1.2)

s + 7
ỹ (38)

The approximate inversion law becomes

u = v = ÿrm + vdc − vad (39)

Then the error dynamics becomes,

ỹ = G(s)(vad − ∆),

G(s) =
s + 7

s3 + 7s2 + 20s + 24

(40)

where ∆ = −2(x2
1 − 1)x2 − x1 + 1. The output response

without NN augmentation in Fig. 1 exhibits a limit-cycle-like
oscillation due to unmodeled dynamics. The eigenvalues ofÃ in
(24) have been placed to be four times faster than those ofĀ
in (18). Five hidden neurons were implemented in the NN design
with activation potentials chosen to be

[
1 0.8 0.6 0.4 0.2

]
.

Simulation results for the application used two different NN
weight update laws. One is withe-modification in (26), and the
other is with σ-modification in [2]. Thee-modification gainke

and the σ-modification gainkσ in the NN update laws were
selected to be 0.01 and 0.4, respectively. The adaptation gains
have been set toΓW = 3I, ΓV = 4I for e-modification and
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Fig. 3. Weight histories and∆ vs. vad with e-modification
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Fig. 4. Weight histories and∆ vs. vad with σ-modification

ΓW = 10I, ΓV = 50I for σ-modification, respectively. Fig. 2
shows the tracking performance of the error observer approach
with e-modification andσ-modification. With NN augmentation,
the oscillation is removed after about a seven second adaptation
period. Although adaptation withe-modification takes longer to
adapt, its steady state tracking error is smaller than that of theσ-
modification. Figs. 3 and 4 show the NN weight histories and the
NN output (vad) with the inversion error (∆) usinge-modification
and σ-modification, respectively. NN weight histories in Fig. 3
show that NN weights approach nearly constant values that are
non-zero, in contrast to the NN weight histories in Fig. 4 that
tend to return to zero.

VI. CONCLUSION

This paper presents extensions for adaptive output feedback
control of nonlinear systems. The error observer approach is
extended so thate-modification can be used in the adaptive
law. The mean value theorem is used throughout to avoid the
assumption of a fixed point solution, and to make explicit the role
of the sign of control effectiveness in the boundedness analysis
and in the adaptive law.
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