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Abstract—This paper presents an autotuning method for
industrial PID controllers in the 1-d.o.f. ISA form. The major
feature of the method is that the model structure employed for
the process is selected on-line based on a step response record,
by means of a multilayer perceptron neural network. Thanks
to the exclusive use of normalized I/O data, the network can be
trained off-line with simulated data, therefore simplifying the
method’s implementation. Once the model structure is selected
and its parameters are identified, the IMC approach is used
for synthesizing a regulator that is then approximated with
a PID. Simulation and experimental results are reported to
show the effectiveness of the proposed tuning method and its
advantages with respect to IMC-based PID tuning with the
model structure fixed a priori.

I. INTRODUCTION AND PROBLEM STATEMENT

Though model-based PID (auto)tuning can be regarded
as quite a mature research domain [14], [15], several new
issues have been addressed in the last years [1], [7],
renewing the interest in the field also from the application
point of view [8].
Model-based tuning techniques may be broadly classified

in two categories. In the first one the regulator structure is
fixed, and that of the model is specified a priori, based
mainly on the type of regulator to be tuned [5]. This may
appear a peculiar choice, because it is apparent that the
model structure should depend more on what the process
dynamics looks like than on the regulator. It is however
necessary, because given a regulator type only a few model
structures allow the derivation of simple and reliable tuning
rules (an interesting work aimed at overcoming this problem
is [7]). Typically, very low-order models are used, and their
effective identification for control synthesis purposes is an
issue deserving much research effort [2]. Note, incidentally,
that such techniques are not difficult to automate. In the
second category, the model structure is chosen so as to
capture the process dynamics as precisely as possible. As
a consequence, the structure of the regulator cannot be
specified a priori. Tuning methods of this category are
extremely powerful, but difficult to automate.
Despite the research interest on it, model-based PID

tuning is still less widespread in applications than it could.
This is witnessed by the fact that also recent professional
papers on ‘tuning guidelines’ stick mostly to the Ziegler-
Nichols method, or some of its derivates (see e.g. [4]).
The loss of achievable performance produced by neglecting
the possibilities of modern techniques, and specifically of

A. Leva and L. Piroddi are with Dipartimento di Elettronica e Infor-
mazione, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
{leva,piroddi}@elet.polimi.it

model-based ones, is now recognized also by plant audit
campaigns (see e.g. [3]).
A full discussion on the reasons why model-based tech-

niques are difficult would extend beyond the scope of this
paper (see e.g. [8]). A major problem, however, is surely
that, to really exploit their possibilities, the structure of
the process model employed must not be fixed, but rather
chosen on-line based on the observed process dynamics.
In other words, the above considerations suggest that a
very promising way of improving industrial autotuners is
to couple model-based synthesis methods with automatic
model structure selection capabilities. Proposing one such
method is the purpose of this paper.

II. THE PROPOSED METHOD

Based on the preliminary results of [11], [12], where a
neural technique for structural identification is proposed,
and of [8], where some implementation-related issues of
model-based PID tuning are discussed, this paper proposes
a PID tuning method with the following characteristics:

• A neural technique is used to select the structure of the
process model from measured I/O data. The data are
normalized prior to the neural structure identification,
to allow off-line training of the network. Off-line
training is extremely important for the implementation
of the proposed tuning method, as it significantly
reduces the overall computational burden. Moreover,
the possibility of training the network off-line avoids
the necessity of many process data. It is worth noting
that the difficulty of obtaining large amounts of process
information is a major obstacle for the application of
neural techniques in the autotuning domain.

• The parameterization of the model is subsequent to the
structure selection and can be realized with standard
identification algorithms. This is a peculiarity of the
proposed approach. Thanks to the improved adherence
of that structure to the measured data, the parameter
identification algorithm is less critical than it turns
out to be if the structure is chosen a priori. Note,
by the way, that with the presented approach only the
selected structure needs parameterizing, while standard
structure selection methods (e.g. those that compare
prediction errors) require all the candidate structures
to be parameterized.
More precisely, in the proposed approach, structural
information is used in two ways. First, when param-
eterizing the model, the number of poles and zeros
selected by the structural identification is used to avoid



under- or over-parameterization. In so doing, it can be
reasonably expected that any parameter identification
algorithm will evidence the detailed characteristics
(e.g., oscillations) of the process dynamics, and will
produce a smaller model error than if the structure
were fixed. Then, in the regulator tuning, more detailed
information, such as the presence of over- or under-
damped dynamics, can be used to select a specialized
tuning method [12]. In this work, however, a different
approach is adopted for the tuning, as explained below.

• A unitary approach is used for tuning the regulator,
so as to cast the tuning problem in a consistent and
well established framework. The IMC method is firstly
applied, then the obtained regulator is approximated
with a PID. This is not standard practice, as it is more
frequent that the model is reduced prior to the tuning.
The proposed approach appears to be very promising,
however, because the information loss is postponed as
much as possible. Studies are underway to formalize
this concept, and the results will be presented in future
works. It is worth recalling that a small model error
is highly beneficial both for the quality of the tuning
obtained with the IMC and for the interpretability of
its design parameter.

A. Determining the model structure and identifying param-
eters

Any control practitioner would classify typical step re-
sponses more or less as depicted in figure 1. For space
limitations, in this paper we concentrate on asymptotically
stable processes.

Fig. 1. Classification of open-loop step responses.

Such a classification is substantially based on the recogni-
tion of a set of features of the step response. This suggests
that the task may be automated as a pattern recognition

problem. The effectiveness of such an approach is witnessed
by several works, see e.g. [6]. In [11], [12], a method is
devised for this purpose based on a multilayer perceptron
neural network used as a classifier. First, the unit step
response of the process is recorded, then filtered with the
first-order discrete lowpass transfer function 0.5/(z − 0.5)
and normalized both in time, so that the record be of 64
samples, and in amplitude, so that the steady-state value
reached by the response be the unity. The filtering and
normalization process is illustrated in figure 2.

Fig. 2. Step response filtering and normalization for the neural model
structure selection.

The neural network is fed with a the filtered and nor-
malized response, and first recognizes the presence or
absence of some relevant features. As discussed in [12],
a sufficiently informative set of features (for asymptotically
stable processes) is

• first-order behaviour (nonzero initial derivative);
• apparent delay;
• presence of an overshoot;
• presence of an undershoot;
• oscillatory behaviour.
Based on these features and on the normalized data,

the network selects the most appropriate process model
structure within the following set:

M1(s) = µ
1+sT , M2(s) = e−sLM1(s),

M3(s) = µ
(1+sT1)(1+sT2) , M4(s) = e−sLM3(s),

M5(s) = µ(1+sTz)
(1+sT1)(1+sT2) , M6(s) = e−sLM5(s),

M7(s) = µ(1−sTz)
(1+sT1)(1+sT2) , M8(s) = e−sLM7(s),

M9(s) = µ

1+2 ξ
ωn

s+ s2
ω2

n

, M10(s) = e−sLM9(s).

(1)

The final classification is not based on the extracted
features only, but also on the data. This is necessary, since
there are some important facts that are difficult to translate
into response features, or that - if translated into features
- may not appear with enough evidence to be recognized
with certainty. A typical example is when an overdamped



step response presents a slope change, typically caused by
a zero whose time constant is intermediate with respect to
those of the poles. If the process order is high enough,
the selected model will not be first-order and, since there
is no overshoot, most likely a model without zeros will
be selected. In such a situation, virtually any parameter
identification method will overestimate the dominant time
constant, leading to a more or less sluggish tuning. This is
illustrated in the experiment of section IV.
The technique proposed in [12] has two important advan-

tages, that make it very suited for the purpose of the research
presented herein. First, the generalization capabilities of
the neural network have proven to select a good structural
approximation also for processes not belonging to the set
(1). Second, and maybe most important, since the network
only employs normalized data, it can be trained off-line
with responses generated in simulation from a suitable set
of systems belonging to the considered classes.
The network training is made in two steps, using many

random models of classes (1). First a subnetwork devoted
to recognizing the features above is trained, having the
presence or absence of each feature as the training signal.
After training this subnetwork, its weights are fixed, and
the compound network is trained having the correct class
as the training signal. More details on the network structure
and training are in [12].
Once the model structure is selected, plenty of methods

are available for selecting its parameters. Discussing this
phase in detail is not relevant in this paper. It suffices here
to say that, provided the selected model structure ‘fits the
data’, the choice of the identification method is far less
critical than it would be if the structure were chosen a
priori. In this work, identification is done by simple LS
ISE minimization, considering the model’s simulation (not
prediction) error. Notice that selecting the model structure a
priori allows to parameterize only the chosen structure, and
not all the candidate structures. This eases the identification
from the step response, and provides better tuning results.
If, on the other hand, all the candidate model structures

were identified and an a posteriori choice were made
based on classical prediction performance, overparameter-
ized models would typically be selected, which do not
necessarily guarantee optimal simulation performance. In
particular, especially in noisy cases or in the presence of
spurious phenomena during identification, such models are
not guaranteed to capture the control relevant dynamics, and
therefore are not particularly suited for structure specific
tuning rules, nor for tuning approaches where the model is
contained in the regulator explicitly, as is the case with the
IMC.

B. Tuning the regulator

The IMC scheme, first proposed in [14], has found a
number of successful applications. Its rationale is shown in
the block diagram of figure 3. Here P (s) is the transfer
function of the process, M(s) is the model of the process

obtained from I/O data, Q(s) and F (s) are two asymptoti-
cally stable transfer functions, y◦, d, and n are the set point,
a load disturbance and a measurement noise, y and ŷ are the
true and nominal controlled variables. The feedback signal
is y − ŷ, which motivates the method’s name in that the
regulator (the gray blocks in figure 3) contains a model of
the process explicitly.

Fig. 3. The IMC control scheme.

If M(s) = P (s), d = n = 0, and it is possible to
choose Q(s) as the exact inverse of M(s), i.e. of P (s), then
the transfer function from set point to controlled variable
equals F (s), and can thus be chosen arbitrarily. Moreover,
suppose that d �= 0 while still M(s) = P (s), n = 0
and Q(s) = M−1(s). In this case, if F (s) = 1 the
disturbance d is rejected completely; otherwise, it is rejected
asymptotically provided that F (0) = 1. Therefore, the IMC
approach shows that for stable and exactly known processes
feedback is necessary only because of disturbances, while
for stable and only partially known processes known it is
also necessary due to the model error. The IMC regulator
of figure 3 is equivalent to a feedback regulator R(s) given
by

R(s) =
F (s)Q(s)

1 − F (s)Q(s)M(s)
(2)

and, under the hypothesis P (s) = M(s), the control system
is internally asymptotically stable iff M(s), Q(s) and
F (s) are asymptotically stable. Hence, the IMC provides
a parametrization of all the regulators which stabilize a
control system containing a (known) asymptotically stable
process.
Apparently, the IMC method has one big advantage: by

itself, it is in no sense connected to a specific regulator type.
In fact, not only can the scheme of figure 3 be used whatever
the model M(s) is, but if this is done, the most important
part of the regulator is provided by the model directly. If
the model is structurally good, the task of finding suitable
Q(s) and F (s) is not difficult nor critical, if the guidelines
devised in the following are adopted.

1) First, for the purpose of PID tuning, replace the possi-
ble delay of M(s) with its (1,1) Padé approximation
(1 − sL/2)/(1 + sL/2), which provides a rational
process model MR(s). This is standard practice in
IMC-based tuning [14], and can be safely done pro-
vided that the requested control system’s bandwidth
is not excessively wide—a precaution taken implicitly
in the following steps.



2) Then, figure out the upper limit ωM of the band where
the model represents the process ‘precisely enough’
from the regulator synthesis standpoint. If the model
structure fits experimental data, as in our context, a
first-cut (yet reasonable and quite conservative) value
for ωM is four times the maximum frequency of all
the poles and zeros of MR(s) if MR(s) is minimum-
phase, or half the lowest frequency of the RHP zeros
of MR(s) in the opposite case.

3) Once ωM is determined, compute the inverse of the
minimum-phase part of MR(s). If it is not proper,
augment it with poles located above (say at twice)
ωM . The number of these poles is chosen so that the
result, i.e. Q(s), be of relative degree -1.

4) Carrying on, set F (s) to a first-order filter with
a cutoff frequency below (say at 1/5 of) ωM . In
so doing, the relative degree of Q(s)F (s) is zero,
which is suitable for the subsequent approximation
of the regulator with a real PID. Observe that, as the
regulator must have integral action, it is required - see
(2) - that Q(0)F (0)M(0) = 1, so choose the gain
of F (s) accordingly (normally one is correct since
there is no reason for Q(0) not being the reciprocal
of M(0)). This leads to the ‘full’ IMC regulator
RIMC(s) in the form (2), that in the general case
is not a PID.

5) The (nominal) phase margin of the open loop trans-
fer function RIMC(s)M(s) (not RIMC(s)MR(s),
notice) must now be checked, to see if the design
is reasonably stable and robust (45 degrees is a
suitable threshold value). It is also to be checked that
the control system’s (nominal) cutoff frequency ω̂ c,
estimated with M(s), is below ωM . In the opposite
case, the cutoff frequency of F (s) has to be reduced
and RIMC(s) to be recomputed.

6) The next step is to approximateRIMC(s) with a PID.
In this work, we adopt the 1-d.o.f. ISA form of the
PID control law, i.e.,

RPID(s) = K

(
1 + 2

1
sTi

+
sTd

1 + sTD/N

)
. (3)

This approximation is briefly discussed below.
7) Finally, the phase margin of the open loop transfer

function RPID(s)M(s) is checked. If it is too low,
the IMC regulator (and then the PID) are recom-
puted decreasing the cutoff frequency of F (s), as the
performance achieved with the ‘full’ IMC cannot be
preserved with the PID approximation.

The key point of the proposed procedure is that, in all
the cases (i.e., model classes) considered, RIMC(s) can be
approximated with a PID well enough. For this approx-
imation, an ad hoc numeric procedure is employed. The
rationale is to preserve the low- and high-frequency aspect
of the regulator’s frequency response, and to preserve the
mid-frequency phase lead (when required) while keeping
the regulator zeros’ damping over a given value (typically

0.6) when they turn out to be complex. To convince the
reader that this task is neither difficult nor critical, figure 4
reports the Bode diagrams of the ‘full’ IMC regulators in
all the cases that may arise with the set of model classes
adopted. Numeric details are omitted here for brevity. Note
that, though the structure of RIMC(s) depends on that of
M(s), and though the frequency distribution of the model
error is correspondingly heterogeneous [13], all the possible
shapes of its Bode diagrams are compatible with the PID
structure.

III. A SIMULATION EXAMPLE

In this example, the process is described by the transfer
function

P (s) =
1

(1 + 2s)
(
1 + 2 0.25

0.5 s + 1
0.25s2

) , (4)

that does not belong to any of the model classes M1 −
M10. The apparent oscillatory behavior of its step response
causes the selection of a model of class M9, which is then
parameterized as

M9(s) =
1

1 + 2s + 4.94s2
. (5)

The proposed method is then employed taking

Q(s)F (s) =
1 + 2s + 4.94s2

(1 + 0.5s)(1 + 5s)
, (6)

and leading, by means of the proposed PID approximation,
to the regulator

R(s) = 0.2
1 + 2.7s + 4.9s2

s(1 + 0.8s)
. (7)

where the zeros’ damping is limited to 0.6. A model of class
M2 can also be identified, to compare the proposed method
with standard IMC-PID tuning based on First-Order Plus
Dead Time (FOPDT) models. Since LS ISE minimization
is inadequate with such a low damping, a modified version
of the method of areas is employed, and the parameterized
model turns out to be

M2(s) =
e−0.2s

1 + 5.5s
. (8)

In figure 5, the ‘full’ IMC regulator is compared with the
IMC-PID obtained from model (8) with λ = 1.5(L + T )
and λ = 3(L+T ). Recall that in the IMC-PID method [14]
λ is interpreted as the desired dominant closed-loop time
constant. Figure 5, left column, reports the identification
results with a FOPDT model and with the Second-Order
(SO) model selected by the neural network; figure 5, right
column, shows the performances of the proposed method
and those of the FOPDT-based IMC-PID; both are evaluated
with the (nominal) model and with the real process.
Note how, in the IMC-PID method, the model mismatch

makes the choice of λ critical. In fact, there is a quantifiable
relationship between the model error magnitude and the
minimum value of λ that stabilizes the real system with



Fig. 4. Qualitative Bode diagrams (top: magnitude; bottom: phase) of the IMC regulators.

a PID tuned on the (nominal) model; this is investigated
in detail in [10]. It is also important to observe that the
model mismatch adversely affects the a priori evaluation
of the control behaviour in the IMC-PID case, while with
the IMC regulator (that uses a structurally correct model)
the tuning results can be evaluated more consistently.

Fig. 5. Identification and tuning results (proposed method versus FOPDT-
based IMC-PID).

To back up the statement that the ‘full’ IMC regulator
can be approximated with a PID effectively in all the
model classes considered, and more in general whenever
the process (and model) structure is suited enough for a
PID, figure 6 reports the results obtained with the regulator
(7).

IV. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed method, we
now present an experimental application in a case where
model structure selection is relevant. The experimental setup
is a temperature control system [9], in which a metal plate
is connected to two electric heaters. One heater is the

Fig. 6. IMC regulator and PID approximation.

control actuator, the other provides a load disturbance. The
controlled variable is the plate temperature. Figure 7(a)
shows an open-loop step experiment and two identified
models: one is of the class selected by the method (M6),
the other has a FOPDT structure (i.e., it is of class M2).
The parameterized models are

M6(s) =
2.12(1 + 85s)e−1.8s

(1 + 165s)(1 + 35s)
, (9)

M2(s) =
2.12e−2.5s

1 + 125s
. (10)

Figure 7(b) shows the tuning results of the proposed
method. Taking

Q(s)F (s) =
(1 + 165s)(1 + 35s)

2.12(1 + 85s)(1 + 0.9s)
(11)

leads to the approximating PID regulator

R1(s) = 85
(

1 +
1

35s
+

0.6s

1 + 0.3s

)
. (12)

In figure 7(c) this PID is compared to one tuned with
the IMC-PID rules [14], requesting a closed-loop dominant



time constant (‘λ’ in [14]) of 10s, i.e.,

R2(s) = 100
(

1 +
1

126s
+

s

1 + 1.2s

)
. (13)

Fig. 7. Open-loop experiment and tuning.

Finally, figure 8 reports the experimental closed-loop
transients obtained with the proposed method (R1) and the
IMC-PID rules with the FOPDT model (R2). Note that the
FOPDT model has a small delay and a large time constant.
With the IMC approach, this means that the integral time
equals that time constant. In the case at hand, this causes
an apparent lack of integral action on the part of R 2,
and the fact is structural, since no sensible identification
algorithm for FOPDT models, starting from the measured
step response of figure 7(a), would ever produce a time
constant less than 100s or so. Conversely, the structure-
conscious tuning of R1 overcomes the problem. The integral
time is one third of that of R1, and the transients of figure
8 are self-explanatory.

Fig. 8. Closed-loop experimental results.

V. CONCLUDING REMARKS

An autotuning method for industrial PID controllers
in the 1-d.o.f. ISA form has been presented. The model

structure employed for the process is selected on-line based
on a step response record, which enhances the proposed
method’s flexibility. The structural recognition task is per-
formed by a multilayer perceptron neural network, which
operates on-line based on a suitably normalized record of
the process step response. It is worth stressing that the
network can be trained off-line. The training of the neural
network is made with an ad hoc procedure, organized
in two steps. First some relevant features of the process
step response (e.g., a delay or an overshoot) are detected;
then, these features and the step response data are used to
classify the process with respect to a predefined set of model
structures. Once the model structure is selected and the
model parameters are identified, the IMC approach is used
for synthesizing a regulator that is then approximated with
a PID. The structural coherence between process and model
makes the parameter identification method less critical an
issue with respect to standard model-based autotuning. Both
simulation and experimental results have been reported,
showing the proposed method’s advantages with respect to
IMC-based PID autotuners that select the model structure
a priori.
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