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Abstract— This work addresses an approach for fault diag-
nosis of industrial processes using hybrid models. A non–linear
dynamic process can, in fact, be described as a composition
of different affine submodels selected according to the process
operating conditions. This paper concerns the identification of
the hybrid model parameters through the input–output data
acquired from the non–linear process. Therefore, the fault
detection scheme adopted to generate residual signals exploits
this estimated hybrid model. In order to show the effectiveness
of the developed technique, the results obtained in the fault
diagnosis of a real industrial plant are finally reported.

I. INTRODUCTION

There is an increasing interest in the development of
model-based fault detection and fault diagnosis methods,
as can be seen in the many papers submitted to the IFAC
(International Federation of Automatic Control) Congress
and IFAC Symposium SAFEPROCESS [1], [2], [3]. The
majority of real industrial processes are non–linear [4],
[5] and cannot be modelled by using a single model for
all operating conditions. Since a mathematical model is a
description of system behaviour, accurate modelling for a
complex non–linear system is very difficult to achieve in
practice. Sometime for some non–linear systems, it can be
impossible to describe them by analytical equations. Instead
of exploiting complicated non–linear models obtained by
modelling techniques, it is also possible to approximate the
plant by a collection of local affine models obtained by
identification procedures [6].

Residual are signals representing inconsistencies between
the model and the actual system being monitored. Any
inconsistency will indicate a fault in the system. Residual
must, therefore, be different from zero when a fault occurs
and zero otherwise. However, the deviation between the
model and the plant is influenced not only by the presence
of the fault but also the modelling error. Several techniques
had been proposed for Fault Detection and Isolation (FDI)
in dynamic systems using either unknown input observers,
parity relations, sliding mode observers, gain–parametrised
observers [3], [9].

In particular, in this work, hybrid model [8], [6] iden-
tification is combined with the model–based method to
formulate a diagnosis technique using the estimated model
itself for residual generation. Hybrid models can, in fact, be
exploited to describe the behaviour of non–linear dynamic
systems since these prototypes are described by a compo-
sition of affine models. Each submodel approximates the
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sità di Ferrara. Via Saragat, 1. 44100 Ferrara (FE) - ITALY. ssi-
mani@ing.unife.it

system locally around an operating point and a selection
procedure determines which particular submodel has to be
used. Such a multiple–model structure is called multiple–
model approach. Under such an identification and diagnosis
scheme, a number of local affine models are designed and
the estimate of outputs is given by a composition of local
outputs. The diagnostic signal (residual) is the difference
between the estimated and actual system output [3], [9]. In
this paper, the different operating points can be selected by
means of clustering method [9]. On the basis of knowledge
of the operating point regions, the identification of the
structure and the parameters of each local model composing
the hybrid system can be performed [10], [11], [9].

The remainder of this paper is organised as follows.
Section II presents the structure of the hybrid model,
while Section III illustrates how to integrate the Frisch
scheme [12] method for the identification of linear systems
within a general procedure for hybrid model identification.
Section IV shows the design of the diagnostic scheme for
FDI of dynamic systems. The application of such a fault
detection and identification approach to a real industrial
plant is described in Section V. The example demonstrates
the effectiveness of the technique proposed. Finally, some
concluding remarks are included in Section VI.

II. HYBRID PROTOTYPE MODELLING

The main idea underlying the mathematical description of
non–linear dynamic systems is based on the interpretation
of single input–single output, non–linear, time–invariant
regression models in the form: [9], [6] such as:

y(t+n) = F
(
y(t+n−1), · · · , y(t), u(t+n−1), · · · , u(t)

)
(1)

where u(·) and y(·) belong respectively to the bounded
input U and output Y sets, n is the finite system memory
(i.e. the model order) and F (·) is a continuous non–linear
function defining a hypersurface from a An to Y , being An

the Cartesian product Un × Yn. The identification of the
non–linear system can be translated to the approximation
of its mathematical model in the form of Eq. (1) using a
parametric structure that exhibits arbitrary accuracy inter-
polation properties.

A hybrid prototype defined through the composition of
simple models having local validity is the natural candidate
to perform this task, as it combines function interpolation
properties with mathematical tractability. In the following
the proposed hybrid structure is defined and its properties in
terms of interpolation characteristics of arbitrary non–linear



functions are recalled [6]. The hybrid prototype is formed
by a collection of parametric submodels described by the
model:

y(t + n) =
n−1∑
j=0

α
(i)
j y(t + j) +

n−1∑
j=0

β
(i)
j u(t + j) + b(i) (2)

in which the system operating point is described by the
input and output samples y(t + n − 1), · · · , y(t) and
u(t + n− 1), · · · , u(t), that can be collected with a vector
xn(t) = [y(t), · · · , y(t + n− 1), u(t), · · · , u(t + n− 1)]T .
The switching function χi

(
xn(t)

)
, i = 1, . . . ,M is:

χi

(
xn(t)

)
=

{
χi

(
xn(t)

)
= 1 if xn(t) ∈ A(i)

n

χi

(
xn(t)

)
= 0 otherwise

(3)

where {A(1)
n , . . . ,A(M)

n } is a partition of An, whose struc-
ture will be characterised in the following.

Thus output y(t+n) of the non–linear dynamic system of
Eq. (1) can be approximated by the hybrid piecewise affine
model f(·) in the form:

y(t + n) = f
(
xn(t)

)
=

M∑
i=1

χi

(
xn(t)

)
[xn(t), 1]T a(i)

n (4)

where the model parameters are collected in the vector
a(i)

n = [α(i)
0 , . . . , α

(i)
n−1, β

(i)
0 , . . . , β

(i)
n−1, b

(i)]T . It is worth
noting that the model is affine in each A(i)

n , a(i)
n being the

affine submodel parameters.
Since the model of Eq. (1) is assumed to be continuous,

f(·) is forced to be continuous over the whole An. In such
a case the parameter vectors are constrained to satisfy the
following relation:

lim
xn(t)→x̄n

xn(t)∈A(i′)
n

f
(
xn(t)

)
= lim

xn(t)→x̄n

xn(t)∈A(i′′)
n

f
(
xn(t)

)
(5)

x̄n being an accumulation point for both A(i′)
n and A(i′′)

n ,
i.e. if

x̄n(t)T a(i′)
n = x̄n(t)T a(i′′)

n . (6)

The straightforward application of Eq. (6) to all the ac-
cumulation points common to neighbouring regions leads
to an infinite number of constraints. Yet, in [6] it is shown
that the adoption of regions with straight borders guarantees
that only a finite number of them is linearly independent.
In fact, if regions whose boundaries are convex polyhedra
are considered, continuity can be ensured simply by setting
the value of the local models only on the vertices of the
boundaries. In particular, it is undoubtedly convenient to
“triangulate” the domain An, i.e. to partition it into 2n–
dimensional simplexes. Moreover, we will assume that the
triangulation is such that two simplexes are either disjoint,
or have in common a whole k–dimensional boundary, with
k = 0, 1, . . . , 2n − 1. In this way, the local affine model
of Eq. (4) can be forced to assume given values at most
in 2n + 1 vertices of each simplex, which are affinely
independent points.

Under these assumptions, the continuity constraints (one
for each simplex vertex) can be collected in a finite matrix
Cn such that:

CnAn = 0, (7)

with

An =
[

a(1)
n . . . a(M)

n

]T

.

III. DYNAMIC SYSTEM IDENTIFICATION

It is assumed that the input–output data u(t) and y(t),
(t = 0, 1, , . . . , Li) generated by a system of the type (2)
are available.

Restricting our investigation to find order n and param-
eters a(i)

n for local model (2) in region A(i)
n , the following

matrix should be defined:

X
(i)
k =




y(k) xT
k (0) 1

y(k + 1) xT
k (1) 1

...
...

y(k + Ni − 1) xT
k (Ni − 1) 1


 (8)

Σ(i)
k =

(
X

(i)
k

)T

X
(i)
k (9)

with k +Ni − 1 ≤ Li and Ni is chosen so that k +Ni − 1
is large enough to avoid unwanted linear dependence rela-
tionships due to limitations in the dimension of the vector
spaces involved.

To determine the model order n in region A(i)
n , it is

possible to consider the sequence of increasing–dimension
positive definite or positive semidefinite

(
(2k+2)×(2k+2)

)
matrices:

Σ(i)
2 , Σ(i)

3 , . . . Σ(i)
k , . . . (10)

testing their singularity as k increases. As soon as a
semidefinite positive matrix Σ(i)

k is found then n = k, and
the parameters a(i)

n describe the dependence relationship of
the first vector of Σ(i)

n on the remaining ones as:

Σ(i)
n [−1 , a(i)

n

T
]T = 0 (11)

It is worth noting that the vectors
xn(0),xn(1), . . . ,xn(Ni − 1) in (8) must belong to
the region A(i)

n according to the partition defined in (3).
Note also that in the presence of noise and disturbance

the above procedure described to determine order and model
parameters would obviously be useless since matrices Σk

would always be non–singular (positive definite).
In order to solve the problem in a mathematical frame-

work, it is necessary to characterise the noise and distur-
bance affecting the input-output data. Following common
assumptions [12], [10], [11], the noise signals ũ(t) and ỹ(t)
are assumed additive on input-output data u∗(t) and y∗(t)
and region independent, so that:{

u(t) = u∗(t) + ũ(t)
y(t) = y∗(t) + ỹ(t). (12)

Obviously, only u(t) and y(t) are available for the iden-
tification procedure, and moreover every noise term ũ(t)



and ỹ(t) is modelled with a zero–mean white process and
is supposed to be independent of every other term. These
structures are also commonly known as Error-In-Variables
(EIV) models.

Under these assumptions, and ¯̃σu and ¯̃σy being the input
and output noise variances respectively, the generic positive
definite matrix Σ(i)

k associated with the input-output noise-
corrupted sequences can always be expressed as the sum of
two terms Σ(i)

k = Σ∗(i)
k + ¯̃Σk where:

¯̃Σk = diag[¯̃σyIk+1, ¯̃σuIk, 0] ≥ 0. (13)

Thus, it is again possible to determine the order and
parameters of the model in region A(i)

n from the analysis of
the sequence of increasing–dimension

(
(2k+2)×(2k+2)

)
symmetric positive definite matrices:

Σ(i)
2 , Σ(i)

3 , . . . Σ(i)
k , . . . (14)

The solution of the above identification problem requires
the computation of the unknown noise covariances ¯̃σu and
¯̃σy , that can be achieved solving the following relation:

Σ∗(i)
k = Σ(i)

k − Σ̃k ≥ 0 (15)

in the variables σ̃u, σ̃y , where Σ̃k = diag[σ̃yIk+1, σ̃uIk, 0]
Unfortunately the relation (15) admits for any k an

infinite solution set describing a curve Γ(i)
k (σ̃y, σ̃u) = 0 in

the first orthant of the noise plane whose concavity faces the
origin. In [11] a constructive methodology to numerically
compute this curve is given. Since determination of the
system order requires the increasing values of k to be tested,
it is relevant to analyse the behaviour of the associated
curves when k varies. As proven in [11], the solution sets
of condition (15) for different values of k are non–crossing
curves in the noise plane.

It is also important to observe that, since we assume that
a system of type (2) has generated the noiseless data, for
k ≥ n all the curves of type (15) have necessarily at least
one common point, i.e. point (¯̃σu, ¯̃σy) corresponding to the
true variances of the noise affecting the input and the output
data. The search for a solution for the identification problem
can thus start from the determination of this point in the
noise space. This task can be achieved on the basis of the
following properties.

With reference to the diagonal non–negative definite
matrices Σ̃k, the following properties hold:

Property 1:

1) If k < n the matrices Σ∗(i)
k are positive definite.

2) If k > n the dimension of the null space of Σ∗(i)
k

and consequently, the number of eigenvalues equal to
zero is (k − n + 1).

3) For k = n, matrix Σ∗(i)
k is characterised by a linear

dependence relation among its 2k+2 vectors, and the
coefficients which link the first vector of Σ∗(i)

k to the
remaining ones are the parameters a(i)

n , of the system
(2) which has generated the noiseless sequences.

4) For k ≥ (n+ 1), all the k− n+ 1 linear dependence
relations among the vectors of the matrix Σ∗

k are
characterised by the same 2n + 2 coefficients a(i)

n .
When the order n has been determined, the parameters
a(i)

n , i = 1, . . . ,M can be identified solving the following
equation:

(Σ(i)
n − ¯̃Σn) [−1 , a(i)

n

T
]T = 0 for i = 1, . . . ,M. (16)

The previous result can be fully applied when the as-
sumptions behind the Frisch scheme are satisfied (indepen-
dence between input–output sequences, additive noise, noise
whiteness).

In real applications, we are forced to relax these assump-
tions, thus no common point can be determined among
curves Γ(i)

n = 0 in the noise plane and a unique solution
to the identification problem can be obtained only by
introducing a criterion to select a different noisy point for
each region as best approximation of the ideal case. With
reference to the identification of the system order n in the
i–th region A(i)

n , it must be noted that the Γ(i)
n+1 = 0

curve has a single point in common with the Γ(i)
n = 0

curve in ideal conditions, which corresponds to a double
singularity of the matrix Σ∗(i)

n+1. In real cases, the order n

can be computed finding the point (σ̃u, σ̃y) ∈ Γ(i)
n+1 = 0

that makes Σ∗(i)
n+1 closer to the double singular condition (i.e.

minimal eigenvalue equal to zero and the second minimum
eigenvalue near to zero). As n is unknown, increasing
system orders k must be tested, and the value of k associated
to the minimum of the second eigenvalue of the matrix
Σ∗(i)

k+1 corresponds to the order n. This criterion is consistent
as it leads to the common point of the curves when the
assumptions of the Frisch scheme are not violated.

Note that since the order n of the hybrid model (4) is
region independent, it can be determined by choosing k
that fulfil the following inequality:

max
i=1,...,M

λ
(i)
k < ε (17)

when ε is an arbitrary positive constant and λ
(i)
k is the

minimal eigenvalue different from zero of matrix Σ∗(i)
k+1.

Once the model order n is selected, the parameters
a(i)

n , i = 1, . . . ,M cannot be computed from (16), because
the curves Γ(i)

n = 0 do not share the common point (¯̃σu, ¯̃σy).
In this case, for each region a different noise (¯̃σ(i)

u , ¯̃σ(i)
y )

must be considered and relation (15) should be rewritten
as:

Σ∗(i)
n = Σ(i)

n − Σ̃(i)
n ≥ 0 (18)

where Σ̃(i)
n = diag[¯̃σ(i)

u In+1, ¯̃σ
(i)
y In, 0]. The values (¯̃σ(i)

u ,
¯̃σ(i)

y ) can be computed by solving an optimisation problem
which minimises both the distances between (¯̃σ(i)

u , ¯̃σ(i)
y )

and (¯̃σ(j)
u , ¯̃σ(j)

y ) with i �= j and the continuity constraints



described by Eq. (7):

J((¯̃σ(1)
u , ¯̃σ(1)

y ), . . . , (¯̃σ(M)
u , ¯̃σ(M)

y )) =
= d

(
(¯̃σ(1)

u , ¯̃σ(1)
y ), . . . , (¯̃σ(M)

u , ¯̃σ(M)
y )

)
+

+(CnAn)T
HCnAn

(19)

H being a definite positive weighting matrix and d a
distance defined as:

d
(
(¯̃σ(1)

u , ¯̃σ(1)
y ), . . . , (¯̃σ(M)

u , ¯̃σ(M)
y )

)
=

=
∑M

i=1

∑M
j=i+1

√
(¯̃σ(i)

u − ¯̃σ(j)
u )2 + (¯̃σ(i)

y − ¯̃σ(j)
y )2.

(20)
It is worth observing that the matrix An collects the
parameters a(i)

n , i = 1, . . . ,M which depend on (¯̃σ(i)
u , ¯̃σ(i)

y ).
Now, let us take into account the problem of determining the
model order n. In the real case the item 2 of Property 1 is
only approximately fulfilled (i.e. for k > n null eigenvalue
has multiplicity one, whereas the second minimum eigen-
value is very close to zero). Minimisation of cost function
(19) can be computationally difficult, as it depends on
2M independent variables. Therefore, in order to decrease
the complexity of the problem, a common parametrisation
can be defined for all the curves Γ(i)

n (¯̃σ(i)
u , ¯̃σ(i)

y ) = 0 by
introducing polar coordinates:{

¯̃σ(i)
u = ρ(i) cos π

2 q
¯̃σ(i)

y = ρ(i) sin π
2 q

(21)

where ρ(i) is determined so that
Γ(i)

n (ρ(i) cos π
2 q, ρ

(i) sin π
2 q) = 0 and q ∈ [0, 1].

In such a way, the cost function has the form:

J(q) = d
(
(¯̃σ(1)

u (q), ¯̃σ(1)
y (q)), . . . , (¯̃σ(M)

u (q), ¯̃σ(M)
y (q))

)
+

+(CnAn)T
HCnAn.

(22)
The parametrisation chosen to simplify the minimisation
problem leads to consistent results. In fact, when the data
are generated by a continuous piecewise-affine dynamic
system, all assumptions regarding the Frisch scheme being
fulfilled and noise being region-independent, the curves
Γ(i)

n = 0 share a common point in the noise plane. In
these conditions, cost function J(q) = 0 and the variances
(¯̃σu, ¯̃σy) are identified exactly.

Finally, one should note how once the parameter q min-
imising the cost function (22) is computed, the matrices Σ̃(i)

n

can be built and the model parameter a(i)
n , i = 1, . . . ,M

determined by means of relation:

(Σ(i)
n − Σ̃(i)

n ) [−1 , a(i)
n

T
]T = 0 for i = 1, . . . ,M. (23)

This completes the multiple model identification procedure.

IV. FAULT DIAGNOSIS OF DYNAMIC SYSTEMS

The problem treated in this section regards the detection
and isolation of the output sensor faults on the basis of the
knowledge of the measured sequences u(t) and y(t). In the
following it is assumed that the monitored system, depicted

in Figure (1), can be described by a model of the type (4).
y(t) ∈ m is the system output vector and u(t) ∈ r the
input vector.

y(t)

Plant

Output sensors

+
+

y(t)~

u(t)

u(t)
~

u*(t) y*(t)

f (t)y

Input sensors

Fig. 1. The monitored system.

In real applications variables u∗(t) and y∗(t) are measured
by means of sensors whose outputs are affected by noise
(see relations (12)) and faults.

In this work, neglecting sensor dynamics, faults on the
measured input and output signals u(t) and y(t) are con-
sidered and they can be modelled as:

u(t) = u∗(t) + ũ(t) + fu(t)
y(t) = y∗(t) + ỹ(t) + fy(t) (24)

in which, the vectors fu(t) = [fu1(t) . . . fur
(t)]T and

fy(t) = [fy1(t) . . . fym
(t)]T are composed of additive

signals assuming values different from zero only in the
presence of faults. Usually these signals are described by
step and ramp functions representing, respectively, abrupt
and incipient faults (bias or drift).

There are different approaches to generate the diagnostic
signals, residuals or symptoms, from which it will be possi-
ble to diagnose faults associated to sensors. In this work, a
model–based approach is used to estimate the outputs y(t)
of the system from the input-output measurements [3]. As
an example, residuals can be generated by the comparison
of measured y(t) and estimated ŷ(t) outputs:

r(t) = ŷ(t) − y(t) (25)

where ŷ(t) is the estimate generated by the identified model
of the type (4) of the process under investigation.

The symptom evaluation refers to a logic device which
processes the redundant signals generated by the first block
in order to estimate when a fault occurs and to univocally
identify the unreliable sensor. Faults can be detected, for
example, by using a simple thresholding logic:

|r(t)|
{ ≤ Threshold Fault-free conditions,

> Threshold Faulty conditions.
(26)

V. IDENTIFICATION AND FAULT DIAGNOSIS OF
THE PLANT

The technique for input–output sensor fault diagnosis
presented has been applied to the model of a real single–
shaft industrial gas turbine with variable IGV angle working
in parallel with electrical mains in a cogeneration plant. The
non–linear turbine model was developed as explained in [9].



The process consists of three major components: the
combustor, turbine, and condenser. Furthermore, there are
pumps and valves (not highlighted). The combustor boils
the water and the steam generated drives the turbine. After
the turbine, the condenser cools the steam. In turn, external
cooling water cools the condenser. Pumps transport the
water from the condenser tank back to the combustor tank.

Concerning the machine layout shown in Figure (2), the
input control sensors are used for the measurement of:

u1(t), Inlet Guide Vane (IGV) angular position (α);
u2(t), fuel mass flow rate (Mf ).

The output sensors are those used for the measurement of
the following variables:

y1(t), pressure at the compressor inlet (pic);
y2(t), pressure at the compressor outlet (poc);
y3(t), pressure at the turbine outlet (pot);
y4(t), temperature at the compressor outlet (Toc);
y5(t), temperature at the turbine outlet (Tot);
y6(t), electrical power at the generator terminal (Pe).

Fig. 2. Layout of the single–shaft industrial gas turbine with the monitored
sensors highlighted.

The rotational speed sensors are not considered since the
operation of the machine in parallel with electrical mains is
at constant rotational speed. The measurements of ambient
temperature Ta and relative humidity were also not consid-
ered, since they are not directly used by the gas turbine con-
trol system. The ambient temperature in particular, which
is an important parameter for gas turbine performance, is
taken into account by the machine control system by means
of the measurements of compressor outlet pressure. This
pressure Pa indeed depends on the compressor mass flow
rate which, in turn, depends on ambient temperature [9].

According to Section (II) and (III), the non–linear dy-
namic process can be described as a composition of several
affine submodels selected according to process operating
conditions.

It is assumed that the monitored system, depicted in
Figure (2), can be described by a model of the type given
by Eq. (4). Moreover, as presented in Section (IV), the
diagnostic scheme exploits the hybrid model to generate
residuals.

The problem considered here thus regards the hybrid
prototype identification and the sensor fault diagnosis on the
basis of the knowledge of the measured sequences u(t) and
y(t) acquired from the input–output sensors of the industrial
gas turbine.

The process operates mainly at steady state conditions
and the 8 process measurements, including temperatures,
flow rates, pressures, control signals, turbine speed and
torque can be acquired with a sampling rate of 0.1 s. The
number of acquired samples is about N = 5000. Because
of the presence of the input and output sensors, actual
measurements are affected by faults and noise.

A pressure sensor bias (abrupt fault on the pot pressure
sensor signal) and an input sensor fault (abrupt faults on
the α(t) sensor signal) were simulated to experiment with
both the identification and the fault diagnosis methods.

Because of the underlying physical mechanisms and
because of the modes of the control signals, the process has
non–linear steady state as well as dynamic characteristics.

A clustering algorithm [13] was exploited in connection
with the identification method described in Section (III) in
order to extract a number of M = 3 clusters (operating
conditions) and n = 2 the number of sample delays of the
inputs and outputs. After clustering, the system parameters
a(i)

n , with i = 1, · · · ,M for each output, were estimated
using the Frisch scheme. The model was then validated on
a separate data set.

In fault–free conditions, Table (I) reports the mean–
square values of the output estimation errors r(t) given by
classical observers using a single model (i.e., with M = 1
and n = 2) for all operating conditions [14]. These values
are very large and cannot be used to detect faults reliability.

A meaningful improvement has been obtained by using
this identification technique where the process is described
as an hybrid model identified using Frisch scheme method.
The i-th output y(t) of the plant (i = 1, · · · ,m and m = 6)
can be characterised as a hybrid multiple–input single–
output (MISO) model with r = 2 inputs. The mean–square
errors of the output estimation errors r(t), under no–fault
conditions, are collected in Table (I). The hybrid multiple–
model approximates the real process very accurately. The
results indicate that the composite model can serve as a
reliable predictor for the real process. Using this model, a
model–based approach for fault diagnosis can be exploited
and applied to the actual power plant. The fault occurring

TABLE I

OUTPUT ESTIMATION ERRORS.

Output pic poc pot

Classical observer 13.29 7.56 15.34
Hybrid model 2.04 3.22 1.67

Output Toc Tot Pe

Classical observer 20.22 21.57 19.70
Hybrid model 2.55 2.58 1.70

on the single sensor α(t) or pot(t) causes alteration of
the sensor signals u(t), y(t) and of the residuals r(t)



given by the predictive model (4) using u(t) and y(t) as
inputs. Residuals indicate the fault occurrence according to
Equation (26) whether their values are lower or higher than
the thresholds fixed under fault–free conditions.

To summarise the performance of the FDI technique, the
minimal detectable faults on the various sensors, expressed
as percentages of the mean values of the relative signals,
are collected in Table (II). The minimum values shown in
Table (II) are relative to the case in which the fault must
be detected as soon as it occurs. The results were obtained
by using a single model for all operating conditions.

An improvement in the FDI performance has been ob-
tained by using the hybrid multiple–model. Model param-
eters were identified under the assumptions of the Frisch
scheme.

Table (II) summarises the performance of the enhanced
FDI technique and shows the minimal detectable fault size
for the various sensors. The fault sizes are expressed as
percentages of the signal mean values.

TABLE II

MINIMAL DETECTABLE STEP FAULTS.

Sensor α Mf pic poc

Classical observer 4% 4% 5% 7%
Hybrid model 1.8% 2.3% 0.60% 0.8%

Sensor pot Toc Tot Pe

Classical observer 5% 5% 2.5% 1.7%
Hybrid model 0.65% 1.7% 0.65% 1.2%

The residuals obtained by using the multiple–model ap-
proach are more sensitive to a fault occurring on the
sensors, since the corresponding output estimation errors are
smaller. Noise rejection is, in fact, achieved by means of the
dynamic Frisch identification scheme. Moreover, smaller
thresholds can be placed on the residual signals to declare
the occurrence of faults.

As an example, fault–free and faulty residuals regarding
the α(t) sensor signal are reported in Figures (3(a)) and
(3(b)). These were generated by using a classical observer
designed and the identified hybrid system, respectively.
Fault-free thresholds were marked by using “−” and “+”.
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Fig. 3. (a) single model and (b) hybrid model residuals r(t) for the signal
α(t).

The consequence is that the values of the faults, reported
in Table II, obtained by using the hybrid multiple–model

approach are lower than the ones corresponding to classical
observers. Moreover, the minimal detectable faults on the
various sensors seem to be adequate for the industrial
diagnostic applications. However, these improvements are
not free of charge: they have been obtained with a procedure
of greater complexity and, consequently, with a growing
computational cost.

VI. CONCLUSION

In this paper an off-line procedure was proposed for the
identification and fault diagnosis of a dynamic system using
an hybrid model identified from noisy input-output mea-
surements. An hybrid model consists of several local affine
models each for different operating point of the process.
The identification algorithm requires the determination of
the regions in which measured data can be approximated
by affine dynamic submodels. Parameters and structure of
submodels were estimated using a technique based on the
rules of the Frisch scheme, traditionally exploited to analyse
economic systems. The effectiveness of these procedures
were tested on real data acquired from a dynamic non–
linear process.
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