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Abstract

This paper considers the application of robust `1 es-
timation to fault robust fault detection and isolation.
This is accomplished by developing a series, or bank, of
robust estimators (full-order observers), each of which
is designed such that the residual will be sensitive to
a certain fault (or faults) while insensitive to the re-
maining faults. Robustness is incorporated by assur-
ing that the residual remains insensitive to exogenous
disturbances as well as modeling uncertainty. Mixed
structured singular value and `1 theories are used to
develop the appropriate threshold logic to evaluate the
outputs of the estimators used for determining the oc-
currence and location of a fault. A real-coded genetic
algorithm is used to obtain the optimal estimator gain
matrices. This approach to FDI is successfully demon-
strated using a linearized model of a jet engine.

1 Introduction

In modern systems such as aircraft and spacecraft,
there is an increasing demand for reliability and safety.
For example, a jet engine is very critical for an aircraft
and if faults occur, the consequences can be extremely
serious [5]. Many dynamic systems are complex techni-
cal systems that involve extensive use of multiple sen-
sors, actuators and other system components, any one
of which could fail or deteriorate. Hence, health moni-
toring and supervision of these systems is essential for
the improvement of reliability, safety and dependabil-
ity of operations. This entails continuously checking a
physical system for faults and taking appropriate ac-
tions to maintain the operation in such situations. In
particular, the objective is to detect and isolate failures
or anomalies in the sensors, actuators and components.

One of the primary approaches to model-based, fault
detection and isolation uses state or output estimators.
Detection of a fault is achieved by comparing the ac-
tual behavior of the plant to that expected on the ba-
sis of the model; deviations are indications of a fault
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Figure 1: Estimation Based Fault Detection and Isolation

(or disturbances, noise or modeling errors) [4]. Fault
isolation can be achieved by dedicating an estimator
such that the residual is sensitive to only one particu-
lar fault. In particular, referring to Figure 1, a bank of
estimators is used to generate residuals r(i)(t). These
residuals are then analyzed by some appropriate logic
(e.g., logic based on thresholds or fuzzy logic) which in-
fers whether faults have occurred (fault detection) and
where they have occurred (fault isolation).

In many approaches to the FDI problem the robust-
ness aspect is commonly introduced in relation to the
fault detection. The estimators shown in Figure 1 may
be designed in a variety of ways, for example by using
Kalman filter theory (i.e., H2 optimal estimation) [6],
H∞ theory [1], or `1 theory [2]. Whichever method is
used for designing the estimator, it will use an ideal-
ized mathematical description of the underlying plant.
In practice this model of the plant is never totally ac-
curate, which can degrade the quality of the residuals
produced by the estimators. The errors in the plant
model may be either parametric or unstructured (e.g.,
unmodeled dynamics). To reduce the degradation in



the quality of the residuals upon which the FDI pro-
cess is based, and hence to reduce the false alarm rate,
it is imperative that the plant uncertainty be explicitly
taken into account in the design of the estimators.

Until recent work [1, 2, 3, 6], the relatively noncon-
servative mixed structured singular value techniques
had not been applied to robust estimation, although
more conservative techniques, based on the small gain
theorem or fixed quadratic Lyapunov functions, had
been used. The reduced conservatism of mixed struc-
tured singular value theory allows the estimators to be
used for more accurate fault detection. Specifically,
the fixed thresholds are smaller, allowing the detection
of smaller faults. With more conservative theories the
thresholds are larger, causing some smaller faults to go
undetected. Although this paper focuses exclusively
on sensor faults the theory is easily applied to actuator
faults as well.

The organization of this paper is as follows. Section
2 presents the formulation of the closed-loop uncertain
system to which estimation will be applied. The appli-
cation of robust `1 estimation to robust fault detection
and isolation is presented in Section 3. Section 4 dis-
cusses results of an illustrative example of a jet engine,
while Section 5 gives concluding remarks.

2 Formulation of Closed-Loop Uncertain
System

Consider a discrete-time, linear uncertain dynamic sys-
tem

xp(k + 1) = (Ap + ∆Ap)xp(k) + (Bp + ∆Bp)up(k)

+ D∞,1w∞(k), k ∈ Z+ (1)
yp(k) = (Cp + ∆Cp)xp(k) + D∞,2w∞(k)

+ Rsf(k), (2)

where xp ∈ Rnp is the state vector, up ∈ Rdp is the
control input, yp ∈ Rpp denotes the plant measure-
ments, w∞ ∈ Rd∞ denotes an `∞ disturbance signal
satisfying ‖w∞(·)‖∞,2 ≤ 1, f ∈ Rrs is the sensor fault
vector. The fault distribution matrices Rs is assumed
to be known. The uncertainties ∆Ap, ∆Bp and ∆Cp

satisfy

∆Ap ∈ UAp , {∆Ap ∈ Rnp×np : ∆Ap =
−HApFApGAp , FAp ∈ FAp}, (3)

∆Bp ∈ UBp , {∆Bp ∈ Rnp×dp : ∆Bp =
−HBpFBpGBp , FBp ∈ FBp}, (4)

∆Cp ∈ UCp , {∆Cp ∈ Rpp×np : ∆Cp =
−HCpFCpGCp , FCp ∈ FCp}, (5)

where

FAp
, {FAp

∈ Dr : MAp,1 ≤ FAp
≤ MAp,2},

(6)

FBp
, {FBp

∈ Ds : MBp,1 ≤ FBp
≤ MBp,2},

(7)

FCp
, {FCp

∈ Ds : MCp,1 ≤ FCp
≤ MCp,2},

(8)

with MAp,1 , MAp,2 ∈ Dr, MBp,1 , MBp,2 ∈ Dr,
MCp,1 , MCp,2 ∈ Ds, MAp,2 − MAp,1 ≥ 0, MBp,2 −
MBp,1 ≥ 0, and MCp,2 −MCp,1 ≥ 0. Note that the sys-
tem in (1) and (2) has uncertainty in the input matrix
Bp. This is significant in that current mixed structure
singular value (MSSV) theory does not consider this
uncertainty.

Assume that the dynamic system in (1) and (2) is con-
trolled by a linear controller,

xc(k + 1) = Acxc(k) + Bcyp(k), (9)
up(k) = Ccxc(k). (10)

Then, the closed-loop system is described by,

x(k + 1) = (A + ∆A)x(k) + Dw,1w∞(k) + R1f(k),
(11)

y(k) = Cx(k) + Dw,2w∞(k) + R2f(k), (12)

where

x(k) =
[

xp(k)
xc(k)

]
, A =

[
Ap BpCc

BcCp Ac

]
,

Dw,1 =
[

D∞,1

BcD∞,2

]
, C =

[
Cp 0

]
,

R1 =
[

0
BcRs

]
, ∆A =

[
∆Ap ∆BpCc

Bc∆Cp 0

]
,

Dw,2 = D∞,2, R2 = Rs. (13)

Furthermore, ∆A and ∆C satisfy

∆A ∈ UA , {∆A ∈ R2np×2np : ∆A =
−HAFAGA, FA ∈ FA}, (14)

∆C ∈ UC , {∆C ∈ Rpp×2np : ∆C =
−HCFCGC , FC ∈ FC}, (15)

where

FA , {FA ∈ Dr+s : MA,1 ≤ FA ≤ MA,2},
(16)

FC , {FC ∈ D2s : MC,1 ≤ FC ≤ MC,2},
(17)



and

FA =




FAp
0 0

0 FCp 0
0 0 FBp


 ,

HA =
[

HAp 0 HBp

0 BcHCp
0

]
,

GA =




GAp
0

GCp 0
0 GBp

Cc


 ,

FC = FCp
, HC = HCp

, GC =
[

GCp
0

]
,
(18)

with

MA,1 = diag(MAp,1 ,MCp,1 ,MBp,1),
MA,2 = diag(MAp,2 ,MCp,2 ,MBp,2),
MC,1 = MCp,1 , MC,2 = MCp,2 . (19)

Notice that in the closed-loop system (11)-(12) all of
the uncertainty appears in the ∆A and ∆C matrices.
Hence, the robust estimation and fault detection results
of [2] may be applied.

3 Robust FDI Using Robust `1 Estimation

The closed-loop system in (11)-(12) can be rewritten
in the modified form,

x(k + 1) = (A + ∆A)x(k) + Dw,1w∞(k)
+ R1,1f1(k) + . . . + R1,rsfrs(k),

(20)

y(k) = (C + ∆C)x(k) + Dw,2w∞(k)
+ R2,1f1(k) + . . . + R2,rsfrs(k),

(21)

where R1,i (respectively, R2,i) denotes the ith column
of the matrix R1 (respectively, R2). The term fi(k),
i ∈ {1, 2, . . . , rs}, represents the ith individual sensor
fault of f(k) and R1,i (respectively, R2,i) represents its
directional characteristics. Assume that fi(k) is the
“target fault,” i.e., the fault that it is desired to de-
tect. Without loss of generality, the vector of “nuisance
faults”, representing the faults that are not to be de-
tected (by the robust fault detection filter), is given by
f̄i , [f1(k) · · · fi−1(k) fi+1(k) · · · frs(k)]. Hence, (20)
and (21) can be replaced by

x(k + 1) = (A + ∆A)x(k) + Dw,1w∞(k)
+ R1,ifi(k) + R̄1,if̄i(k), (22)

y(k) = (C + ∆C)x(k) + Dw,2w∞(k)
+ R2,ifi(k) + R̄2,if̄i(k). (23)

Let w(i) be defined as w(i) 4= [wT
∞ f̄T

i ]T . Then, (22) and
(23) can be written as a set Σ(i) of system equations

x(k + 1) = (A + ∆A)x(k) + D
(i)
1 w(i)(k) + R1,ifi(k),

(24)

y(k) = (C + ∆C)x(k) + D
(i)
2 w(i)(k) + R2,ifi(k),

(25)

where

D
(i)
1 =

[
Dw,1 R̄1,i

]
, D

(i)
2 =

[
Dw,2 R̄2,i

]
. (26)

It is desired to design a bank of full-order observers of
the form

x(i)
e (k + 1|k) =A(i)

e x(i)
e (k|k − 1) + W (i)[y(k)

− Cx(i)
e (k|k − 1)] (27)

to estimate the state vector x, where A
(i)
e ∈ R2np×2np

and W (i) ∈ R2np×pp are the parameters to be deter-
mined.

The estimation error is defined as

e(i)(k) , x(k)− x(i)
e (k|k − 1), (28)

which using (24), (25), and (27) can be shown to obey
the evolution equation

e(i)(k + 1) = (A(i)
e −W (i)C)e(i)(k) + (A + ∆A

−W (i)∆C −A(i)
e )x(k) + (D(i)

1 −W (i)D
(i)
2 ) ·

w(i)(k) + (R1,i −W (i)R2,i)fi(k). (29)

Now define the error output z(i) ∈ Rqp as z(i)(k) ,
E

(i)
∞ e(i)(k). Then augmenting (24) with (29) yields

x̃(i)(k + 1) = (Ã(i) + ∆Ã(i))x̃(i)(k) + D̃
(i)
1 w(i)(k)

+ R̃
(i)
1 fi(k), (30)

z(i)(k) = Ẽx̃(i)(k), (31)

where

x̃(i)(k) =
[

x(k)
e(i)(k)

]
,

Ã(i) =
[

A 0
A−A

(i)
e A

(i)
e −W (i)C

]
,

D̃
(i)
1 =

[
D

(i)
1

D
(i)
1 −W (i)D

(i)
2

]
,

R̃
(i)
1 =

[
R1,i

R1,i −W (i)R2,i

]
, Ẽ =

[
0 E

(i)
∞

]
.

(32)

Furthermore, ∆Ã satisfies

∆Ã(i) ∈ UÃ , {∆Ã(i) ∈ R4np×4np : ∆Ã(i) =

−H
(i)
0 FÃG0, FÃ ∈ FÃ}, (33)



where

FÃ , {FÃ ∈ D2r+2s : M1 ≤ FÃ ≤ M2},
(34)

with

FÃ =
[

FA 0
0 FC

]
, H

(i)
0 =

[
HA 0
HA W (i)HC

]
,

G0 =
[

GA 0
−GC 0

]
, (35)

and

M1 = diag(MA,1,MC,1),
M2 = diag(MA,2,MC,2). (36)

Let the residual error be defined as

r(i)(k) 4= P (i)[y(k)− Cx̂(i)(k|k − 1))], (37)

where the gain matrices P (i) are rs × pp chosen such
that r(i) have a fixed direction when responding to the
target fault.

Let J
(i)
rw represent the `1 norm of the system operator

from the disturbance vector w(i) to the residual r(i),
and let J

(i)
rf represent the `1 norm of the system oper-

ator from the target fault fi to the residual r(i). Then,
using mixed structured singular value theory, it is pos-
sible to characterize upperbounds Ĵ

(i)
rw and Ĵ

(i)
rf such

that

Ĵ (i)
rw ≥ max

∆Ã(i)∈U J (i)
rw, (38)

Ĵ
(i)
rf ≥ max

∆Ã(i)∈U
J

(i)
rf . (39)

Robust fault detection filter design may be approached
by choosing A

(i)
e , W (i) and P (i) so that Ĵ

(i)
rw is small and

Ĵ
(i)
rf is large.1 A minimization problem that expresses

this objective is

min
A

(i)
e ,W (i),P (i)

J (〉) = βĴ (i)
rw + (1− β)

1

Ĵ
(i)
rf

+ γ
Ĵ

(i)
rw

Ĵ
(i)
rf

,
(40)

where β ∈ [0, 1] and γ > 0 are arbitrarily chosen
weighting scalars.

The robust `1 estimation problem is to find the
estimator parameters A

(i)
e , W (i) and P (i) such that

the combined system (27), (30)-(31) is asymptotically
stable over the uncertainty set U , and the `1 perfor-
mance function J (〉)(A(i)

e ,W (i), P (i)) is minimized. A

1It would be more desirable to make a lower bound on Ĵ
(i)
rf large.

Unfortunately, lower bounds are usually much more difficult to work
with computationally than upper bounds.

real-coded genetic algorithm [7] is used as an appropri-
ate optimization method to select the estimation and
projection parameters.

Now consider the set Σ(i) of uncertain discrete-time
systems

x(k + 1) = (A + ∆A)x(k) + D
(i)
1 w(i)(k) + R1,ifi(k),

(41)

y(k) = Cx(k) + D
(i)
2 w(i)(k) + R2,ifi(k), (42)

where x, y, w(i), and fi are as previously discussed.

The robust fault detection problem is to generate
a robust residual signals r(i)(k) that satisfies

‖r(i)(k)‖p ≤ J
(i)
th if fi(k) = 0, (43)

‖r(i)(k)‖p > J
(i)
th if fi(k) 6= 0, (44)

where ‖ · ‖p denotes the p norm of a Lebesgue signal
and J

(i)
th is the ith threshold value. If the estimators

(27) are applied to (41)-(42) and E
(i)
∞ is chosen as C

(37) can be written as

r(i)(k) = P (i)z(i)(k) + P (i)D
(i)
2 w(i)(k) + P (i)R2,ifi(k).

(45)

As derived in [2], if fi(k) = 0 (45) satisfies the norm
inequality

‖r(i)‖2(∞,2),[N0,N ] ≤ {[tr(P (i)E(i)
∞Q(i)

∞E(i)T
∞ P (i)T )q]

1
q

+ 2σmax(P (i)D
(i)
2 )[tr(P (i)E(i)

∞Q(i)
∞ ·

E(i)T
∞ P (i)T )q]

1
2q + σ2

max(P
(i)D

(i)
2 )} ·

‖w(i)‖2(∞,2),[N0,N ], (46)

where Q
(i)
∞ is a positive-definite matrix satisfying

Q(i)
∞ = α(A−W (i)C)Q(i)

∞ (A−W (i)C)T +
α

α− 1
V (i)
∞ ,
(47)

with V
(i)
∞ , (D(i)

1 − W (i)D
(i)
2 )(D(i)

1 − W (i)D
(i)
2 )T and

α > 1. The threshold can be chosen as

J
(i)
th , {[tr(P (i)E(i)

∞Q(i)
∞E(i)T

∞ P (i)T )q]
1
q

+ 2σmax(P (i)D
(i)
2 )[tr(P (i)E(i)

∞Q(i)
∞E(i)T

∞ P (i)T )q]
1
2q

+ σ2
max(P

(i)D
(i)
2 )}‖w(i)‖2(∞,2),[N0,N ]. (48)

Robust fault detection can be accomplished by com-
paring ‖r(i)‖(∞,2),[N0,N ] with J

(i)
th . A fault occurs if

‖r(i)‖(∞,2),[N0,N ] > J
(i)
th , i.e.,

‖r(i)‖(∞,2),[N0,N ] > J
(i)
th ⇒ a fault occurred.

(49)



4 Illustrative Example of FDI for a Jet Engine

A numerical example is presented in this section to il-
lustrate robust `1 estimator design using the Popov-
Tsypkin multiplier and the application of the robust
`1 estimator to robust fault detection of dynamic sys-
tems. The model used was supplied by NASA Glenn
Research Center and is given as

xp(k + 1) = (Ap + ∆Ap)xp(k) + (Bp + ∆Bp)up(k)
+ D∞,1w(k), k ≥ 0 (50)

yp(k) = (Cp + ∆Cp)xp(k) + D∞,2w(k) (51)

where the sampling period is 0.01. The state vector
xp , [XNH,XNL,TMPC]T , where

XNH , High Pressure Spool Speed (rpm)

XNL , Low Pressure Spool Speed (rpm)

TMPC , High Pressure Compressor Inlet
Temperature (◦C).

The control input vector up , [WF36, A8,A16]T ,
where

WF36 , Main Burner Fuel Flow (kg/hr)

A8 , Exhaust Nozzle Throat Area (m2)

A16 , Bypass Duct Area (m2).

The output vector yp measures the states and w de-
notes a vector of disturbance signals.

The uncertainty matrices, ∆Ap, ∆Bp and ∆Cp, are
representative of some engine degradation over time.
Thus, it is assumed that a newly constructed engine can
be modeled with the nominal matrices Ap, Bp and Cp

and with use, the parameters of the degraded engine are
encompassed in the uncertainty. The system parameter
matrices are

Ap =




0.8938 0.0034 0.0020
−0.0001 0.8940 0.0014

0 −0.0001 0.89960


 ,

Bp =




0.0059 0.1119 −0.0160
0.0042 0.0720 0.0083
0.0001 −0.0003 0


 ,

Cp =




1.0000 0.0077 0.0044
−0.0003 1.0000 0.0031
0.0299 −0.0208 0.0010


 ,

Dp,1 = diag{0.1, 0.1, 0.01}, Dp,2 = 0.1× I3×3.
(52)

The uncertainty matrices ∆Ap = −HApFApGAp ,

∆Bp = −HBpFBpGBp , ∆Cp = −HCpFCpGCp , where

HAp
= −




1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0


 ,

HBp = HCp = −



1 1 1
0 0 0
0 0 0


 ,

GAp
=

[
I3×3

I3×3

]
, GBp

= GCp
=

[
I3×3

]
,

FAp = diag{δA1 , δA2 , δA3 , δA4 , δA5 , δA6}
FBp = diag{δB1 , δB2 , δB3} FCp = diag{δC1 , δC2 , δC3},

(53)

with

0 ≤ δA1 ≤ 0.0011, −0.0008 ≤ δA2 ≤ 0,

0 ≤ δA3 ≤ 0.0002, −0.0001 ≤ δA4 ≤ 0,

0 ≤ δA5 ≤ 0.0005, 0 ≤ δA6 ≤ 0.0001, (54)
0 ≤ δB1 ≤ 0.0008, 0 ≤ δB2 ≤ 0.0115,

−0.0005 ≤ δB3 ≤ 0, (55)
−0.0001 ≤ δC1 ≤ 0, −0.0015 ≤ δC2 ≤ 0,

0 ≤ δC3 ≤ 0.0004. (56)

Note that the uncertain parameters δA1 . . . δA6 corre-
spond to parameter fluctuations in the first two rows
of matrix Ap, δB1 . . . δB3 and δC1 . . . δC3 to the first
row of Bp and Cp, respectively. By using the objective
function (40) with stability constraints in a real-coded
genetic algorithm the respective gain and projection
matrices are obtained for a bank of estimators.

In order to illustrate the application of the robust `1
estimator to robust fault detection, FDI of the closed-
loop system in (30) and (31) subject to plant distur-
bances was performed. A bank of estimators (as de-
scribed in Section 3) was designed for the set of ypi ,
i ∈ {1, 2, 3}, sensor outputs, i.e., the ith estimator is
designed to detect a fault in the ypi sensor while ne-
glecting faults in the remaining sensors. Here the ro-
bust case (estimation with uncertainty) is considered
for the FDI process. In order to show the extent of ro-
bustness, uncertainty for all system matrices was con-
sidered. The uncertain parameters are assigned the
nonzero values of their upper or lower bounds. For
example δA1 , whose lower and upper bounds are 0
and 0.0011, respectively, was assigned its upper bound
0.0011, whereas, δA2 , whose lower and upper bounds
are -0.0008 and 0, respectively, was assigned its lower
bound -0.0008.

This paper only considered the occurrence of sensor
faults within the system. A typical sensor fault in the
jet engine is a drift in the sensor reading. Thus, a slow
drifting (or ramping) sensor fault was added to a sen-
sor reading at a particular instant in time. Specifically,
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Figure 2: Robust `1 FDI: fault in XNL sensor at t = 45sec.

the error between the actual value and the value of the
faulty sensor’s reading became increasingly larger over
time. Due to the disturbance the finite-horizon infinity
norm (46) of the residual with N − N0 = 60 (corre-
sponding to a time interval of 0.6 sec.), was nonzero
even in the absence of faults.

In Figure 2 a single sensor fault was introduced in the
system. It can be seen that each fault was success-
fully detected and isolated in the respective residual.
In Figure 3 multiple sensor faults were introduced in
the system at particular times. It can be observed that
in this instant the estimators were able to isolate each
target fault from the other nuisance faults. As such,
the `1 estimators demonstrate a degree of the robust-
ness in the presence of plant disturbance.

5 Conclusions

This paper considered the application of robust `1 es-
timation for uncertain, linear discrete-time systems to
the robust fault detection and isolation of dynamic sys-
tems. Mixed structured singular value theory of [2] was
used to design a bank of robust `1 estimators and the
resulting fixed threshold logic. By considering a dis-
crete, linear model of a jet engine with real paramet-
ric uncertainties, an LQG controller was implemented
to form a closed-loop system. Using this closed-loop
system and introducing drifting sensor faults, it was
shown that the robust FDI methodology based on fixed
thresholds was capable of detecting and isolating fail-
ures in each of the particular sensors.
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Figure 3: Robust `1 FDI: fault in XNH sensor at t =
25 sec., XNL sensor at t = 60 sec., and TMPC
sensor at t = 40 sec.
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