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Abstract— This paper deals with the problem of Fault
Diagnosis (FD) for a class of nonlinear systems in the presence
of actuator failures. The scheme is based on a discrete-time
diagnostic observer which computes an estimate of the sys-
tem’s state. To cope with the uncertainties and discretization
errors, a discrete-time adaptive law is developed, based on a
parametric model of the uncertain terms. A stability proof
is developed to prove the global exponential stability of the
system in the absence of faults. The effectiveness of the
proposed approach is experimentally tested on a case study
developed for an industrial mechanical manipulator.

I. I NTRODUCTION

The control system of a plant is often required not
only to ensure stability and desired performance during
normal operating conditions, but also to guarantee a suitable
behavior at the occurrence of faults in the controlled plant,
e.g. an actuator or a sensor failure. The early diagnosis
of such failures could prevent the propagation of the fault
effects to the critical components of the plant and permit an
appropriate response of the control system. Therefore it is
crucial to develop a Fault Diagnosis (FD) system capable to
promptly detect the occurrence of failures (fault detection),
recognize the location (fault isolation) and estimate the time
evolution (fault identification) of the detected failures.

The research on FD systems has produced several con-
tributions, especially for the case of linear systems [3], [7],
[9]. Onthe other hand, fault detection methods for nonlinear
systems can be roughly regrouped in three main classes:
observer-based approaches, techniques based on model
parameters estimation and algorithms based on learning
methodologies [4], [11], [12], [13], [14], [15]. Recently, soft
computing methods, integrating quantitative and qualitative
modelling information, have been developed to improve the
performance of FD schemes for uncertain systems (see, e.g.,
[10] and references therein).

Usually, the observer-based methods require a model
of the system to be operated in parallel to the process
(i.e., the so called diagnostic observer). Then, a set of
variables sensitive to the occurrence of a failure (residuals)
are computed as the difference between the measured output
variables and those predicted via the diagnostic observer.

Assuming an exact knowledge of the plant dynamics, the
residuals should become nonzero when a fault occurs.

It should be pointed out, however, that perfect knowledge
of the model is rarely a reasonable assumption; moreover,
the discrete time implementation of the diagnostic observer
may introduce additional errors. On the other hand, the
robustness of the observer can be improved only at the
expense of a reduced sensitivity to failures; hence, suitable
trade-off solutions must be devised in the design of the FD
system for a given plant.

In this paper, a discrete-time diagnostic observer is de-
signed, where a term compensating for unmodeled dynam-
ics, disturbances and noise is included. An adaptive strategy
for computing the compensation term is designed by using
the Lyapunov method. Then, the residuals are computed on
the basis of the observer outputs.

A stability analysis is carried out to prove that, in the
case of perfect parametrization of the unmodeled dynamics,
the system is globally exponentially stable, provided that
a suitable persistence of excitation condition is satisfied.
This property ensures that the residuals remains ultimately
uniformly bounded during normal operating conditions,
also in the presence of bounded uncompensated distur-
bances(e.g., errors due to the discrete-time implementation
of the observer).

The proposed FD scheme is experimentally tested on
a six-degree-of-freedom industrial manipulator. The results
demonstrate the effectiveness of the approach to achieve
fault diagnosis for industrial gear-driven robots, for which
the effects like backlash and friction are usually not negli-
gible and difficult to model.

II. M ODELING

Consider a nonlinear dynamical system characterized by
the following discrete-time state-space model

x(k + 1) = Ax(k) + h(x(k)) + B(x(k))u(k)+
η(k, x(k), u(k))

(1)

where x is the (n × 1) state vector,u is the (m × 1)
vector of inputs. The termη collects all disturbances and
uncertainties.



The above model may represent the discrete-time equiv-
alent of a continuous model obtained, e.g., obtained via the
well-known Euler method [5].

The class of failures considered in this work is that of
actuator faults. This class of failures can be represented as
an unknown additive disturbance on thenominal inputs to
the system̄u. Hence, an actuator fault occurring at thek-th
time step results in a faulty input given by

u(k) = ū(k) + δu(k), (2)

where δu(k) represents the time profile of the unknown
fault.

Therefore, the nominal dynamics (1) in the presence of
faults becomes

x(k + 1) = Ax(k) + h(x(k)) + B(x(k))ū(k)+
η(k, x(k), ū(k), θ) + f (k, x(k)),

(3)

where the fault vectorf is given by:

f (k, x(k)) = B(x(k)) δu(k). (4)

The uncertain termη(k, x(k), ū(k)) is assumed to depend
upon the nominal input and on the (q × 1) constant param-
eters vectorθ. If η is linear in the parameters vector, it can
be expressed as follows

η(k, x(k), ū(k), θ) = Ω(k, x(k), ū(k))θ, (5)

where the matrixΩ is assumed to be known, whileθ is
usually unknown (or partially known).

On the other hand, ifη is not linear in the parameters
and/or its structure is not exactly known, a good approxi-
mation can be obtained by resorting to the so-called on line
interpolators [4], [11], [12], [13], [14], [15] (e.g., neural
networks, splines). By choosing a linear-in-the-parameters
interpolator structure, the uncertain term can be expressed
as

η(k, x(k), ū(k), θ) = Ω(k, x(k), ū(k))θ+
ε(k, x(k), ū(k)), (6)

where ε represents the interpolation error. The following
assumptions are made:

Assumption 1: The norm of the matrixΩ(k, x(k), ū(k))
is uniformly bounded by a constantΩ > 0, i.e.:

‖Ω(k, x(k), ū(k))‖ ≤ Ω.
Assumption 2: The norm of the interpolation error

ε(k, x(k), ū(k)) is uniformly bounded by a constantE > 0,
i.e.:

‖ε(k, x(k), ū(k))‖ ≤ E.
Notice that Assumption 1 can be satisfied for a wide
class of functionsΩ, by assuming that the the statex(k)
and the inputū(k) of the system remains bounded even
in the presence of failures. Moreover, Assumption 2 is
often satisfied provided that a suitable interpolator structure
is chosen (see, e.g., [6] and [8] for the approximation
properties of neural networks).

III. O BSERVER-BASED FAULT DIAGNOSIS

Assuming the whole state measurable, the proposed di-
agnostic observer has the following structure

x̂(k + 1) = Ax̂(k) + h(x(k)) + B(x(k))ū(k)+
Koe(k) + η̂(k, x(k), ū(k), θ̂(k))

(7)

wheree = x− x̂ is the state estimation error,̂η represents
an estimate of the uncertaintiesη, θ̂ is an estimate ofθ and
the matrix gainKo is chosen such thatF = A − Ko has
all its eigenvalues in the unit circle.

It is worth remarking that the above observer should be
seen as a diagnostic observer, i.e., a model which should
reproduce the real behavior of the plant during its normal
operations. Therefore, the primary goal of the observer is
not the state estimation from input/output measurements,
but the accurate reconstruction of the plant dynamics in real
time, even in the presence of disturbances and modelling
errors.

Therefore, in view of (3) and (7), the state estimation
error dynamics is given by

e(k + 1) = Fe(k) + η̃(k, x(k), ū(k), θ, θ̂(k))+
f(k, x(k)),

(8)

where

η̃(k, x(k), ū(k), θ, θ̂) = η(k, x(k), ū(k), θ) −
η̂(k, x(k), ū(k), θ̂) (9)

represents the uncertainties estimation error.
Hereafter, for notation compactness, the explicit depen-

dence of the functions uponx(k) and ū(k) will be omitted.
The residuals vector can be chosen as:

r(k + 1) = e(k + 1) − Fe(k), (10)

which can be rewritten as

r(k + 1) = η̃(k, θ, θ̂) + f(k). (11)

It can be recognized that the residuals vector is affected by
the fault vector and the estimation error of the uncertain
term, i.e. η̃. Hence, if an accurate estimation ofη is
achieved, the fault signature on the residual (i.e., its effect
on the residuals) becomes more evident.

IV. A DAPTIVE UNCERTAINTIES ESTIMATION

If a parametric model of the uncertainties is available, an
adaptive estimation algorithm of the unknown parameters
can be set up. It is worth remarking that such a paradigm has
been keenly exploited for adaptive fault identification (see,
e.g., the work in [4], [11]–[15]). However, in this work the
same concept is exploited in order to adaptively compensate
for the uncertainties, so as to obtain small values of the
residuals in the absence of faults.

In this case, the uncertain term can be indirectly evaluated
through the estimation ofθ. Namely, an adaptive update law
for the parameters estimateθ(k) can be chosen as

θ̂(k + 1)=θ̂(k) + ΩT (k)Γθ(k) (e(k + 1)−Fe(k)) . (12)



The gain matrixΓθ(k) is chosen as follows:

Γθ(k) = 2
(
Ω(k)ΩT (k) + Qθ

)−1

, (13)

whereQθ is a positive definite symmetric matrix; hence,
Γθ(k) is symmetric and positive definite for allk. Notice
that, by virtue of Assumption 1,Γθ(k) can be lower
bounded as

‖Γθ(k)‖ ≥ 2
Ω2 + Qθ

= γ > 0, (14)

whereQθ is the largest eigenvalue ofQθ.
The uncertainties estimation error (9), in view of (6) can

be written as

η̃(k, θ̃(k)) = Ω(k)θ̃(k) + ε(k), (15)

whereθ̃(k) = θ − θ̂(k) is the parameters estimation error.
By taking into account (8), (12) and (15), the state

estimation error dynamics can be written as{
e(k + 1) =Fe(k)+Ω(k)θ̃(k)+f(k)+ε(k)

θ̃(k + 1)=H(k)θ̃(k)−ΩT (k)Γθ(k) (f(k)+ε(k)) ,
(16)

where the matrixH is given by

H(k) = Ip − ΩT (k)Γθ(k)Ω(k), (17)

andIp denotes the (p × p) identity matrix.
Therefore, the residuals vector becomes

r(k + 1) = Ω(k)θ̃(k) + f(k) + ε(k). (18)

V. STABILITY ANALYSIS

In order to analyze the convergence of the state estimation
error, it is worth considering the estimation error dynamics
in the absence of faults (f = 0) and of interpolation errors
(ε = 0)

e(k + 1) = Fe(k) + Ω(k)θ̃(k) (19)

θ̃(k + 1) = H(k)θ̃(k). (20)

Let

z =
[

e
θ̃

]
,

the ((n + p) × 1) state vector of the system (19),(20). The
following theorem can be proven:

Theorem 1: Under Assumption 1, the equilibriumz eq =
[ eT

eq θ̃
T

eq
]T = 0 of the system (19),(20) is globally

uniformly stable. Moreover, the estimation errore(k) con-
verges asymptotically to0.

Proof 1: Consider the positive definite Lyapunov func-
tion candidate:

V (k) = e(k)T P ee(k) + pθθ̃
T
(k)θ̃(k), (21)

wherepθ is a positive constant andP e is the solution to
the Lyapunov equation

P e − F T P eF = Qe

for a given symmetric and positive matrixQe. SinceF has
all its eigenvalues inside the unit circle, the solutionP e

exists and is symmetric and positive definite.
By taking into account (19)(20), the first difference ofV ,

∆V (k) = V (k + 1) − V (k), is given by:

∆V (k) = −e(k)T Qee(k)−
θ̃

T
(k)(pθIp − pθH

T (k)H(k) − ΩT (k)P eΩ(k))θ̃(k)+

2e(k)T F T P eΩ(k)θ̃(k).
(22)

By exploiting the expression of matrixH in (17) and
equation (13), it can be argued that

∆V (k) = −e(k)T Qee(k)−
θ̃

T
(k)ΩT (k)(pθΓT

θ (k)QθΓθ(k) − P e)Ω(k)θ̃(k)+
2e(k)T F T P eΩ(k)θ̃(k).

(23)

Moreover, from (15), written in the caseε = 0, the
following equality holds:

∆V (k) = −e(k)T Qee(k)−
η̃T (k)(pθΓθ(k)QθΓθ(k) − P e)η̃(k)+
2e(k)T F T P eη̃(k),

(24)

where the dependence of̃η upon the argument̃θ(k) has
been skipped for notation compactness.

Function∆V (k) can be upper bounded as

∆V (k) ≤ −qe‖e(k)‖2 − (pθγ
2qθ − Pe)‖η̃(k)‖2 +

2fPe‖e(k)‖‖η̃(k)‖,
whereqθ is the smallest eigenvalue ofQθ, qe is the smallest
eigenvalue ofQe, Pe is the largest eigenvalue ofP e, andF
is the norm of the matrixF . Hence∆V (k) ≤ 0, provided
that pθ satisfy the inequality

pθ >
Peqe + F 2P 2

e

γ2qθ
. (25)

Notice that ∆V (k) is negative definite in the variables
e(k), η̃(k) but is only semi-definite in the variablez(k) =
[ eT (k) θ̃

T
(k) ]T , sinceΩ(k) is not guaranteed to be full

rank. Hence the equilibriumeeq = 0, θ̃eq = 0 of the
system (19),(20) is globally uniformly stable. SinceV (k)
in a decreasing and non-negative function, it converges to
a constant valueV∞ ≥ 0, ask → ∞; hence,∆V (k) → 0.
This implies that bothe(k) and θ̃(k) remain bounded for
all k, ande(k) → 0, η̃(k) → 0. �

The following theorem proves the exponential conver-
gence of both state and parameters estimation errors, when
a suitable persistency of excitation property holds.

Theorem 2: If Assumption 1 holds and the following
condition (persistency of excitation) is satisfied for allk
and for some integerN > 0

ΛIp ≥
k+N−1∑

l=k

ΩT (l)Ω(l) ≥ λIp, Λ ≥ λ > 0, (26)

the equilibrium zeq = [ eT
eq θ̃

T

eq
]T = 0 of the sys-

tem (19),(20) is globally uniformly exponentially stable.



Proof 2: Consider the equation (20) and the positive
definite Lyapunov function candidate

V (k) = θ̃(k)T θ̃(k). (27)

By taking into account (20),(13), (17), the first difference
of V , ∆V (k) = V (k + 1) − V (k), is given by:

∆V (k) = θ̃
T
(k)CT (k)C(k)θ̃(k), (28)

where

C(k) = Q
1/2
θ Γ(k)Ω(k). (29)

As shown in [1], the persistency of excitation condition (26)
implies that there exists a constant0 < α < 1 such that

k+N−1∑
l=k

∆V (l) ≤ −αV (k). (30)

It is worth noticing that the above inequality may be
satisfied even for a constantα∗ > 1; however, in this case
the inequality still holds for any positiveα < 1, since
−α∗V ≤ −αV .

Since

k+N−1∑
l=k

∆V (l) = V (k + N) − V (k),

inequality (30) implies that

V (k + N) ≤ (1 − α)V (k), ∀k ≥ k0.

For anyk ≥ k0, let L > 0 the minimum integer value
such thatk ≤ k0 + (L + 1)N . Then, taking into account
that ∆V (k) ≤ 0, the previous inequality yields

V (k) ≤ V (k0 + LN) ≤ (1 − α)V (k0 + (L − 1)N)
≤ (1 − α)2 V (k0 + (L − 2)N)
...

≤ (1 − α)L V (k0)

≤ 1
1 − α

(1 − α)(k−k0)/N V (k0).

Therefore

‖θ̃(k)‖ ≤
√

1
(1 − α)

(1 − α)(k−k0)/2N‖θ̃(k0)‖

which proves the global uniform exponential convergence
of θ̃(k). SinceΩ(k) is bounded, by virtue of (19) the global
uniform exponential convergence ofe(k) follows. �

From exponential stability of the equilibrium of the
unperturbed system (19),(20) it can be inferred ultimate
uniform boundedness of the solution of the error dynamics
in the presence of bounded interpolation errors.

VI. FAULT DETECTION, ISOLATION AND

IDENTIFICATION

Once the residuals vectorr(k) is computed at each step,
a fault is declared if each component ofr(k) exceeds a
suitably selected thresholdρi, i.e.,

|ri(k)| > ρi i = 1, . . . , n. (31)

Thea priori selection of each threshold should be based on
the expressions of the residuals vector (18). Namely, proper
setting of the thresholds requires an accurate knowledge
of the uncertainties influence on the residuals. However,
this approach often leads to extremely conservative results.
Therefore, an empirical approach may be pursued to set
the residuals thresholds in alternative to (or in combination
with) the approach based on thea priori knowledge of
the uncertainties. Namely, a number of experiments in the
absence of faults may be performed and the corresponding
residuals recorded; then, the thresholds can be set on the
basis of the maximum absolute values of each component
of the residuals vector. Of course, the experimental trials
should be chosen following the worst-case criterium for
the residuals, i.e., the uncertainties influence should be the
maximum possible.

On the other hand, a complete fault diagnosis scheme
should ensure not only the early and reliable detection of
the failures, but also the isolation of the fault, i.e., the
localization of the failure. The expressions of the residuals
vector (18) clearly show that the signatures of the faults
reflect the structure of the fault vectorf . Hence, different
faults correspond to distinct fault signatures on the residu-
als: this implies that a reliable fault isolation can be ensured.

The problem of fault identification (i.e., the determination
of the fault time evolution as accurately as possible) is a
difficult task, since only the combined effect of uncertainties
and faults can be estimated and not the two contributions
separately. In other words, the uncertainties and the faults
affect the estimation error dynamics in the same way, thus
making impossible a clear distinction between faults and
uncertainties influence. Therefore, the best estimate of the
fault vector can be obtained only by takinĝf = η̂. In detail:

• before a fault is declared (i.e., all the components of
r(k) are below the chosen thresholds),f̂(k, x(k)) is
set to the null vector;

• after the detection of a fault (i.e., some components
of r(k) exceed the corresponding thresholds), the
corresponding components of the fault vector are set
equal to those of̂η(k, x(k), ū(k)).

Then, after the detection an estimate of the faultδu can
be determined from̂f if the relationf = B δu is left-
invertible.

VII. C ASE STUDY

In this section an experimental case study is devel-
oped to test the effectiveness of the proposed approach.
A conventional industriall-degrees-of-freedom mechanical



manipulator is chosen as test bed. The set-up is based on
the industrial manipulator Comau SMART-3 S. The manip-
ulator has a six-revolute-joint anthropomorphic geometry
with nonnull shoulder and elbow offsets and non-spherical
wrist. The joints are actuated by brushless motors via
gear trains; shaft absolute resolvers provide motor position
measurements. The robot is controlled by the C3G 9000
control unit. It is worth remarking that the SMART-3 S is a
conventional industrial robot and not a research prototype;
hence, all the typical drawbacks of industrial manipulators
(e.g., joint friction, stiction and backlash due to the gear
trains, disturbances on the torque delivered by the actuators,
unmodeled elasticity of the joint shafts) are present. Various
operational modes are available in the control unit, allowing
the PC to interact with the original controller both at
trajectory generation level and at joint control level. To
implement model-based control schemes, the operational
mode 4 is used in which the PC is in charge of computing
the control algorithm and passing the references to the
current servos through the communication link.

Details on the model and the motion control scheme are
omitted for brevity and can be found in [2].

A fifth-order polynomial trajectory is imposed at each
joint of the manipulator with null initial and final velocities
and accelerations. The total (programmed) duration of the
motion is4 s. The commanded trajectory has been then exe-
cuted. In order to safely emulate the presence of sensor and
actuator faults, an additive signal has been superimposed
to the measured experimental data off-line. Namely, the
sequenceδu(k) and has been simply added to the measured
fault-free sequenceu(k). In detail, two actuator faults have
been considered affecting the driving torques generated by
the actuators of the joints 3 (occurring at timetfault = 1 s)
and 5 (occurring at timetfault = 3 s), with the following
time profile:{

δu3(k) = 60 (1 − e−(kT−1)/0.002) kT ≥ 1
δu5(k) = 40 (1 − e−(kT−3)/0.08) kT ≥ 3.

The first fault has to be considered as a an abrupt fault,
while the second can be seen as an incipient fault.

The diagnostic observer has been implemented at a
sampling rate of500 Hz (T = 2 ms). The matrix gains
have been chosen as

Ko =
[

K1 TIn

On K2

]
, K1 = K2 = 0.1 I3,

Q−1
θ =0.05 · diag{0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 2, 2, 2, 2, 2, 3}.
In order to perform a proper fault detection, suitably

defined thresholds on the residuals has been selected.
Thresholds setting has been achieved by measuring the
residuals obtained in a set of fault-free trajectories under
various operating conditions. The obtained numerical values
of the thresholds can be found in [2].

As for the choice of the parametric model of the uncer-
tainties, it is possible to resort to various approaches. A
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Fig. 1. Residuals for the emulated actuator fault with adaptive estimation
of uncertainties.
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Fig. 2. Estimate of the fault time evolution with adaptive estimation of
uncertainties.

widely adopted choice is represented by the so-called on-
line approximators [4],[11]–[15], e.g., RBF neural networks
and polynomials. However, in the case of industrial robots,
the uncertainties model is usually known (e.g., friction
at low velocities, periodic torque disturbances), but the
corresponding parameters are not knowna priori. For the
robot used in the experiments an accurate dynamic model
is available except for the periodic torque disturbances.
Hence, a realistic model of the uncertainties is given by
(i = 1, . . . , 6): ηi = θi,

ηi+6 = θ7i + θ7i+1 sin(θ7i+2x1,i + θ7i+3)
+τi(k)θ7i+4 sin(θ7i+5x1,i + θ7i+6).

(32)

Figures 1 and 2 show the obtained results in the presence
of the emulated actuator fault. Namely, it can be seen



that a good trade-off between robustness to uncertainties
(i.e., low residuals) and sensitivity to faults is achieved by
adopting the proposed adaptive estimation technique; this
result is due to the accurate choice of the uncertainties
model. Once a fault is detected, it can be reliably isolated,
since the sole residuals corresponding to the faulty actuators
become larger than the corresponding thresholds. Also, a
fairly accurate fault identification is achieved (see Figure 2).

VIII. C ONCLUSION

In this paper an adaptive discrete-time fault diagnosis
approach for a class of nonlinear systems has been analyzed.
The approach combines the use of a diagnostic observer
with an adaptive uncertainties estimation technique, which
makes use of a parametric model of the uncertainties.
Convergence analysis of the resulting adaptive estimation
scheme has been carried out by using Lyapunov techniques
in discrete-time. Finally, the proposed approach has been
experimentally tested on a six-degree-of-freedom industrial
robot.
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