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Abstract

This paper deals with the fault detection problem
for linear system with unknown inputs. The H∞ norm
and H− index are employed to measure the robust-
ness to unknown inputs and the fault sensitivity, re-
spectively. Furthermore, by using the pole assignment
approach, the fault detection problem is transformed
to an unconstrained optimization problem. With the
aid of the gradient-based optimization approach, an
explicit formula for designing the desirable observer
gain is derived. On the other hand, the fault sensitiv-
ity over a finite frequency range can also be solved by
the proposed method, in which case no constraint is
required on D being of full column rank for a system
(A,B,C,D). Numerical simulation has demonstrated
the effectiveness of the present methodology.

1. Introduction

The research and application of robust fault detection
in automated processes has received considerable at-
tention during last decades. One of the popular ap-
proaches is to maximize the sensitivity due to faults
meanwhile minimizing the sensitivity due to unknown
inputs. In this sense, Ding and Frank [2] presented
a performance index expressed as a ratio of sensitiv-
ities of the residuals due to the unknown inputs and
the faults respectively. The design goal is to then con-
struct an observer for fault detection with the perfor-
mance index being minimized. This or similar idea is
commonly used amongst a number of subsequent pa-
pers for model-based robust fault detection systems
[4, 12, 14].
To solve this problem, some researchers use the

H∞ optimization technique [3, 10]. However, the re-
sults are not ideal since it is only a best-case solution
when H∞ norm is used to measure the fault sensitiv-
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ity. Therefore, a different norm/index is needed to
measure the fault sensitivity instead.
Similar to the H∞ norm optimization technique,

the H− method has also gained much attention re-
cently, which aims to study the worst-case fault sen-
sitivity performance of a fault detection observer. An
H− “norm” was defined in [4, 9] as the minimum
nonzero singular value of the transfer function matrix
from the fault to the residual output at the specific fre-
quency of ω = 0. In [1, 11], this definition was further
extended from the single frequency ω = 0 to a num-
ber of finite frequency ranges. It should be pointed out
that these sensitivity measures are not truly worst-case
measures due to the exclusion of possible zero singular
values of the transfer function matrix. A truly worst-
case fault sensitivity measure, H− index, was proposed
in [6, 7] to include the possible zero singular values of
the transfer function matrix. Specifically, the H− in-
dex was defined as the minimum singular value of the
transfer function matrix over a given frequency range.
Note that the constraint of “non-zero singular value”
is absent here, which (together with the absence of the
triangle inequality ka+ bk− ≤ kak−+kbk−) makes the
H− index no longer a norm (hence the term index ).
The frequency range can be either infinite (i.e. the en-
tire frequency spectrum) or finite frequency intervals.
Moreover, necessary and sufficient conditions in terms
of LMIs have been obtained for the proposedH− index
[7, 13]. However, only iterative LMI approach can be
used to solve fault detection problem when robustness
is also concerned. In this case, the solution may not
be ideal since the advantage of the LMI approach is
not fully utilized.
Following the above idea, a method for designing a

fault detection observer is proposed in this paper. It
is formulated as an optimization problem where H∞
norm is used to describe robustness and H− index to
measure the fault sensitivity. Moreover, the observer
poles are given as constraints. A gradient-based opti-
mization approach is facilitated by using the explicit
gradient expressions derived. Moreover, we also con-



sider the fault sensitivity over a finite frequency range
in which case the condition on the rank of D is no
longer required for a system (A,B,C,D). Numerical
simulation is used to illustrate the effectiveness of the
results.
Throughout this paper, k·k∞ is used to denote the

H∞ norm . σ̄(·) denotes the maximum singular value
of a matrix while σ(·) denotes the minimum singular
value of a matrix. All matrices, if their dimensions are
not explicitly stated, are assumed to have compatible
dimensions.

2. Problem Formulation

Consider the following linear time-invariant system

ẋ(t) = Ax(t) +Bww(t) +Bff(t)

y(t) = Cx(t) +Dww(t) +Dff(t) (1)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rm is the
unknown input vector including modelling error, un-
certain disturbance, process and measurement noises,
y(t) ∈ Rr is the measurement vector, and f(t) ∈ Rp is
the fault vector. Here, A, Bw, Bf , C, Dw and Df are
known constant matrices with appropriate dimensions.
Moreover, w(t) and f(t) are assumed to be vector norm
bounded and the pair (C,A) is observable.
The state observer under consideration is of the

form
.
x (t) = ALx(t) + Ly(t) (2)

y(t) = Cx(t)

where AL = A − LC and L is the observer gain ma-
trix to be designed for achieving design requirements.
Define the error state

e(t) = x(t)− x(t)
then it follows from (1) and (2) that

ė(t) = ALe(t)+(Bw−LDw)w(t)+(Bf−LDf )f(t) (3)
The residual vector r(t) is defined as

r(t) = y(t)− y(t)
= Ce(t) +Dww(t) +Dff(t)

The disturbance transfer functionHrw(s) from w(t)
to r(t) and the fault transfer function Hrf (s) from f(t)
to r(t) are obtained, respectively, as

Hrw(s) = C(sI −AL)−1(Bw − LDw) +Dw (4)

and

Hrf (s) = C(sI −AL)−1(Bf − LDf ) +Df (5)

For effective fault detection, the effect on the resid-
ual r(t) due to unknown inputs w(t) should be small
while that due to faults f(t) should be large. Obvi-
ously, the H∞ optimization techniques can be used to
handle this disturbance attenuation problem. In the
following, we introduce a notion to measure the effect

due to faults.

Definition 1 [7, 6]The H index of a transfer func-
tion G(s) over the frequency range [0, ω̄) is defined as

kG(s)k[0,ω̄]− = inf
ω∈[0,ω̄)

σ[G(jω)] (6)

where σ denotes the minimum singular value.

Remark 1 To indicate the dependency on the fre-
quency range [0, ω̄), we write the H index of G(s)
as kG(s)k[0,ω̄]− . However, when the frequency range is
clear from the context, we simply write kG(s)k− .

Thus, the H− index of the fault transfer function
Hrf (s) can be used to describe a measurement of the
worst case fault sensitivity. The ratio of sensitivities

kHrw(s)k∞
kHrf (s)k[0,ω̄]−

thus gives a ‘noise-signal’ measure in a robust fault
detection context. Clearly, kHrw(s)k∞ should be kept
small so as to desensitize the influence of unknown in-
puts on the residual vector while kHrf (s)k[0,ω̄]− should
be made large to enhance the sensitivity due to faults.
In general, there is a trade-off between these two sen-
sitivities.
In summary, based on the above motivations, we

study the design problem of a fault detection observer
for system (1) as follows:

FDODP (Fault Detection Observer Design Prob-
lem): For system (1) with the observer (2) and a spec-
trum of [0, ω̄), 0 ≤ ω̄ ≤ ∞, determine an observer gain
matrix L such that

P(i) The error system (3) is asymptotically stable.
P(ii) The fault detection ‘noise-signal’ ratio

kHrw(s)k∞
kHrf (s)k[0,ω̄]−

is minimized.

In the following, we use the pole assignment ap-
proach to transform problem FDODP to a minimiza-
tion problem.
For the observer system matrix AL, the observer

gain L can be chosen such that all eigenvalues are
in the left half s-plane and distinct and spec(AL) ∩
spec(A) = ∅. The reason that the eigenvalues are cho-
sen to be distinct is due to an eigenvalue sensitivity
consideration (less susceptible to perturbation). This
is always possible since (C,A) is observable. Then
there exists a real invertible V such that

V ALV
−1 = Λ (7)



where Λ is a real pseudo-diagonal matrix with spec(AL) =
spec(Λ). Specifically, we have

Λ = diag

µµ
α1 β1
−β1 α1

¶
, . . . ,

µ
αn0 βn0
−βn0 αn0

¶
, γ1, . . . , γn−2n0

¶
Note that the eigenvalues of Λ are the desired ob-
server eigenvalues, αi ± jβi, i = 1, . . . , n0, and γk,
k = 1, . . . , (n− 2n0). Although V is not an eigenvector
matrix, there exists a unitary U such that V U is an
eigenvector matrix of AL. Nevertheless, V defined via
(7) is non-unique. By writing (7) as

V A− ΛV =MC, L = V −1M (8)

then for each M ∈ M, a unique V is obtained since
spec(Λ) ∩ spec(A) = ∅, where
M :=

©
M ∈ Rn×r | V is invertible and satisfies V A− ΛV =MC

ª
and the setM is open and dense in Rn×r.
Obviously, condition P(ii) in problem FDODP can

be expressed as

min
L

kHrw(s, L)k∞
kHrf (s, L)k[0,ω̄]−

For a given fixed set of desired observer poles charac-
terized by Λ and condition (8), problem FDODP can
be re-formulated as

inf
M∈M

kHrw(s,M)k∞
kHrf (s,M)k[0,ω̄]−

for 0 ≤ ω̄ ≤ ∞ (9)

3. Gradient-based Optimization:
Infinite Frequency Case

In this section, the problem FDODP will be consid-
ered over the full frequency spectrum, i.e. ω̄ = ∞.
Note that when Df does not satisfy the full column
rank condition or even equals to zero, kHrf (s)k[0,ω̄]− is

always zero for ω̄ =∞. Hereby the ratio kHrw(s)k∞
kHrf (s)k[0,∞]

−
does not make sense. Therefore, we assume Df is of
full column rank in this section.
The minimization problem in (9) can be rewritten

as
inf

M∈M
J (10)

with

J :=

°°C(sI −AL)−1(Bw − LDw) +Dw°°∞
kC(sI −AL)−1(Bf − LDf ) +Dfk−

(11)

To facility the solution of the minimization problem
(10), we introduce the following lemma.

Lemma 1 [5] For a given M0, if

1. kHrw(s,M0)k∞ = sup
ω∈R+

σ̄(Hrw(jω,M0)) at ω0 <

∞ and σ̄(Hrw(jω0,M0)) > σ̄(Hrw(jω,M0)), ∀ω 6=
ω0;

2. σ0 = σ̄(Hrw(jω0,M0)) is a distinct singular value

of Hrw(jω0,M0),

Then,

∂ kHrw(s,M)k∞
∂M

¯̄̄̄
M=M0

=
∂σ̄(Hrw(jω,M))

∂M

¯̄̄̄
ω=ω0
M=M0

Similar to Lemma 1, we have the following result.

Lemma 2 For a given M0, if

1. kHrf (s,M0)k− = inf
ω∈R+

σ(Hrf (jω,M0)) > 0 at ω0 <

∞ and σ(Hrf (jω0,M0)) < σ(Hrf (jω,M0)), ∀ω 6=
ω0;

2. σ0 = σ(Hrf (jω0,M0)) is a distinct singular value
of Hrf (jω0,M0),

Then,

∂ kHrf (s,M)k−
∂M

¯̄̄̄
M=M0

=
∂σ(Hrf (jω,M))

∂M

¯̄̄̄
ω=ω0
M=M0

Based on Lemma 2, (10) corresponds to an uncon-
strained minimization problem with (11) differentiable
almost everywhere in the δ neighborhood ofM0. Thus,
a gradient-based optimization procedure can be ap-
plied. The gradient of J with respect to M is then
summarized in the following proposition with proof
omitted.

Proposition 1 Suppose the maximum singular value
of C(jωI−AL)−1(Bw−LDw)+Dw and the minimum
singular value of C(jωI−AL)−1(Bf −LDf )+Df are
distinct, where Df is assumed to be of full column rank.
If

(C(jωI −AL)−1(Bw − LDw) +Dw)v1
= σ̄(C(jωI −AL)−1(Bw − LDw) +Dw)u1

(C(jωI −AL)−1(Bf − LDf ) +Df )v2
= σ(C(jωI −AL)−1(Bf − LDf ) +Df )u2

where (v1, u1), (v2, u2) are the corresponding singular
vector pairs (unit norm), then

∂J
∂M

=

∂

µkC(sI−AL)−1(Bw−LDw)+Dwk∞
kC(sI−AL)−1(Bf−LDf )+Dfk−

¶
∂M

=
1

kC(sI −AL)−1(Bf − LDf ) +Dfk−
{Re[CX1

−C(jωEI −AL)−1(Bw − LDw)

∗v1uT1 C(jωEI −AL)−1V −1
−Dwv1u

T
1 C(jωEI −AL)−1V −1]T }

−
°°C(sI −AL)−1(Bw − LDw) +Dw

°°
∞

kC(sI −AL)−1(Bf − LDf ) +Dfk2−
{Re[CX2

−C(jωF I −AL)−1(Bf − LDf )

∗v2uT2 C(jωF I −AL)−1V −1
−Dfv2u

T
2 C(jωF I −AL)−1V −1]T } (12)



where °°C(sI −AL)−1(Bw − LDw) +Dw

°°
∞

= σ̄(C(jωEI −AL)−1(Bw − LDw) +Dw),°°C(sI −AL)−1(Bf − LDf ) +Df

°°
−

= σ(C(jωF I −AL)−1(Bf − LDf ) +Df ),

AX1 −X1Λ

= LC(jωEI −AL)−1(Bw − LDw)v1u
T
1 C(jωEI −AL)−1

∗V −1 + LDwv1u
T
1 C(jωEI −AL)−1V −1,

AX2 −X2Λ

= LC(jωF I −AL)−1(Bf − LDf )v2u
T
2 C(jωF I −AL)−1

∗V −1 + LDfv2u
T
2 C(jωF I −AL)−1V −1

Now, we summarize the process of obtaining the
observer gain in the following schematic algorithm.

Algorithm FDODP: Given A, Bw, Bf , C, Dw,
Df and Λ.

S1 Select an initial guess M0 ∈ M and solve equa-
tion (8), the initial observer gain is given by L0 =
V −1M0. Then determine ωE0 and ωF0 such that°°C(sI −A+ L0C)−1(Bw − LDw) +Dw

°°
∞

= σ̄(C(jωE0I −A+ L0C)−1(Bw − LDw) +Dw)°°C(sI −A+ L0C)−1(Bf − LDf ) +Df

°°
−

= σ(C(jωF0I −A+ L0C)−1(Bf − LDf ) +Df )

S2 Solve minimization problem (10) based on the ob-
jective function (11) and its gradient function (12).

S3 Let Mopt be the optimal solution obtained in S2.
Solve equation (8), the required observer gain is
given by Lopt = V −1Mopt.

4. Finite Frequency Case

In the previous sections, kHrf (s)k[0,ω̄]− is considered
over the full frequency spectrum, i.e. ω̄ = ∞. How-
ever, in real applications, it would be preferred to con-
sider the fault sensitivity within the lower frequency
range including DC (ω = 0), i.e. ω̄ is a finite number.
Moreover, kHrf (s)k[0,+∞]− is always zero when Df is
not of full column rank. In this case, the result pro-
posed in previous section is no longer applicable. Un-
fortunately, such full column rank constraint on Df is
often not satisfied in practice. Therefore, it is neces-
sary to consider the case of kHrf (s)k[0,ω̄]− over a finite
frequency range in which case the constraint on Df
can be avoided. In this section, the problem is consid-
ered over a finite frequency spectrum, i.e. ω̄ is a finite
number and hereby Df is not assumed to be of full
column rank.

In summary, for the finite frequency case, problem
FDODP will be replaced by

inf
M∈M

kHrw(s,M)k∞
kHrf (s,M)k[0,ω̄]−

for 0 ≤ ω̄ <∞ (13)

At first, we introduce the following lemma which is
a variant of [11, Lemma 4].

Lemma 3 [13]Given W (s) and M(s) such that

sup
ω∈[0,ω̄)

σ[W (jω)] = δ , kW (s) +M(s)k[0,+∞]− > α

(14)
then

kM(s)k[0,ω̄]− > α− δ

In this case, although the method proposed in pre-
vious sections cannot be directly applied to solve prob-
lem (13), we can solve the following problem instead:

inf
M∈M

kHrw(s)k∞
kW (s) +Hrf (s)k[0,+∞]−

(15)

whereW (s) is a given weighting transfer function such
that kW (s) +Hrf (s)k[0,+∞]− is nonzero.

Remark 2 Note that problem (15) is not equivalent
to problem (13). An optimal solution L obtained from
problem (15) can make the ratio kHrw(s)k∞

kHrf (s)k[0,ω̄]−
small but

not the smallest one.

Suppose the state space realization ofW (s) is given
by (Ar, Br, Cr,Dr). A realization of W (s)+Hrf (s) is Ar 0 Br

0 A− LC Bf − LDf

Cr C Dr +Df


Correspondingly, a similar proposition is given as fol-
lows without proof.

Proposition 2 Suppose the maximum singular value
of C(jωI−AL)−1(Bw−LDw)+Dw and the minimum
singular value ofW (jω)+C(jωI−AL)−1(Bf−LDf )+
Df are distinct, whereW (s) is a given weighting trans-
fer function such that kW (s) +Hrf (s)k−is nonzero. If

(C(jωI −AL)−1(Bw − LDw) +Dw)v1

= σ̄(C(jωI −AL)−1(Bw − LDw) +Dw)u1

(W (jω) + C(jωI −AL)−1(Bf − LDf ) +Df )v2

= σ(W (jω) + C(jωI −AL)−1(Bf − LDf ) +Df )u2

where (v1, u1), (v2, u2) are the corresponding singular
vector pairs (unit norm), then

∂J
∂M

=

∂

Ã
kC(sI−AL)−1(Bw−LDw)+Dwk∞°°°W (s)+C(sI−AL)−1f (Bf−LDf )+Df

°°°−
!

∂M

=
1

kW (s) +C(sI −AL)−1(Bf − LDf ) +Dfk−
{Re[CX1



−C(jωEI −AL)−1(Bw − LDw)

∗v1uT1 C(jωEI −AL)−1V −1
−Dwv1u

T
1 C(jωEI −AL)−1V −1]T }

−
°°C(sI −AL)−1(Bw − LDw) +Dw

°°
∞

kW (s) + C(sI −AL)−1(Bf − LDf ) +Dfk2−
{Re[CX2

−C(jωF I −AL)−1(Bf − LDf )

∗v2uT2 C(jωF I −AL)−1V −1
−Dfv2u

T
2 C(jωF I −AL)−1V −1]T }

where °°C(sI −AL)−1(Bw − LDw) +Dw

°°
∞

= σ̄(C(jωEI −AL)−1(Bw − LDw) +Dw),°°W (s) + C(sI −AL)−1(Bf − LDf ) +Df

°°
−

= σ(W (jωF ) + C(jωF I −AL)−1(Bf − LDf ) +Df ),

AX1 −X1Λ

= LC(jωEI −AL)−1(Bw − LDw)v1u
T
1 C(jωEI −AL)−1

∗V −1 + LDwv1u
T
1 C(jωEI −AL)−1V −1,

AX2 −X2Λ

= LC(jωF I −AL)−1(Bf − LDf )v2u
T
2 C(jωF I −AL)−1

∗V −1 + LDfv2u
T
2 C(jωF I −AL)−1V −1

Remark 3 It is obvious that W (s) plays an impor-
tant role in this case. Generally speaking, a better
W (s) should be chosen to satisfy: (i) sup

ω∈[0,ω̄)
σ[W (jω)]

is small; (ii) inf
ω∈[ω2,+∞)

σ[W (jω)] is large for ω2 > ω̄;

(iii) The transition frequency range [ω̄,ω2] is narrow.

5. Numerical Simulation

Consider the linearized longitudinal dynamics of a VTOL
aircraft as proposed by Tripathi [8]. The continuous-
time state-space description is

ẋ(t) = Ax(t) +Bu(t) +Bww(t)

y(t) = Cx(t)

where the states x(t) are the horizontal velocity (knot),
vertical velocity (knot), pitch rate (degree/s) and pitch
angle (degree), respectively, and the actuator inputs
u(t) are the collective pitch control and the longitu-
dinal pitch control respectively. In [8] , the system
parameters are given as follows:

A =


−9.9477 −0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 −24.4221
26.0922 2.6361 −4.1975 −19.2774
0 0 1 0

 ,

B =


0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900

0 0

 , Bw =


0 0
0 1
1 0
0 0

 ,

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1


For system (1), the rest of the parameters are assumed
to be:

Bf = B, Dw =


0 0.2
0 0.1
0.3 0
0 0

 , Df =


0 0
0 0
0 0
0 0


It is obvious that kHrf (s)k[0,+∞]− is always zero since
Df is not of full column rank. Thus, the problem will
be investigated over a finite frequency range [0, 0.1)
instead of the whole frequency range.
The choice of the target poles of observer (differ-

ent from those of the original system: {—6.8271, —
1.0112+1.5146i, —1.0112—1.5146i, —2.5506}) should re-
flect the response speed requirement and a faster speed
generally lead to a larger feedback gain. Thus, a com-
promise between them should be reached. In our ex-
ample, the poles of the diagnostic observer are de-
signed at −1, −2, −3, −4. That is,

Λ = diag
¡ −1, −2, −3, −4 ¢

With the aid of the techniques proposed in Sec-
tion 4, a frequency weighting transfer matrix W (s) is
selected as

W (s) =


50(s+0.1)
s+100

0

0 0

0 50(s+0.1)
s+100

0 0


then a state space realization (Ar, Br, Cr,Dr) ofW (s)
is given by

Ar = diag
¡ −100, −100, −100, −100 ¢ ,

Cr = diag
¡ −70.6753, 0, −70.6753, 0

¢
,

Br =


70.6753 0
0 0
0 70.6753
0 0

 , Dr =


50 0
0 0
0 50
0 0


HereDf+Dr is of full column rank, sup

ω∈[0,ω̄)
σ[W (jω)] =

0.0707 with ω̄ = 0.1 and inf
ω∈[ω2,+∞)

σ[W (jω)] = 1.0011

with ω2 = 2.
Using the algorithm FDODP developed in this pa-

per, the optimization is initiated with a random initial
value of M. The numerical simulation was carried out
using MATLAB 6.1 (Control Toolbox 5.1, Optimiza-
tion Toolbox 2.1.1) and an optimal observer gain Lopt
is obtained. For comparison, an observer gain Lplace
which gives the same spectrum is obtained from the
command place.m (the command has also taken the
sensitivities of the eigenvalues into account). We have,

Lopt =


4.3021 −10.0144 −3.5587 4.8599
6.3561 −1.6791 −0.9140 −2.4219
−21.1044 47.6843 17.6497 −22.7378
2.9567 −6.7268 −2.7124 3.4869





Lplace =


−8.9477 −5.7813 −4.7705 5.0337
52.1659 29.1673 29.9753 −24.4221
26.0922 21.9135 18.0799 −19.2774
0 −4 −3 4


The system is simulated with unknown input w(t) =£
sin(2t)e−0.05t cos(2t)e−0.05t

¤T
. For an actuator

fault f(t) such that f(t) =
£
1.2 0.8

¤T
, t ≥ 6s and

f(t) =
£
0 0

¤T
elsewhere, Figure 1 shows the evolu-

tion of the residual r(t) responses due to observer gain
Lopt and Lplace respectively. In the case of L = Lopt,
despite the influence of unknown input w(t), a thresh-
old at ±0.3 can easily be imposed on the residual sig-
nals to indicate the occurrence of fault at the time
t = 6.1s. On the other hand, no reasonable threshold
can be imposed to distinguish the influence between
faults and unknown input in the case of L = Lplace.
In other words, the robust fault detection sensitivity
in the case L = Lplace is comparatively smaller than
in the case L = Lopt.

6. Conclusion

In this paper, we deal with a worst-case fault detec-
tion observer design problem. It is formulated as an
optimization problem with the observer poles as con-
straints where H∞ norm is used to describe robustness
to unknown inputs and H− index is used to measure
the fault sensitivity. The gradient-based optimization
approach is facilitated by the explicit gradient expres-
sions derived. Moreover, we also consider the fault sen-
sitivity over finite frequency range in which case the
condition on the rank of D is no longer required for a
system (A,B,C,D). Numerical simulation performed
on the fault detection observer design of a VTOL air-
craft is given to demonstrate the effectiveness of the
present methodology.
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Figure 1. Comparison of two residual effects
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