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ABSTRACT 
This paper presents design and control of a vibrating 
gyroscope. The MEMS based device has been designed in 
the Pro-E environment and simulated in a finite element 
domain in order to approximate its dynamic characteristics 
with a lumped model. The device is a modified version of 
the existing MEMS gyroscope proposed in [2].  An 
adaptive control, which has similar characteristics as the 
one proposed in [3], is added in order to guarantee the 
stability of the gyroscope.  

 
1. INTRODUCTION 
The common challenge in most vibrating gyroscopes is the 
minimization of the coupling between the driving and 
sensing axes. Several different designs are proposed 
recently to improve the performance of the vibrating rate 
gyroscopes by minimizing this coupling. The second 
challenge, which concerns the controller design, is the fact 
that the quantity that one wants to measure, i.e. the angular 
velocity, is an unknown term when the controller is 
designed.  There may also exist other disturbances affecting 
the Couette and squeeze film based damping which may 
change due to variations in temperature or  operating 
conditions. 
This paper studies the first two problems by improving the 
design of one of the MEMS gyroscope proposed in [2] by 
adding an adaptive controller similar to the one proposed in 
[3]. The controller guarantees the Lyapunov stability i.e., 
all signals in the system remain bounded. This study shows 
that the boundedness of signals does not guarantee a 
consistent estimate of the unknown angular velocity.  A 
new technique is proposed to consistently estimate the 
unknown angular velocity of the MEMS gyroscope.  
Figure 1 shows the basic structure of the vibrating MEMS 
gyroscope as described by Yoichi et. al. in [2]. 
  

 
 

Fig.1: Assembly of the gyroscope, modified from 
reference [2]. 

 
The proof mass vibrates in x-direction and the angular 
velocity around z-direction is sensed by measuring the 
displacement of the proof mass in y-direction. In order to 
further reduce the coupling between the x and y-axes, slight 
modifications have been made on the dimensions of the 
outer beams and the thickness of the proof mass. The 
technical drawing of the modified design of [2] is shown in 
Figure 2.  The proof mass has rectangular cross-sectioned 
comb fingers, which are aligned with another set of comb 
fingers anchored to the stationary part of the device.    
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Fig. 2: Technical drawing of the gyroscope.  All 
dimensions are in microns. 

 
 
Four outer beams suspend the proof mass. In the original 
design [2], four inner beams are created by essentially 
cutting four legs on the proof-mass. The electro static force 
generated by the comb actuator vibrates the proof mass in 
x-direction.  If the proof mass rotates with respect to z-axis, 
a Coriolis force is generated in the direction of the y-axis. 
This force moves the proof mass in the direction of the y-
axis. The displacement in y-direction is proportional to the 
angular rate of rotation with respect to z-axis. The 
displacement is measured by the capacitance change in  
y-direction. Simulated motions of the device in x and y 
directions are shown in Figures 3 and 4, respectively [1]. 
All simulations are performed in Pro-E and Pro-Mechanica  
and  they based on the technical drawing given in Figure 2.  
 

 
    Fig. 3.  Deflection of the outer beams in x-direction. 

 

 
     Fig. 4.  Deflection of the inner beams in y-direction 

 
3.  DYNAMIC MODEL FOR CONTROLLER DESIGN 
Referring to the lumped model of the vibrating gyroscope 
in Figure 5, and assuming that the angular rate Ω is 
constant, the equations of motion for the gyroscope can be 
written as: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  The lumped model of the vibrating gyroscope 
 

 
••••• Ω+=++++ ymuykyCxkxCmx xyxyxxxx 2

     (1) 
••••• Ω−=++++ xmxkxCykyCmy xyxyyyyy 2

     (2) 
 
Where m is the vibrating mass, x and y are the coordinates 
of the proof mass relative to the fixed frame, xxk , yyk , xyk , 
are the spring coefficients for the x and y coordinates and 
the coupling respectively.  Similarly, the parameters 

xxC , yyC , xyC , are the damping coefficient for the x and y 
coordinates and the cross coupling, respectively; u(t) is the 
electrostatic driving force, Ω  is the unknown angular 
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velocity to be measured, and •Ωym2 , •Ω− xm2  are the 
coupling forces due to the Coriolis effect.  

 
The parameters of the lumped model  (1)-(2) are estimated 
by simulating the vibrating gyroscope in Pro-E and Pro-
Mechanica. Application of step input type forces to the 
proof mass in x and y-directions generate responses from 
the gyroscope through which the unknown coefficients  
[ xxk , yyk , xyk , xxC , yyC xyC ] can be estimated  under the 
assumption that the response of the distributed system in 
Figure 2 can be approximated by the lumped model of 
Figure 5.  Only the structural damping is assumed to exist  
in the distributed model. The damping effect due to squeeze 
film and Couette flows are assumed negligible. This last 
assumption can be justified if the proof-mass is vibrating 
under vacuum. Following the usual convention, (1) and (2) 
are further transformed into forms where the quality factors 
(q, q1, q2) corresponding to the damping coefficients 
characterize the dynamics as in (3) – (4) below: 
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coupling and ( 21,, qqq ) are the quality factors in  x and y 
and coupling directions, respectively. Ω  is the quantity of 
interest on this angular velocity measurement device and 
this quantity complicates the controller design since it 
appears as an unknown term in (3)-(4).   
 
 
3. CONTROLLER DESIGN FOR THE 
 VIBRATING GYROSCOPE 
The control problem in a vibrating gyroscope is to maintain 
the proof mass to oscillate in x-direction at a given 
frequency and amplitude despite the facts that the motions 
in x and y directions are coupled and the angular frequency 

Ω  is unknown. Typically the desired motion trajectory in 
x-direction is specified as   
 

tsinAx nd ω=            (5) 
 
Alternatively the desired motion can also be expressed as 
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By comparing (6) and (3) it is easy to see that the control 
signal given below 
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with 
 

 xBe n
2ων −−= •     (8) 

 
generates the desired motion specified in (6). In (8,) the 
parameter B is chosen to introduce controllable damping 
into the error dynamics which will be shown explicitly in 
(12) , later.  
 
Obviously the solution (7) assumes that the states 
( , &, , &)x x y y  and Ω  are available to the controller.  
However, since the angular velocity Ω  is unknown and it 
is indeed the quantity that needs to be determined, one has 
to consider the adaptive control design techniques [4-6] in 
order to solve the control problem.  
In terms of an estimated angular velocity Ω̂ , the controller 
(7)  becomes: 
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re-arranging equations (6)-(8) gives: 
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      (10) 
 
and by defining the tracking error  dxxe −= ,  (10) can 
be written as 
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Substituting ν from (8), the tracking error dynamics takes 
the form 
 



 

( ) •••• Ω−Ω=++ yeBee n
ˆ22ω   (12) 

 
Since both B>0  and  ωn>0   the error will approach to zero 
if  Ω  is known exactly. In order to analyze the stability of 
the error equation (12) the following Lyapunov function is 
defined 
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Further, introducing the measurement  error ( )Ω−Ω= ˆδ , 
the derivative of the  Lyapunov function becomes  
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In order to maintain a bound on the control error e and the 
estimation error δ  one requires &V ≤ 0  which can be 
achieved by choosing 
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If Ω̂  is small and within close vicinity of  Ω,  i.e., . 

0)ˆ( 2 ≅Ω−Ω  then 02
2

≤−= •• BeV .  

An estimate of the angular velocity, Ω̂  can be obtained 
from (17) and the definition ( )Ω−Ω= ˆδ  which result in 
the following expression to estimate the angular velocity Ω. 
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Figures 6a, 6b show the behavior of the Lyapunov function.  
The results are obtained by simulating the lumped model 
(3)-(4) under the controller (9) operating with the 
estimation algorithm (18). The parameters of the lumped 
model are given in the Appendix. It is easy to see that that 
the Lyapunov function is decreasing but not necessarily 
reaching zero exactly since the integration in (18) is 
performed numerically. The negative semi-definite 
Lyapunov function guarantees that all signals in the 
controlled system will be bounded and therefore the 
estimation error ( )Ω−Ω= ˆδ  will also be remained 
bounded but it is difficult to establish conditions for 

convergence to zero. In fact, Figure 7 shows that the 
estimation error remains bounded but does not necessarily 
converge to zero.  
 
An alternative approach to obtain a better estimate of the 
angular velocity Ω can be formulated as follows. Since the 
Lyapunov based controller (9) makes sure that the tracking 
error dxxe −=  goes to zero, as evident from Figure 8,  
then upon substitution of  

 
x x A td n= = sinω  into (4), the proof mass dynamics  in 
y-direction takes the form,  

 
 

 
Fig. 6a.  Convergence of the Lyapunov function 

 
 
 

 
Fig. 6b.  The Lyapunov function expanded in the final 

convergence region. 
 
 



 

 
Fig. 7:  Estimated angular speed $Ω ,  the true value is 

Ω = 1 rad / sec  
  

     
Fig. 8.  Convergence of the tracking error e(t)  to zero.  
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which can be simplified to: 
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The Laplace transform of (20) gives the steady state 
solution  : 
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The measured output amplitude y(t)  reaches its maximum 
at: 
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Since ymax is a measurable quantity then the unknown 
angular velocity Ω can be determined from (23) and (21) by 
solving for  Ω.       
    
Figure 9 shows the simulated response of the MEMS 
gyroscope in the y-direction for an input angular velocity of  
Ω = 1 rad / sec .  The parameters of the system are again 
the same as listed in the Appendix.  The estimated angular 
velocity is found to be $ . / secΩ = 0 997 rad . which 
corresponds to  an estimation error of 0.24%.   

 
 

 
Fig. 9: y-direction motion of the proof mass 

 



 

 
5. CONCLUSIONS 
There is an inevitable cross-coupling between the 
orthogonal axes of a vibrating MEMS gyroscope. 
Furthermore the quantity that one wants to measure, i.e. the 
angular velocity of the proof mass, becomes an unknown 
disturbance term to the controller, which tries to maintain 
the proof mass to vibrate at fixed amplitude and frequency.  
In order to solve this problem an adaptive control system 
formulation has been used which simultaneously estimates 
the unknown angular velocity and controls the motion of 
the proof mass.    
 
It has been shown both analytically and through numerical 
simulations that a Lyapunov function based controller can 
maintain the proof mass at the desired amplitude and 
frequency therefore the tracking error goes to zero. 
Furthermore all signals within the control system, including 
the estimation error, remain bounded. However, despite the 
fact that the tracking error goes to zero, there is no 
guarantee that the estimation of the angular velocity will 
approach to the true value since the Lyapunov stability 
theorem can only guarantee the boundedness of signals.  
  
In order to obtain consistent estimates of the unknown 
angular velocity a new technique has been proposed which 
takes advantage of the fact that the tracking error goes to 
zero.  The proposed technique has been demonstrated 
through simulations on a modified MEMS gyroscope 
proposed by Yoichi et al [2].  
 
If the uncertainties of the system can be estimated, then 
sliding mode controller on the drive direction and a force 
balance controller on the sense direction can be constructed 
to consistently estimate the unknown angular velocity. This 
work is currently being developed and will be reported in 
the conference. 
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APPENDIX 
Model parameters which are used in the simulations are as 
follows.  
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