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Abstract— This paper presents two mean-square stability
tests for a jump-linear system driven by a finite-state machine
with a first-order Markovian input process. The first test
is based on conventional Markov jump-linear theory and
avoids the use of any higher-order statistics. The second test
is developed directly using the higher-order statistics of the
machine’s output process. The two approaches are illustrated
with a simple model for a recoverable computer control
system.

I. INTRODUCTION
Safety critical computer control systems such as digital

fly-by-wire aircraft are required to operate reliably in harsh
environments. Typical fault tolerant techniques like modular
redundancy and error correcting codes may not be tolerant
to common-mode faults that affect near simultaneously
more than one fault containment region. A technique that
is being investigated to deal with transient or soft common-
mode faults is error recovery with multiple dual-lock-step
processors together with new fault tolerant architectures
and communication subsystems [9], [10]. NASA Langley
Research Center’s Recoverable Computer System (RCS)
is such an example where error recovery is being studied
when transient faults are introduced into flight controllers
by high intensity electromagnetic radiation [12], [13] and
atmospheric neutrons [8]. During error recovery, different
control laws come into effect which can significantly alter
the dynamics of the closed-loop system. Stability analysis
for such system was first considered in [4]–[6], [16] under
the simplifying assumption that system faults were rare
events. Then in [7] a new class of jump-linear models was
introduced that captures the essential behavior of the closed-
loop system under more general conditions. This model
consisted of three distinct parts: a Markovian exosystem,
a finite-state machine and a jump-linear dynamical system.
Specifically, as shown in Fig. 1, the input process ν(k) is a
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Fig. 1. The jump-linear model under consideration.

homogeneous, finite-state, first-order Markov chain whose
state takes on symbols from the set ΣI = {η1, η2, . . . , ηM}
according to a probability transition matrix ΠI . (By con-
vention the column sums of ΠI are assumed to be unity.)
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In turn, the Markov chain drives a finite-state machine
M = (ΣI ,ΣS ,ΣO, δ, ω). The state of the machine, z(k),
takes on values from the set ΣS = {e1, e2, . . . , eN},
which is simply the collection of elementary vectors ej =
[0 · · · 0 1

︸︷︷︸

j-th position

0 · · · 0]T . The next state function δ : ΣI × ΣS 7→

ΣS is a mapping of the form

z(k + 1) = Sν(k)z(k),

where each matrix Sη , η ∈ ΣI , is a deterministic transition
matrix, i.e., a matrix where each column contains exactly a
single one and N − 1 zeros. The output function ω : ΣS 7→
ΣO is uniquely specified by the isomorphism

ω(ej) = ξj , j = 1, . . . , N.

It assigns to each state in ΣS a unique output symbol
from the set ΣO = {ξ1, ξ2, . . . , ξN}. Finally, the output
from the machine, θ(k) = ω(z(k)), is used to drive an
n-dimensional jump-linear dynamical system

x(k + 1) = Aθ(k)x(k).

The matrices Aξ, ξ ∈ ΣO, are completely arbitrary matrices
in IRn×n. A necessary and sufficient condition for mean-
square stability of such a system was developed in [7]
under the assumption that the finite-state machine produced
an output process which was first-order Markov. But, in
general, this is not always the case. So in this paper, a
more sophisticated stability analysis of the model class
is developed. It involves characterizing the precise nature
of random processes that are generated from finite-state
machines driven by Markov processes. This topic has been
addressed for more general classes of input processes in
[2], [11], and more recently for Markov processes in [14]
and [15]. Employing this literature, the main results of
the paper are two completely general mean-square stability
tests for jump-linear systems driven by finite-state machines
with first-order Markovian inputs. The first test is based
on conventional Markov jump-linear theory like that which
appears in [3]. It is developed exclusively in the context of
first-order Markov processes even though the output process
may be higher-order. The second test, on the other hand, is
derived directly using the higher-order statistics of θ(k).

The paper is organized as follows. In the next section,
a preliminary theorem is first given which characterizes
the Markovian nature of a process ρ formed by the direct
product of the input and output processes of a machine M,
i.e., ρ = (ν,θ). Then a mean-square stability analysis is



done for a jump-linear system driven by ρ. These results
can be viewed as being more general than the originally
stated problem. Section 3 begins with a fundamental the-
orem characterizing the Markovian nature of the output
process θ for a class of finite-state machines known as
unifilar. A stability analysis is then done for this class of
systems. Next, it is shown that every finite-state machine
has a unifilar representation with equivalent mean-square
stability characteristics. This leads to the second general
test for mean-square stability. In Section 4 the stability tests
are demonstrated using a simple example of a finite-state
machine frequently used to model recoverable computer
control systems. The paper’s conclusions are given in the
final section.

II. STABILITY ANALYSIS OF A JUMP-LINEAR
SYSTEM DRIVEN BY THE PROCESS ρ
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Fig. 2. A jump-linear system driven by the process ρ.

Fix an underlying probability space (Ω,F , P ) and con-
sider a jump-linear system as shown in Fig. 2. Here the
driving process ρ = (ν,θ) is comprised of an r-th order
Markov process ν and the corresponding output process θ

from a finite-state machine M driven by ν. The Markovian
nature of ρ was characterized in [14] by the following the-
orem. A proof is given here to help establish a fundamental
connection to the stability analysis that appears in the next
section.

Theorem 2.1: [14] Consider a process ρ = (ν,θ),
where ν and θ are, respectively, the input and output of
a finite-state machine M = (ΣI ,ΣS ,ΣO, δ, ω). If ν is an
r-th order Markov process independent of the initial state
of the machine, z(0), then ρ is also an r-th order Markov
process.
Proof : Consider an event in F denoted by

{ρ(k),ρ(k − 1), . . . ,ρ(k − m)},

where r ≤ m ≤ k. Precisely, this denotes the set of all
outcomes in Ω that produce a fixed but arbitrary sequence
ρ(k), ρ(k − 1), . . . , ρ(k − m). Now in the case where

δ(ν(i), ω−1(θ(i))) = ω−1(θ(i+1)), ∀i = k−m, . . . , k−1,

it follows immediately that

P{ρ(k),ρ(k − 1), . . . ,ρ(k − m)}

= P{ν(k),ν(k − 1), . . . ,ν(k − m),θ(k − m)}.

All other such events are impossible. From the assumption
that ν is r-th order Markov and independent of z(0), it

follows that ν(k) is independent of θ(k − m) for all r ≤
m ≤ k. Therefore,

P{ρ(k),ρ(k − 1), . . . ,ρ(k − m)}

= P{ν(k),θ(k − m)|ν(k − 1), . . . ,ν(k − m)} ·

P{ν(k − 1), . . . ,ν(k − m)}

= P{ν(k)|ν(k − 1), . . . ,ν(k − m)} ·

P{θ(k − m)|ν(k − 1), . . . ,ν(k − m)} ·

P{ν(k − 1), . . . ,ν(k − m)}

=
P{ν(k),ν(k − 1), . . . ,ν(k − m)}

P{ν(k − 1), . . . ,ν(k − m)}
·

P{θ(k − m),ν(k − 1), . . . ,ν(k − m)}. (1)

Using a similar argument it follows that

P{ρ(k − 1),ρ(k − 2), . . . ,ρ(k − m)}

= P{ν(k − 1),ν(k − 2), . . . ,ν(k − m),θ(k − m)}. (2)

Dividing (1) by (2) gives

P{ρ(k)|ρ(k − 1), . . . ,ρ(k − m)}

= P{ν(k)|ν(k − 1),ν(k − 2), . . . ,ν(k − m)}.

Finally, since again the input process ν is assumed to be
r-th order Markov, for any m ≥ r:

P{ρ(k)|ρ(k − 1), . . . ,ρ(k − m)}

= P{ν(k)|ν(k − 1),ν(k − 2), . . . ,ν(k − r)}

= P{ρ(k)|ρ(k − 1),ρ(k − 2), . . . ,ρ(k − r)}, (3)

and hence the proof.

Note that in light of (3), when r = 1, the transition matrix
for ρ can be written in terms of the transition matrix for ν

and the next state map for M as

P{ρ(k + 1) = (ηi, ξj)|ρ(k) = (η`, ξm)}

=

{
P{ν(k + 1) = ηi|ν(k) = η`} : δ(η`, em) = ej

0 : otherwise.
(4)

A more compact matrix form for this expression will be
described shortly. Also, the case where ν is i.i.d. (formally,
r = 0) can be handled in a similar fashion. In this case,
however, ρ is always first order Markov.

Next the mean-square stability of the jump-linear system

x(k + 1) = Aρ(k)x(k) (5)

is considered when r = 1. The following definition de-
scribes the exact notion of stability under consideration. The
subsequent theorem gives the desired stability test.

Definition 2.1: The jump-linear system (5) is mean-
square stable if for any initial condition x(0) and for any
initial state probability for ν(0) it follows that

‖Q(k)‖ → 0 as k → ∞,

where Q(k) := E{x(k)xT (k)}, or equivalently,

Q̂(k) → 0 as k → ∞,



where Q̂(k) := E{‖x(k)‖2} (cf. [1], [16]).
Theorem 2.2: The jump-linear system (5) is mean-square

stable when ν is a first-order Markov process if and only
if the matrix

A1 := (ΠI/O ⊗ In2) ·

diag(Aη1,ξ1
⊗ Aη1,ξ1

, . . . , AηM ,ξN
⊗ AηM ,ξN

)

has a spectral radius less than one, where

ΠI/O = (ΠI ⊗ IN ) diag(Sη1
, . . . , SηM

).
Proof : The claim follows directly from well known results
in [3]. The transition probability matrix for the process ρ,
namely ΠI/O, is obtained from (4).

Note that for the special case where Aηi,ξ = Aηj ,ξ

for all ηi, ηj ∈ ΣI , the jump-linear system is effectively
being driven only by θ. In the next section, this situation is
addressed in an alternative fashion.

III. STABILITY ANALYSIS OF A JUMP-LINEAR
SYSTEM DRIVEN BY THE PROCESS θ

The first issue addressed in this section is the Markovian
nature of the output process θ. The starting point is the
special case where θ is generated using a unifilar machine
as described in [15]. After the definition, the key theorem
characterizing θ is given. A proof is provided for complete-
ness. In particular, note that this result shows that higher-
order Markov processes are in general always present in the
jump-linear system shown in Fig. 1.

Definition 3.1: [15] A finite-state machine M̃ =
(ΣI , Σ̃S , Σ̃O, δ̃, ω̃) is unifilar if for any fixed state em ∈
ΣS , δ̃(ηi, em) 6= δ̃(ηj , em) whenever ηi 6= ηj .

Theorem 3.1: [15] Consider a unifilar finite-state ma-
chine M̃ = (ΣI , Σ̃S , Σ̃O, δ̃, ω̃) with input ν and output θ̃.
If ν is an r-th order Markov process, which is independent
of the initial machine state z̃(0), then θ̃ is an (r + 1)-st
order Markov process.
Proof : Consider an event of the form {θ̃(k +
1), θ̃(k), . . . , θ̃(k − m)} where r ≤ m ≤ k. Since
M̃ is assumed to be unifilar and the output function ω̃

is an isomorphism, this event is equivalent to the event
{ν(k),ν(k − 1), . . . ,ν(k − m), θ̃(k − m)}. Therefore,

P{θ̃(k + 1), θ̃(k), . . . , θ̃(k − m)}

= P{ν(k),ν(k − 1), . . . ,ν(k − m), θ̃(k − m)}

and similarly,

P{θ̃(k), θ̃(k − 1), . . . , θ̃(k − m)}

= P{ν(k − 1),ν(k − 2), . . . ,ν(k − m), θ̃(k − m)}.

The assumption that ν is an r-th order Markov process
independent of z̃(0) implies that {ν(k),ν(k−1), . . . ,ν(k−
m)} is independent of θ̃(k − m) when r ≤ m ≤ k. Thus,

P{θ̃(k + 1), θ̃(k), . . . , θ̃(k − m)}

P{θ̃(k), θ̃(k − 1), . . . , θ̃(k − m)}

=
P{ν(k),ν(k − 1), . . . ,ν(k − m)}P{θ̃(k − m)}

P{ν(k − 1), . . . ,ν(k − m)}P{θ̃(k − m)}
,

or equivalently,

P{θ̃(k + 1)|θ̃(k), θ̃(k − 1), . . . , θ̃(k − m)}

= P{ν(k)|ν(k − 1), . . . ,ν(k − m)}. (6)

Finally, since ν is Markov of order r, for every m ≥ r:

P{θ̃(k + 1)|θ̃(k), θ̃(k − 1), . . . , θ̃(k − m)}

= P{ν(k)|ν(k − 1), . . . ,ν(k − r)}

= P{θ̃(k + 1)|θ̃(k), θ̃(k − 1), . . . , θ̃(k − r)},

and hence the proof.

This result can also be shown to hold when r = 0, i.e.,
when ν is i.i.d., independent of whether M̃ is unifilar or
not. In addition, when r = m = 1 then (3) and (6) give,
respectively,

P{ρ(k)|ρ(k − 1)} = P{ν(k)|ν(k − 1)}

P{θ̃(k + 1)|θ̃(k), θ̃(k − 1)} = P{ν(k)|ν(k − 1)}.

Therefore, ρ = (ν, θ̃) is a first-order Markov process, and
θ̃ is a second-order Markov process, but their associated
transition probabilities are clearly equivalent. (Of course in
some special cases, the output process may be first-order,
but then every first-order process is trivially second-order.)
This observation is really at the center of the following
development. First a stability theorem is given for jump-
linear systems driven by unifilar machines.

Theorem 3.2: Consider a jump-linear system

x(k + 1) = Aθ̃(k)x(k), (7)

where θ̃ is generated by a unifilar finite-state machine M̃ =
(ΣI , Σ̃O, Σ̃S , δ̃, ω̃) with a first-order Markov input process,
which is independent of the initial machine state z̃(0). The
system is mean-square stable if and only if the matrix

B2 = (ΠO,2 ⊗ In2)·

diag(IÑ ⊗ (Aξ1
⊗ Aξ1

), . . . , IÑ ⊗ (Aξ
Ñ
⊗ Aξ

Ñ
)) (8)

has a spectral radius less than one, where ΠO,2 is a block
matrix composed of Ñ × Ñ matrices with the (J, I) block
matrix having components

[[ΠO,2]JI ]ji =







P{ξJ |ξi, ξI} = P{ηm|ηl} : I = j,

δ̃(ηl, eI) = ei, δ̃(ηm, ei) = eJ

0 : otherwise.

(Here Ñ = card(Σ̃O) and, for brevity, probabilities like
P{ν(k + 1) = ηm|ν(k) = ηl} are written as P{ηm|ηl}.)
Proof : By Theorem 3.1, under the stated conditions, θ̃ is
a second-order Markov process. Observe that

Q(k) = E{x(k)xT (k)} =
∑

i,j

Qij(k),

where

Qij(k) := E
{

x(k)xT (k) 1{θ̃(k)=ξi}
1{θ̃(k−1)=ξj}

}

,



and 1{·} denotes the Dirac function. Therefore,

Qij(k + 1)

= Aξj
E
{

x(k)xT (k) 1{θ̃(k+1)=ξi}
1{θ̃(k)=ξj}

}

AT
ξj

= Aξj
E
{

E
{

x(k)xT (k) 1{θ̃(k+1)=ξi}
1{θ̃(k)=ξj}

∣
∣
∣Fk

}}

·

AT
ξj

= Aξj
E
{

x(k)xT (k) 1{θ̃(k)=ξj}
P{ξi|ξj , θ̃(k − 1)}

}

AT
ξj

,

where Fk denotes the σ-field generated by the random
variables {θ̃(l),x(l) : l = 0, 1, . . . , k}. In addition,

E
{

x(k)xT (k) 1{θ̃(k)=ξj}
P{ξi|ξj , θ̃(k − 1)}

}

=
∑

l

E
{

x(k)xT (k) 1{θ̃(k)=ξj}
1{θ̃(k−1)=ξl}

·

P{ξi|ξj , ξl}
}

.

Therefore,

Qij(k + 1) = Aξj

(
∑

l

P{ξi|ξj , ξl}Qjl(k)

)

AT
ξj

.

Now apply the column stacking operator vec to produce

~Qij(k + 1) := vec

(

Aξj

∑

l

P{ξi|ξj , ξl}Qjl(k)AT
ξj

)

= (Aξj
⊗ Aξj

)
∑

l

P{ξi|ξj , ξl} ~Qjl(k).

Then it can be shown that

~Q(k + 1) = B2
~Q(k), (9)

where

~Q(k) :=
[

~QT
11(k) · · · ~QT

1N (k) · · · ~QT
N1(k) · · · ~QT

NN (k)
]T
,

and B2 is as given in (8). Finally, the mean-square stability
test for system (7) follows directly from the given spectral
radius condition for the linear system (9).

In many applications, like the one discussed in the next
section, the underlying machine is not unifilar. In order to
perform stability analysis for such a system, additional tools
are needed.

Definition 3.2: Two jump-linear systems

x(k + 1) = Aθ(k)x(k)

and
x̄(k + 1) = Āθ̄(k)x̄(k),

driven by machines M and M̄, respectively, with the same
Markov input process ν, are said to be A- equivalent if

Aθ(k) = Āθ̄(k), k ≥ 0.
Note that A-equivalence does not imply that any Ai nec-
essarily be equal to any Āj , or that the processes θ and θ̄

even take on the same symbols. But from a state evolution

point of view, x(k) = x̄(k) for all k > 0 if x(0) = x̄(0).
This makes the following claim obvious.

Theorem 3.3: Let (A,θ) and (Ā, θ̄) be two A-equivalent
jump-linear systems. Then (A,θ) is mean-square stable if
and only if (Ā, θ̄) is mean-square stable.

The next theorem shows that any finite-state machine has
a unifilar companion machine that produces an A-equivalent
jump-linear system. Therefore, Theorem 3.2 can be applied
to this new system in order to determine the mean-square
stability of the original system. There is, however, some
overhead involved in determining the unifilar equivalent
system as described in the proof.

Theorem 3.4: Let M = (ΣI ,ΣS ,ΣO, δ, ω) be an ar-
bitrary non-unifilar finite-state machine with input ν and
output θ. For any corresponding jump-linear system (A,θ),
there always exists an A-equivalent system (Ã, θ̃), where
θ̃ is generated by a unifilar finite-state machine M̃ =
(ΣI , Σ̃S , Σ̃O, δ̃, ω̃) with input ν.
Proof : The proof is constructive. Since M is non-
unifilar, there exists a pair of inputs symbols ηi and ηj

and a machine state em such that δ(ηi, em) = δ(ηj , em).
Therefore, augment the machine’s state space, ΣS , with a
new state ẽm and define a corresponding transition map δ̃,
which is identical to δ except now: δ̃(ηi, em) = δ(ηi, em),
δ̃(ηj , em) = ẽm, and δ̃(η, ẽm) = δ(η, em) for all input
symbols η. Similarly, redefine the output function ω̃ to be
identical to ω except ω̃ maps the new state ẽm to a new
output symbol ξ̃m (so that the isomorphism between states
and output is preserved). Next define for the new output
symbol the transition matrix Ãξ̃m

= Aξm
, while in the

other cases just set Ãξi
= Aξi

. It can then be verified that
the jump-linear systems (A,θ) and (Ã, θ̃) are A-equivalent,
i.e.,

Ãω̃(ν(k),z̃(k)) = Aω(ν(k),z(k)).

It is also clear that the states and output symbols of the new
machine can be re-indexed by the integers 1, 2, . . . , N + 1,
and the whole process above repeated if the new machine is
not unifilar. Since the number of input symbols and machine
states is finite, this procedure need only be repeated a finite
number of times before a unifilar machine is produced.

The final result of the paper establishes a connection
between the main stability theorem of the previous section,
Theorem 2.2, and the stability analysis described here.

Theorem 3.5: The jump-linear system (5) with Aηi,ξ =
Aηj ,ξ =: Aξ for all input symbols ηi, ηj is A-equivalent
to a jump-linear system driven only by the output process
θ. Therefore, (A,ρ) is mean-square stable if and only if
(A,θ) is mean-square stable.
Proof : The proof is just an application of Theorem 3.3.

IV. A SIMPLE MODEL FOR A RECOVERABLE
COMPUTER CONTROL SYSTEM

In this section, a simple example is given to illustrate the
mean-square stability tests developed in the previous sec-



tions. Consider a closed-loop control system implemented
on a recoverable computer. Perhaps the simplest model for
such a system is shown in Fig. 3. As long as there is no
computer upset, the system operates in the normal mode,
as per the dynamics

x(k + 1) = A0x(k).

As soon as an upset occurs, the recovery system places
the computer in the recovery mode for a fixed duration
MR = 2 clock cycles. During the recovery process the
system dynamics are described by

x(k + 1) = A1x(k).

After this duration, the nominal dynamics are restored.
Here the counter, c(k), keeps track of the lapse-time for
each recovery process. To model this system as a finite-
state machine, a new machine state must be introduced
for each possible counter value. The state diagram for
such a machine is shown in Fig. 4. Specifically, M =
(ΣI ,ΣS ,ΣO, δ, ω) with ΣI = {η1, η2}, ΣS = {e1, e2, e3},
ΣO = {ξ1, ξ2, ξ3}, δ defined by

Sη1
=





1 0 1
0 0 0
0 1 0



 , Sη2
=





0 0 1
1 0 0
0 1 0



 ,

and ω(ej) = ξj . The corresponding jump-linear system is
specified by setting Aξ1

= A0 and Aξ2
= Aξ3

= A1.

1η

2η
Mkc <)(

Mkc =)(

0)( =kc 1)()1( +=+ kckc

Normal Mode Recovery Mode
)()1( 0 kxAkx =+ )()1( 1 kxAkx =+

R

R

Fig. 3. A simple model for a recoverable computer control system.

The finite-state machine in Fig. 4 is clearly not unifilar.
But the stability Theorem 2.2 can be applied directly by
setting Aη,ξ1

= A0 and Aη,ξ2
= Aη,ξ3

= A1 for all η ∈ ΣI .
Suppose, for example, πη1,η1

=0.45. The spectral radius of
A1 is plotted in Fig. 5 as a function of πη2,η2

. The system
goes from being mean-square stable to unstable as πη2,η2

increases.
Now to illustrate the alternate approach given by The-

orem 3.2, an A-equivalent unifilar finite-state machine is
constructed as shown in Fig. 6. For the new states ξ4 and
ξ5, let Aξ4

= Aξ3
= A1 and Aξ5

= Aξ1
= A0. Setting

πη1,η1
=0.45, a plot of the spectral radius of B2 is also

shown in Fig. 5 as a function of πη2,η2
. As expected, the

two plots cross the stability boundary at exactly the same
value πη2,η2

= 0.345. But more than that, the plots coincide
exactly for all other values of πη2,η2

. In this example, the

Normal Mode Recovery Mode 1

Recovery Mode 2

21,ηη
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2
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Fig. 4. A finite-state machine representation of a recoverable computer
control system.
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Fig. 5. A plot of the spectral radii of A1 and B2 versus πη2,η2
when

πη1,η1
= 0.45.

stability matrices A1 and B2 are distinct, in fact, they do not
even have the same dimensions. So this observation does
not follow immediately from the theory presented here.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper two mean-square stability tests were de-
veloped for a jump-linear system driven by a finite-state
machine with a first-order Markov input process. The first
test was based on conventional Markov jump-linear theory
and avoids the use of any higher-order statistics. The second
test was developed directly using the higher-order statistics
of the machine’s output process. The two approaches were
illustrated with a simple model for a recoverable computer
control system. In this example, it turned out the spectral
radii of both stability matrices were always equal. It is
conjectured that this is always the case, but it remains to be
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Fig. 6. A unifilar finite-state machine representation of a recoverable
computer control system.

proven. In addition, it is possible to extend both approaches
to systems with arbitrary r-th order Markov inputs. This is
also a topic for further investigation.
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[4] O. R. González, W. S. Gray, and A. Tejada, ‘Analytical Tools for
the Design and Verification of Safety Critical Control Systems,’ SAE
Transactions, Journal of Aerospace, section 1, vol. 110, 2002, pp.
481-490.
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