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Abstract—Uniform convergence of standard transition
matrices is a concept which appears in some fundamental
results in Markov chain theory and therefore in optimal
control, H∞ control and stability problems of continuous-
time Markov Jump Linear Systems (MJLSs) with infi-
nite countable state space of the Markov chain. We iden-
tify some classes of standard transition matrices P =

(pij(t))i,j∈N that exhibits j-uniform convergence of
oij(t)

t
=

pij(t)−pij(0)−ṗij(0)t

t
as t → 0, using tools such as analysis

of j-uniform convergence and a version in l1 of the forward
equation.

I. INTRODUCTION

Uniform convergence is a concept which appears in
some fundamental results in Markov chain theory and
particularly, in optimal control, H∞ control and stabil-
ity problems of continuous-time Markov Jump Linear
Systems (MJLSs) with infinite countable state space of
the Markov chain ([5]-[8]). It is also worth mentioning

that i-uniform convergence of
oij(t)

t is naturally required
in the semigroup characterization of Markov chains (see,
e.g., [4]) and in obtaining a sufficient condition for the
Kolmogorov forward equation to hold (see [9]).

MJLSs are modeled as ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t),
with t > 0, x(0) = x0 and θ(0) = θ0, where x(t) ∈
C

n denotes the state vector and u(t) ∈ C
m the input

control. {θ(t), t ≥ 0} is a standard Markov chain, with
right continuous trajectories and a countably infinite
state space (see Section II). It introduces randomness in
the parameters by means of an arbitrary correspondence
i 7→ ηi, ηi standing for Ai or Bi and θ(t) = i. Ai and Bi

are matrices norm bounded on i and (x0, θ0) is a random
vector. Sometimes we require a new entry Cθ(t)w(t) in
the dynamics, where {w(t), t ≥ 0} stands either for
a random process with finite energy (H∞ problems)
or for a Wiener process. The concern in the jump
linear quadratic control problems afore mentioned is to
minimize, within a certain class of admissible control
policies, the performance

J (ϑ0, u) := E[

∫ ∞

0
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where ϑ0 is the distribution of the initial data
(x(0), θ(0)), Qi and Ri are penalty matrices, norm
bounded on i and E stands for the expectation of
a random variable. In the case of jump H∞ control
problems the concern is to find necessary and sufficient
conditions for existence of a stabilizing control such
that, for a prescribed value γ,

‖z‖2

‖w‖2

< γ

for every stochastic processes w with finite energy
and any initial random variable θ(0), where ‖y‖2 =

(
∫ ∞

0
E[‖y(t)‖

2
]dt)1/2 with ‖·‖ being the Euclidean norm

in C
· and z(t) is obtained as a linear combination of

x(t) and u(t). From an application point of view, MJLSs
corresponds to the modeling of physical systems that
have their structures subject to abrupt changes (see,
e.g., [5], [10] and references therein).

In this paper we identify some classes of standard
transition matrices P = (pij(t))i,j∈N that exhibits j-

uniform convergence of
oij(t)

t =
pij(t)−pij(0)−ṗij(0)t

t as
t → 0. We do this via an analysis of j-uniform
convergence and using a version in l1 of the forward
equation.

II. PRELIMINARIES

We denote ϑ := (0, a] for arbitrary a > 0, sometimes
with a subscript, i.e., ϑi := (0, ai]. An R-valued function
r(t), defined in some interval ϑ, is said to be of order

o (t)(or an o (t)-function) if r(t)
t → 0 as t → 0. Functions

rj(t), j ∈ N, defined as above, are said to be of order

o (s) uniformly on j if
rj(t)

t → 0 as t → 0 uniformly
on j. Similarly, an R-valued function r(t), defined in
some interval (a0, a] is said to be of order o (a0 + h) if
r(a0+h)

h → 0 as h → 0. The definition ”uniformly on
j” will apply as above.

Concerning a standard transition matrix P (t) ≡
(pij(t))i,j∈N of a continuous time Markov chain, we
write:

(i) Λ := (λij = ṗij(0))i,j∈N for the associated

infinitesimal matrix, where

ṗij(0) = lim
t↓0

pij(t) − pij(0)

t
, and

(ii) pij(t) = pij(0) + λijt + oij (t) , t > 0, i,j ∈ N

(1)



where pij(0) = δij , with δii = 1 and δij = 0, i, j ∈ N,
i 6= j. More generally, since pij(t) is differentiable,

pij(t + h) = pij(0) + ṗij(t)t + ot,ij (t + h) ,

t ≥ 0, h > 0, i,j ∈ N,

where ṗij(t + h) = limh→0
pij(t+h)−pij(t)

h . Or else,

ot,ij(t + h)

h
=

pij(t + h) − pij(t)

h
− ṗij(t) → 0 as h → 0

and o0,ij (0 + h) ≡ oij (h).
We sometimes write (pij(t)) in lieu of (pij(t))i,j∈N.

We assume that λii are finite for all i ∈ N and say that
an infinitesimal matrix is conservative if

∑∞
j=1 λij = 0,

∀i ∈ N.
Most of the times we shall write STM to denote a

standard transition matrix and jSTM a STM whose
associated oij(t)/t functions converge to zero uniformly
on j as t → 0, for each i ∈ N. We denote FEq the
Kolmogorov forward equation.

We denote by l1 the set made up of all infinite
sequences of real numbers x = (x1,x2, ...) such that
∑∞

i=1 |xi| < ∞ equipped with the usual norm ‖x‖1 =
∑∞

i=1 |xi| and by D(A) the domain of a linear operator
A.

III. CONVERGENCE BEHAVIOR OF
∑∞

j=1 fj(t)

The lemma and corollaries of this section are classical
in the uniform convergence scenario. Nonetheless, since
they support the results that appears in Section IV, it
is worth stating them here.

Let the R-valued functions fj(t), j ∈ N, t ∈ ϑ, be
such that

fj(t) → 0 as t → 0,uniformly on j. (2)

Lemma 1: Let
∑∞

j=1 fj(t), t ∈ ϑ, be finite and fj ,
j ∈ N, nonnegative. Then (2) is necessary to having
∑∞

j=1 fj(t) → 0 as t → 0.

Corollary 1: Condition (2) is necessary to having
∑∞

j=1 |fj(t)| → 0 as t → 0, as long as this summation
is finite ∀t ∈ ϑ.

IV. MAIN RESULTS

Despite of the fact that all standard transition ma-
trices have their associated oij (t) functions converging
to zero uniformly on j as t → 0, this may not be
necessarily the case of

oij(t)
t . Transition matrices that

exhibits uniform convergence on j of
oij(t)

t are those
conservative matrices associated to Poisson processes
(Lemma 6) and, more generally, a subset of transition
matrices satisfying the Kolmogorov forward equation
(Lemma 8). These classes are not exhaustive in the set
of standard transition matrices and we may ask whether
there exist conservative or nonconservative matrices
that in fact do not converge to zero uniformly on j
as t → 0.

We begin (Section IV-A) introducing a version in l1 of
the forward equation, which is the underpinning result
used in solving Lemma 8.

A. A version in l1 of the forward equation

We consider the Banach space l1 equipped with the
usual norm and an arbitrary element Λ = (λij)i,j∈N in
the class of the infinitesimal matrices associated with
standard transition matrices, and define the operator
Λ(·) such that, ∀x ∈ l1, Λ(x) = xΛ, where xΛ is defined
in the usual way as the matrix product of x, viewed as
a row vector, by Λ, i.e., (xΛ)k∈N = (

∑∞
s=1 xsλsk)k∈N.

To simplify notation, we make no distinction between
the matrix and the corresponding operator.

The space l1 arises naturally in building an analog of
the forward equation in Banach space when our concern
is studying uniform convergence to zero in the row of
(

oij(t)
t

)

i,j∈N

or else, to λij , j = 1, 2, ..., in the row of
(

pij(t)−pij(0)
t

)

i,j∈N

.

For arbitrary i ∈ N, equation (3), in Lemma 4,
corresponds to the l1 forward equation associated to the
i-th state as in (11). We shall consider, in this lemma,
|λkk| uniformly bounded. Note that if this condition
is dropped out, then Λ, seen as an operator, is not
bounded and generates neither a contraction nor a C0

semigroup, whenever D(Λ) = l1 (see the lemma below).

Lemma 2: Let A be a linear operator in a Banach
space X and D(A) = X. If A is the infinitesimal
generator of a semigroup of contractions, say TA(t),
then TA(t) is a C0 semigroup, which implies A to be a
bounded operator.

Proof: Since TA(t) is a semigroup of contractions,
we have that {f ∈ X : limh↓0 TA(h)f = f} = D(A).
But D(A) = X (see, e.g., Section 2.2 of [2]). Therefore
TA(t) is a C0 semigroup. Consequently, A is closed.
Reminding that D(A) = X, we have, from the Closed
Graph Theorem, that A is bounded.

Remark 1: If we define Λ to be such that D(Λ) 6= l1,
then Λ may be allowed to generate a C0 semigroup, but
in this case it may be difficult to assure, in Lemma 4,
ξi ∈ D(Λ). The importance of these arguments stems
from the fact that, to obtain existence and uniqueness
of solution to (3), as well as differentiability, for any
initial value in D(Λ), we have to assure Λ to generate
a C0 semigroup (see, e.g., [11]).

Now an auxiliary result.
Lemma 3: Λ ∈ Blt(l1) iff |λii| is uniformly bounded.

Proof: First note that the limits aj =
∑∞

s=1 xsλsj ∈ R, j ∈ N exists for arbitrary x =
(x1, x2, ...) ∈ l1. In fact, for every M , N and j, N > M ,
∣

∣

∣

∑N
s=M xsλsj

∣

∣

∣
6

∑N
s=M |xs| |λsj | → 0 as M , N → ∞,

so that
{

∑N
s=0 xsλsj

}

N∈N

is Cauchy and converges in

the complete space R.



(if part): Λ is clearly linear. Now, let Λ(x) = xΛ =

(a1, a2, ...), so that

‖Λ(x)‖1 =
∑∞

j=1 |aj | =
∑∞

j=1 |
∑∞

s=1 xsλsj |

6 limN→∞

∑N
j=1 limM→∞

∑M
s=1 |xs| |λsj |

= limN→∞ limM→∞

∑M
s=1 |xs|

∑N
j=1 |λsj |

6 limM→∞

∑M
s=1 2 |xs| |λss| 6 2c

∑∞
s=1 |xs| = 2c ‖x‖1 ,

where c ≥ |λss| does not depend on s. This shows that
Λ takes values in l1 and is bounded.
(only if part): From the proof above, the class of
the infinitesimal matrices Λ that belongs to Blt(l1)
is nonempty. Thus, define ξk = (0, 0, ...0, 1, 0, ...) ∈
l1 with ”1” placed arbitrarily in the k-th position.
Λ ∈ Blt(l1) means that there is c1 such that

∥

∥Λ(ξk)
∥

∥

1
6 c1

∥

∥ξk
∥

∥

1
= c1. But

∥

∥Λ(ξk)
∥

∥

1
=

∑∞
j=1 |λkj | ≥ |λkk| so

that |λkk| 6 c1 ∀k ∈ N.
Consider the l1 valued function x(t) =

(x1(t), x2(t), ...), t ≥ 0. To avoid confusion with
ẋ(t) := (ẋ1(t), ẋ2(t), ...), ẋj(t) being the derivative of
each entry xj(t) in the usual R norm, we shall denote
the derivative of x(t) in the l1 norm by x́(t).

Lemma 4: Let Λ ≡ (λij)i,j∈N be an infinitesimal
matrix with |λkk| uniformly bounded and let

x́(t) = Λ(x(t)) = x(t)Λ, t ≥ 0, (3)

be the l1 differential equation where Λ(x(t)) is defined
above and x(0) = ξi ≡ (0, 0, ..., 0, 1, 0, ...) ∈ l1 is the
initial data with ”1” placed in the i-th position. Then
there exists a unique solution x(t) ∈ l1 of (3) which
is continuous and continuously differentiable in the
l1 norm. Moreover, x(t), continuous and continuously
differentiable in R, for each entry xj(t), is such that
ẋ(t) = x́(t) so it satisfies

ẋ(t) = Λ(x(t)) = x(t)Λ, t ≥ 0, (4)

with xi(0) = ξi. In addition,

xj(t + h) − xj(t)

h
− ẋj(t)

R
→ 0 as h → 0, uniformly on

j ∈ N, ∀t ≥ 0. (5)
Proof: Λ is a linear and bounded operator in

Banach space (see Lemma 3), so it generates a C0

semigroup. Hence, from semigroup theory (see, for
instance [11]) and noting that ξi ∈ l1 = D(Λ), where
D(Λ) stands for the domain of Λ, the first assertion
follows. Now, this means that, for t ≥ 0 arbitrarily

fixed, there exists x́i(t) ∈ l1 such that the following
limit exists.

x(t + h) − x(t)

h
− x́(t)

l1→ 0 as h → 0. (6)

This implies that
(

x(t + h) − x(t)

h
− x́(t)

)

j

R
→ 0 as h → 0, j ∈ N

or else,
xj(t + h) − xj(t)

h
− x́j(t)

R
→ 0 as h → 0, j ∈ N

(7)

Now, (7) means that ẋj(t) = x́j(t), ∀j ∈ N, or else,
ẋ(t) = x́(t), for t ≥ 0 (note that the limits in (6) and
(7), t > 0, may be considered from the right and from
the left, since h assumes positive and negative values).
Therefore, x(t) satisfies ẋ(t) = x(t)Λ, t ≥ 0, with initial
data x(0) = (0, 0, ..., 0, 1, 0, ...). Finally, convergence in
(7) is in fact uniform on j ∈ N, so (5) follows.

Remark 2: Equation (3) is therefore equivalent to
both (4) and (5) in that the set of solutions (the unitary
set) that agrees with (3), agrees with (4) and (5), and
vice-versa.

B. j−uniform convergence of oij (t)

Lemma 5: Let (pij(t))i,j∈N be a standard transition
matrix. Then, for arbitrary i ∈ N,

oij (t) → 0 (and |oij (t)| ) → 0 as t → 0 uniformly on

j ∈ N.
Proof: We may appeal to a particular case of

Theorem II.2.2 of [1] which says that 0 6 pij(t) 6

1 − pii(t), ∀j ∈ N, j 6= i and t > 0, reminding that
1 − pii(t) → 0 as t → 0, or else, to [12], Theorem 1
of Section II.2.2, to obtain that pij (t) → 0 as t → 0
uniformly on j. Now, since 0 6 λij 6 −λii, it follows
that λijt → 0 as t → 0 uniformly on j. It is easy to see
that oij (t) = pij (t) − λijt → 0 as t → 0 uniformly on
j 6= i. Clearly, since {j ∈ N: j = i} is finite for fixed
i, the latter convergence is uniform on j ∈ N. Now,
using the definition of convergence, it easily follows that
uniform convergence of oij (t) is equivalent to uniform
convergence of |oij (t)|.

C. Classes of examples of jSTMs

Lemma 6 (Poisson processes): Let (pij(t))i,j∈N be
the (conservative) transition matrix of a Poisson pro-
cess with parameter b > 0 arbitrarily chosen. Then,
(pij(t))i,j∈N is a jSTM.



Proof: oij (t) := pij (t)−λijt = pij (t), where pij (t)

= e−bt (bt)j−i

(j−i)! , j = i+2, i+3, .... Moreover, for t ∈ (0, 1/b],

we have that 0 6 bt 6 1, which implies (bt)j−i 6 (bt)2.

Hence,
oij(t)

t 6
oii+2(t)

t for j = i+2, i+3, ... and every t

in the j-independent interval (0, 1/b]. Since oii+2(t)
t → 0

as t → 0 and {1, ...i+1} is a finite set, the result follows.

Lemma 7 (processes with positive oij functions):
Let (pij(t))i,j∈N be a standard transition matrix with
a conservative infinitesimal matrix and such that, for
every i, oij (t) is positive ∀t ∈ ϑi and j ∈ N −Si, with
Si being a finite subset of N. Then, (pij(t))i,j∈N is a
jSTM.

Proof: For a conservative infinitesimal matrix
∑∞

j=1
oij(t)

t = 0, ∀t > 0, so that
∑∞

j=1
oij(t)

t → 0

as t → 0. Since Si is finite,
∑∞

j=1,j /∈Si

|oij(t)|
t =

∑∞
j=1,j /∈Si

oij(t)
t → 0 as t → 0 so this is the case of

∑∞
j=1

|oij(t)|
t . Hence, using the necessity part of Lemma

1, the result follows.

The example that follows is supported by Section IV-
A.

Lemma 8 (STMs uniquely satisfying the FEq):
Let P (t) = (pij(t))i,j∈N be a standard transition
matrix and Λ = (λij)i,j∈N the associated infinitesimal
matrix. Suppose that |λii| is uniformly bounded and
P (t) uniquely satisfies the forward equation

Ṗ (t) = P (t)Λ, t ≥ 0, (8)

with P (0) = {δij}i,j∈N
, in the class of continuous and

continuously differentiable functions, where continuity
and differentiation are considered in R, for each entry
pij(t), i, j ∈ N. Then, P (t) is a jSTM, i.e., for each
i ∈ N,

oij (h)

h
→ 0 as h → 0, uniformly on j ∈ N (9)

This is true, in fact, ∀t ≥ 0, i.e.,

oij (t + h)

h
=

pij(t + h) − pij(t)

h
− ṗij(t) → 0

as h → 0, uniformly on j ∈ N. (10)
Proof: For i ∈ N arbitrarily fixed, denote Pi(t) :=

(pi1(t), pi2(t), ...) and Ṗi(t) := (ṗi1(t), ṗi2(t), ...). Pi(t)
clearly belongs to l1. To see that this is also the case
of the latter expression, i.e., that

∑∞
j=1 |ṗij(t)| is finite,

refer to equation II.3(4) of [1] or, alternatively, Lemma
3, reminding that Pi(t) satisfies (11). So, from (8),

Ṗi(t) = Pi(t)Λ, t ≥ 0, (11)

where Pi(0) = (0, 0, ..., 0, 1, 0, ...) with ”1” placed in
the i-th position. Now, from Lemma 4, there exists
x(t) = (x1(t), x2(t), ...), continuous and continuously
differentiable in R, for each entry xj(t), that satisfies
(11) with the initial data x(0) = Pi(0), and such that
(5) holds. Since, by assumption, solutions to (11) are
unique, we have that Pi(t) = x(t). In this case (5) reads
as (10). In particular, with t = 0, we obtain (9).

It is worth noticing that, if a jSTM satisfies the
forward equation, where limits are considered in R, for
each entry pij(t), i, j ∈ N, then, regardless of being
the unique solution or not, its associated oij(t + h)/h
functions converge to zero uniformly on j as h → 0,
∀t ≥ 0. To see this note that, by assumption, ∃
δj = δ : R>0 → ϑ, such that, ∀ε > 0,

− ε 6
okj(h)

h
=

pkj(h) − pkj(0)

h
− ṗkj(0) 6 ε,

0 < h 6 δ(ε), ∀j ∈ N,

for arbitrary k ∈ N. Multiplying the above expression
by pik(t), we have, for t ≥ 0, that

− εpik(t) 6
pik(t)pkj(h) − pik(t)pkj(0)

h
− pik(t)ṗkj(0)

6 εpik(t).

Applying
∑M

k=1on all terms of the above expression,
passing to the limit as M → ∞ and reminding the
Chapman-Kolmogorov equation (the semigroup prop-
erty of P ), we have that

−ε 6
pij(t + h) − pij(t)

h
−

∞
∑

k=1

pik(t)ṗkj(0) 6 ε.

Since P satisfies Ṗ (t) = P (t)Λ, where limits are in
R for each entry pij(t), we have that ṗij(t) =

∑∞
k=1

pik(t)ṗkj(0) and the above expression reads

− ε 6
pij(t + h) − pij(t)

h
− ṗij(t) =:

oij(t + h)

h
6 ε,

0 < h 6 δ(ε), ∀j ∈ N and t ≥ 0.

Reminding that δ does not depend on j, the above
assertion follows.

Remark 3: Suppose that all solutions to (8), in the
class of the continuous and continuously differentiable
functions for each matrix entry, in the R norm, are
standard transition matrices (clearly, all of them are
associated to Λ). Then, they are one, say P (t), so
Lemma 8 applies. We justify this, noting that the min-
imal solution always exists and, being by assumption,
a transition matrix, it is unique (see, e.g., [1]).
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