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Positive u-modification for Stable Adaptation in the Presence of
Input Constraints

Eugene Lavretsky and Naira Hovakimyan

Abstract—For a class of linear dynamical systems with system stability domain and prove that it depends upon the
unknown parameters a direct model reference adaptive conto  gystem parameters and control saturation level.
framework is developed that provides stable adaptation in the This paper is organized as follows. In Section Il we

presence of input constraints. The proposed design method- f late the desi bl for i ) t
ology, termed “positive u-modification”, protects the control ormulate the design problem lor finear in parameters

law from actuator position saturation. Moreover, the design is adaptive control with input saturation. Section Il defines
Lyapunov based and ensures global asymptotic tracking for the proposedu-modification to the adaptive signal and

open-loop stable systems. For unstable systems an estimatediscusses some of its properties. In Section IV, reference
for the domain of attraction is derived based on the input 4| dynamics and the classical matching conditions are
saturation magnitude and system parameters. Simulation of a formulated. Stability properties of the-mod based adap-
benchmark example verifies the theoretical statements. ) : . . e
tive control are analyzed in Section V. As an application

example, in Section VI we discuss the results for uncertain
linear scalar systems and give specific interpretationbef t

During the past decade control design in the presene®nditions of Theorem 5.1. In Section VII, a simulation of a
of input saturation has attracted a vast amount of researbkRnchmark example is presented that verifies the thedretica
effort (for chronological bibliography see [1]). This is- statements and the benefits of therhod” based adaptive
sue is especially challenging in adaptive systems, becausentrol design process. Conclusions, recommendatioms, an
continued adaptation during input saturation may easiljuture research directions are given at the end of the paper.
lead to instability. In order to overcome the effects of
control saturation during adaptation, a modification tchbot
the tracking error and the reference model dynamics wasLet the system dynamics propagate according to the
proposed by Monopoli in [2] but without any formal proof following differential equation:
of stability. In [3], a rigorous proof of asymptotic stalyli N
has been laid out for model reference adaptive control B(t) = Az(t) + bhu(?) @)
framework, considering an adaptive modification of the refwherex € R is the state of the system is an unknown
erence model dynamics with a gain proportional to contrahatrix, b is a known constant vector, is an unknown
deficiency. In the PCH method of Johnson and Calise a fixembnstant of known sign. Without loss of generality let
gain adjustment (proportional to control deficiency) to the\ > 0. The control input: € R is amplitude limited and is
reference model was introduced [4]. Adaptive control witlcalculated using the following static actuator model:
amplitude saturation was also addressed for linear systems

I. INTRODUCTION

Il. PROBLEM FORMULATION

in [5]-[7] and for affine-in-control nonlinear systems ir].[8 u(t) = Umax sat (uc—(t)>

In this paper, we propose a direct model reference Hmax
adaptive control framework (MRAC) that yields stable o Jue(®), Jue(t)] < umax @
adaptation in the presence of input constraints. The ntauvel N Umax SEN (Ue(t)),  |tue(t)] > Umax

design approach is termed “Positivemodification”, or ) _ _

simply “4-mod”, and can be viewed as an extension of th&l€réuc(?) is the commanded control input, whilg. > 0
results in [2], [3]. Compared to [2] and [3], the approacrpef'”es amplitude .satl.Jrat|on_ level of the actuator. Rewrite
guarantees that the contralill never incur saturation. the system dynamics in (1) in the form:

Similar to [3], we show that for open-loop stable (unstable) i(t) = Az(t) + bhuc(t) + bAAu() (3)
systems global (local) stability results are attained. Ve a

derive an upper bound for the corresponding closed-lodfghereAu(t) = u(t) — u.(t) denotes thecontrol deficiency
due to the actuator amplitude saturation constraint. @Censi
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Given reference model (4), define an adaptive contrar equivalently
signal u.(t) and, if necessary, augment the inpt{) to

1
the reference model, so that the statg) of the system (1) ue(t) = Tt (Win(t) + pul oy sgn (uc(t)))
in the presence of input constraint (2) tracks the statgt) H
of the augmented reference model asymptotically, while all _ T (Win(8) + fUdan) s Ue > Uy (11)
the signals in both systems remain bounded. %ﬂ Win(t) — puday) s Ue < —Ud oy
[1l. POSITIVE -MODIFICATION AND CLOSED LOOP It is easy to see that singe> 0, then the second and the
SYSTEM DYNAMICS third lines in the above relationship are equivalent to the

. ) o ) corresponding ones in (9). The proof is complete.
The main challenge in designing an adaptive controller pamark 3.1:The solution given by (9) is valid also for

for the system in (1), (2) is associated with the contro(lmyu # —1, but in that case theonvexitycondition is

deficiencyAu(t) = u(t) — u(t) that appears in (3). Using yiglated. The significance of the latter will be apparent
this S|gnal, in [3] a modification to the refe_rencg mOdeHuring the stability proof. Moreover, far = 0 settingy = 0
dynamics was suggested and the corresponding direct ad@@zgvers the adaptive architecture of [3]. On the other hand
tive laws were formulated. Motivated by [3], we proposes win(t) is uniformly bounded, then as tends to infinity,

yet another control design modification that protects ﬂ:f s (uzm(t)) .
adaptive input signal from position saturation. To this en te(t) = Unmaxsat Uhax ) Consequently, setting= 0

choose a constaml < § < wupma and defineu’ . = andp = oo results inu.(t) = umaxsat (%jt)) The latter
umax — 0. Then the control deficiency can be representegields exactly the same closed-loop dynamics as does the
as: linear in parameters adaptive signal,,(¢) in [3].

Remark 3.2:From (9), it immediately follows that the

Au(t) = Aue(t) + Asar(t) (®)  commanded control signal is continuous in time, but not
Where continuously differentiable. The use of thet(-) function
in (9) implies that
A _ § ) ’(Lc(t)
U’C(t) - urnaxbat u5 - Uc(t) (6) lim uc(t) = ulin (t) ,
max i (8) = U —
Ue(t Ue(t
Asat(t) = Umaxsat (L> - ufnaxsat (#)(7) lim ﬂc(t) = —1 alin(t)
Umax Umax Upin () = uda+ L+p

Direct adaptive model reference control with-  aApgther point of () discontinuity exists atu.(t) =
&

modification is defined as: —u
max-*

Remark 3.3:Solving (8) for Au.(t) and substituting

uelt) = uf}"(t) + pAu(?) uc(t) from (9), one obtains:
win(t) =k (O)z(t) + k. ()r(t) 8 .
§
In (8), uin (t) denotes the conventional linear in parameters Auc(t) T+ MAUzm(t) (12)

adaptive controlk,(t) € R™, k.(t) € R are adaptive gains,
and p is the design constant. Note that the relation (8vhere Aug, (t) £ ul,,. sat (“jﬁ—(t)) — i, (t). Conse-

max
max

defines the commanded control input(Z) implicitly. Next — quently, if u?, () is bounded, then the control deficiency
we show that explicit solution of the latter can be found. Ay (¢) is inversely proportional tg:: Au(t) = O(1/p).

~ Lemma3.1:If p > 0, then the solution to (8)  [emma 3.2:The following inequality is true for alt >

is given by a convex combinationof w;,(t) and -

Wl st (M) vt > 0
Puax uc(t)Auc(t) <0 (13)
5 wiin (t) Proof. If [ue(t)| < tmax, then Au.(t) = 0, and (13) holds

(Ulm (t) + pupax sat ( 5 )) with the equality sign. Ifu.(t)| > umax, then using (2) and

umax T
the definition forAu.(t), we get

v =

ulin(t)’ ‘ulln(t” < ufnax
= ﬁ (Ulzn(t) + /'L'Uzglax> ) ulin(t) > ufnax (9) uc(t) > ufnax ZN Auc(t) — ufnax o 'U,C(t) <0
ﬁ (ulzn(t) - Mu?nax) 3 Ulin(t) < _uf‘ﬂax uc(t) < _uis RN Auc(t) — —U5 _ uc(t) >0

max max

(14)

Proof. If |u.(t)| < u’,,., thenAu.(t) = 0, and the first which implies (13). The proof is complete.

relationship in (9) immediately takes place. [t.(t)| > Substituting (5) and (8) into (3), yields the following
u® ., then using (2) and (8), we get closed-loop system dynamics:

max’?

Ue(t) = upn (t) + p (ufnax sgn (uc(t)) — uc(t)) (10)  @(t) = (A4 DAET ()2 (t) + bAE, (8)r(t) + DA A, (t) (15)
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where Hence the equilibrium of (19), (20) is Lyapunov sta-
‘ N ble, i.e. the signals(t), Ak,(t), Ak.(t), Ak,(t) are
Auin () = Aty (1) + Asar (1) bounded. Consequently, there exist™, Ak™>*, such
—— (_“CW) — (16)  that [Ak, (D) < AR, Ak, (1)) < AP = a AR,
vt > 0, wherea = /7, /Amin (Tz)-

defines the deficiency of the linear in parameters adaptive For the statement OIPO)UT main result introduce the follow-

Umax

signal win (t). ing notations; = SR K= Amin (@) — 2| PO|| || &I,
IV. ADAPTIVE REFERENCEMODEL Theorem 5.1:For A and b in (1), umax in (2), k%, k7
The system dynamics in (15) leads to consideration ¢f (18) and P and @ in (22), assume that the maximum
the following adaptivereference model dynamics: amplitude of the reference signal,., is chosen such that:
LTm (t) = Amxm (t) + bm(r(t) + ku (t)Aulzn(t)) (17) Tmax < )\min(Q) Umax 5 (24)

wherez,, € R" is the state of the reference moddl,, is [k lrep

Hurwitz, k. (t) is an adaptive gain to be determined througt@nd for arbitrarys > 0 the design parameter is selected
stability proof. Comparing (17) with the system dynamicg0 satisfy the lower bound:

in (15), assu_mptions are formulqted that_ gua.rant.ee existen (K + 2X|| PB|| (AkS2 + ||k ]]) tma
of the adaptive control signal with-modification in (8). B> 3
Assumption 4.1(Reference model matching conditions) (AR 4 kDA Finax ) 25)
El k;kﬂ k:a k:v bA(k:)T = Am - A7 (18) Hd
DAKY = by, bk = bA If the system initial condition and the initial value of the

Remark 4.1:The true knowledge of the gairis, k¥, k; ~ candidate Lyapunov function in (21) satisfy:

is not required, only their existence is assumed. The second 2A[| P|| 2
and the third matching conditions in (18) imply thgtk* = 2" (0)P2(0) < Amin(P) {Tumax] (26)
1.

V. ERRORDYNAMICS AND STABILITY ANALYSIS A Amin(Q) — k2| Kpo

Let e(t) = «(t) — z,,(t) be the tracking error signal. VV(0) < Amax (T2 ( 2| Pb|| + a kpo ) @7)
Then the tracking error dynamics can be written: "

en
é(t) = Ame(t) + 0N (AT (t)a(t) + Aky (t)r(t)) « the adaptive system in (19), (20) has bounded solutions
- bmAku(t)Aulzn(t) (19) \V/T(t), ‘T(t)| S Tmax s

« the tracking errore(t) goes to zero asymptotically,

where Ak, (t) = ko(t) — k%, Ak (t) = ko(t) — k7, while

Ak, (t) = ky(t) — kI denote parameter errors. Consider

the following adaptation laws: 2T (1)P2(t) < Ain(P) {2,\135” r v 0
fin(t) = —Tua(t)e’ (t)Pb "
kr(t) _ —'yrr(t)eT(t)Pb . |uc(t)| < Umax, I-€. the pOSiti(?n saturation of the
. T commanded control signal.(t) is overly prevented

wherel, = I'7 > 0, 4, > 0,7, > 0 are corresponding Proof. If Au(t) = 0, then the adaptive reference model

rates of adaptation. In order to assess the closed-loograystdynamics in (17) reduces to the one in (4), leading to the
stability, define the following Lyapunov function candidat following form of the error dynamics in (19):

V =T (t)Pe(t) + A(Ak;{(t)r;lAkz(t) (21) é(t) = Apme(t) + bA (AL (H)z(t) + Ak (t)r(t))  (28)

1 9 1 9 Since (4) defines a stable reference model, thgrit) is
e (Ak (1)) )Jr% (Aku (1)) bounded, which together with (23), and using Barbalat's
whereP = PT > 0 solves the algebraic Lyapunov equationlemma* leads to asymptotic convergence of the tracking

. errore(t) to zero.
Ap P+ PAm =-Q (22) If Au(t) # 0, then in order to prove asymptotic con-

for arbitrary Q > 0. The time derivative of the candidate vergence of the tracking error to zero, one needs to show

Lyapunov function in (21) along the system trajectorie?dditiona”y boundedness of at least one of the two states:
(19), (20) is: eitherz,,, (¢) or z(t). To this end, suppose thatis Hurwitz

. matrix and consideiV (z) = 27 (t)P,x(t) as a candidate
V(i) = —eT(t)Qe(t) <0 (23) Lyapunov function for the system dynamics, whdtg =

2547



PT > 0 solves the algebraic Lyapunov equation (22) for In the second case, i.e. whemgn(u.(t)) =
some positive definite) > 0. Since Au(t) # 0, then sgn(z”(¢)Pb), it follows from (32) that

e s e i e Sgn{ue(t)), and the SYSIem 4y < o7 ()Qa(t) - 207 () PON(k;) ()
' + 2 t)]la” (O Pb] = —a" (H)Qa()

i(t) = Az(t) + bA\umaxsgn(uc(t)) (29) — 22T () POA(ES) T x(t) + 2uc(t)z” (£) PbA
Consequently Recalling thatk, (t) = k% + Ak, (t), k- (t) = kF + Ak, (¢),
_ sgn(uc(t)) = —segn(Auc(t)), substitutingu.(t) from (8),
W = 27 (1)Qux(t) + 227 (t) PAbAumaxsgn(uc(t)) and following the requirement on the sign of> 0, stated
< _)\min(Q)”x(t)”2 4 2umaxA||[z()]|[[ P4d]| (30) in Lemma 3.1, we arrive at:

_ R W< = Omin(@) — 28K Po]) (1)
where \,in(Q) is the minimum eigenvalue of). For . max
asymptotically stable systems it immediately follows that 2| PO 2@l (k| + Ak )rmax  (35)

W < 0if ||z]| > 2Mumax||Pabll/Amin(Q). Therefore the Notice that sinceV (e, Ak,, Ak,, Ak,) is radially un-
system states remain bounded, and the adaptive laws in (2@unded, and its derivative is negatiVe{t) < 0, then the
ensure global asymptotic stability of the error dynamics imaximal values of all errors, includingsl®*, Ak™**, do
(29). not exceed the level set value of the Lyapunov function
For unstable systems, i.e. whehis not Hurwitz, add V = V; = V(0). Therefore the assumed inequality (27)
and subtracb (k)T z(t), to write the system dynamics in implies that
the following form: Apmax - Amin (Q) — |E*|kpo
v 2M||PY|| + « kpo

This in turn guarantees that,;, (Q) — 2AAkR>|| Pb|| > 0.
and consider the following Lyapunov function candidateConsequently, it follows from (35) that/ (z(t)) < 0, if
W(z(t)) = 27 (t)Pz(t), where P = PT > 0 solves the ON|| PB|| (K] + AkDa )
algebraic Lyapunov equation (22) for some positive definite =) > Mo (Q) : 2/\Aknrla)<||Pb|
Q > 0. ThenW (z(t)) can be presented as: e ’ A

. Define the ball2, = {a| o] = L0 Ok T |,
W(a(t)) = —aT (HQu(t) — 227 () PbA(k;) (1) and the smallest sef; that encloses),, the boundary of
+2umax A2 (t) Pblsgn(uc(t))sgn(z” (t)Pb)  (32) which is a level set of the Lyapunov functioi (z(t)):

(36)
i(t) = Apa(t) — DA T 2(t) + blumaxsgn (ue(t)) (31)

* max 2
Consider two possibilities: B, = {x|W < A (P) {2)\|Pb|(|kr + AL} )rmax] }
1) sgn(uc(t)) = —sen(z” (1) Pb). Aumin(Q) = 2ARRZ | P
2) sgn(uc(t)) = sgn(z? (t)Pb). By rearranging the terms in (36), it follows that
If sgn(uc(t)) = —sgn(zT (¢)Pb), then it follows from (32) (k2| + ARPE) P Umax
P T T . P
that Amax (P) Amin(Q) — 2\Akmax|[ Pp|| <V Amin(P) -
; and consequentli, C 57, implying that the annulus region
W< (@) quentl. < 51, Implying ;

T . B1\ By # . Thus, our analysis of the closed-loop system
+ 202" (PO (R [z ()] — umax)  (33)  dynamics reveals that whehu(t) # 0, there always exists
a non-emptyannulus region

If [&5 |2 (t) | — umax < 0, which is equivalent tdfz(t)|| < ) o
e, we haveW < 0. If ||k [|z(t)]] — tmax > 0, which A PO (k7| + AR T Izl < 2uUmax || Y| (37)
is ‘equivalent to[jz(¢)|| > “mx the expression in (33) Amin(Q) — 2AAkPX(| Pb| K

A .
implies W < k|2(t)||2 — 2Aumax||2(t) ||| Pb||, wherex has  such thatW (z(t)) < 0 holds Vz satisfying (37). In other
been defined before the statement of the theorem. Therefaverds, asymptotic convergence of the tracking error to zero
W(zt) < 0, if ze = x| [|z|| < _QUIHM/\”PZ’HJ_ and boundedness of all the signals are guaranteed as long
K as the system initial conditions satisfy (26) and the ihitia
ary parameter errors comply with (27).
It remains only to show that the control signal will never
St A|| P 2 incur saturation. To this end, notice that from (12) it folko
By = {x | W(z) < Amin(P) [L} } (34) thatAu.(t) can be upper bounded

Consider the largest s8f, enclosed irf2;, whose boun
forms a level set of the functio (z(t)):

K
Auf,, (t
. . B (t)] < 2]
It is obvious that for all initial conditions of(t) from the 1+p
set B; we haveW (z(t)) < 0, implying that the system < Ul o+ (AP KX |z]] + (AR 4 kX max
states remain bounded. = 1+p
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By definition Au,(t) = u’

max

sat (%) — u.(t). Hence From (16), notice that

|[Auc(t)| > |ue(t)] — ‘uﬂlaxsat (Zg‘—gj) ‘, and consequently | A (8)] = |Au;, () + Asas (1))

[tc(t)] < U+ 15, WhereC' = uf, + 2P (Afmax 4 _ ‘ 1 (u5 o (Be®Y (@)

EX ) umax + (AEP? + |EX|)rmax. FOr a givens > 0, if 1+ mmax ud max Umax
x T T /’I’ max

one chooseg > 0 to satisfyC/(1+pu) < 4, then|u.(t)| <

. . —Acat
Umax- Recalling thawl . = uma, — 6, One arrives at (25). o)

Remark 5.1:Using explicit definition ofu.(t) in (9), one + Umaxsat (uc—(t)> - uc(t)) + Asat(t)’
can compute its time derivative fou.(t)| > ud,,.: Umax
ulzn(t) 0
t =2 38 = | — plgar ()| < pé 40
Mooows =1 (38) |~ nua ()] < g (40)

Since.(t) is of order1/(1 + y), then the actuator limits Let w denote any negative number which is larger than the
can be enforced through the choicegfby controlling the maximum of the real parts of the eigenvalues of the Hurwitz
time derivativei,(t). matrix A,,. Then the following upper bound can be derived:
Remark 5.2:Notice that if one choose§ < “z=, then
from (2) one can deduce a less conservative lower bound for N o N
u than the one in (25). Indeed, it is easy to verify that if X “bm“(‘k“HAﬁT O < exp(—|wlt) ||| Ae(0)
> 2 PO[(ART ||k | tmax (AR F k7 )E Tmax—K Umax ] ) _
ﬁ1e?10 < Jue(®)] < u for allﬁg -0 ! _ HbmH(IkZI+A|IZ-J§j|"“")u6+s"""‘) + HbmH(\kZ\JrA"Z;u““‘X)uéJre“““‘)
C — max .
toﬁﬁn(];;l)( iSS.si’).(I)r;(;g/thty in (24) ensures that the NUMerans + oo, the first term in this upper bound diminishes,

6m |[([E7, |+ AK) pd+e™2%)
Remark 5.4:Theorem 5.1 implies that if the initial con- and thereforg|Ae(t)|| < o(1) + lw] :

ditions of the state and_parameter errors lie within certaigy 1--MOD BASED ADAPTATION FOR SCALAR SYSTEMS

bounds, then the adaptive system will have bounded solu- o .

tions. The local nature of the result fanstablesystems is I order to get further insight into the proposed

due to the static actuator model constraints (2) imposed ¢Rod based adaptive control design and the Theorem 5.1

the control input. For open-loop stable systems the resug@nditions, we consider scalar linear systems of the form:

are global. N
Remark 5.5:The condition in (27) can be viewed as an &(t) = ax(t) + bu(t) (41)

upper bound forv, which limits the choice of the adaptation yheres € R is the state of the system,andb are unknown

gainsI', and~;. _ constantssgn(b) is known, andu € R is the control input,
Remark 5.6:Remark 3.3 allows to estimate the chang&ypject to the static actuator constraint (2). Thenod

between the adaptive reference model (17) and the idegdsed adaptive signal is defined similar to (8). At the same

one (4). LetAe(t) = x(t) — ;,(t) define the difference time, the adaptive reference model dynamics is formed:
between the system state and the ideal reference moqb%(t) = AT (t) + b (r(t) + ko (£) Augin(t)), am < 0.

[Ae@)] < [|Ae(0)]] exp(—|w|t) + [1 — exp(—|w]t)]

in (42= and lete*(t) = 3,(f) — wn(t). Thené*(t) =  similar to (20), the following adaptation laws are chosen:
Ame*(t) — bk (t)Augin(t). *Notlce that Ae(t) can be ko(t) = —yex(t)e(t)sgn(b), ko(t) = —yr(t)e(t)sgn(b),
presented asAe(t) = e(t) — e*(t). Consequently few(t) = YuAugin (t)e(t)bn,. Define the error signal(t) =
Aé(t) = Ape(t) + bA (Akf(t)x(t) + Ak, (t)r()) x(t) —x., (t) and consider the following Lyapunov function:
by Ak () Attgin (£) — Ame™ (£) + bynko (£) Aty () V(e(t), Aky(t), Ak, (t), Aky(t)) (42)
From Theorem 6.1 it follows that the tracking error = €(t) + (v, "AKL(t) +~, "AKZ(1)) bl + v, " AKL (1)

e(t) goes to zero asymptotically. From Barbalat's lemm
it follows that é(t) — 0 as ¢ — oo. This con-
sequently implies thabX (AL (£)z(t) + Ak (t)r(t)) —
by Ak (1) Ay (t) — 0 ast — oo. Therefore

q’he sufficient conditions (24), (26), and (27) in Theorem
5.1 can now be formulated for scalar linear systems.

Theorem 6.1:For ¢ and b in (41)‘, andgTmax in (2), let
am

max D€ chosen such that, .. < —— —umax and the
Ae(t) = ApnAe(t) + e(t) + bka(t) Aun(t) 39) ™ e < g 1 Jal ™
design parametet be selected to satisfy the lower bound:
In (39), ¢(t) = o(1) ast — oo. Hence, there exists (1 (AR 4 [|k3 1) 12 ) tmax+ (AR 4 E7]) Timax o If
max > < eMAX VYt > t. .0 o
™ 2 0, such thatmaxo<,< [le(r)l < e, V¢ = . 4 system initial condition and Lyapunov function in (42)

The solution of (39) is given by:
Ae(t) = exp(Amt)Ae(0)
t 2(0)] < Pt 70 < ) 2 (1ol = ilelins
+/0 exp(Am(t—T))(s(T)+bmku(t)Aulm(t)>dT ] a1

T

satisfy:

Umax
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wherea = v,./7., then the adaptive system has boundegs] AN. Payne.

solutionsvr, |r(t)| < rmax, and the tracking errar(t) goes
to zero asymptotically.

Afrex ky max maxb
(AR 85 i 1 | el
|am| — [b] Akjpax |al

VIl. SIMULATIONS
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In this section, the proposedmod based design method-
ology is demonstrated using the first order systeém=
0.5z + 2u, subject to the following actuator constraint
umax = 0.47. A positive constant is set to 20% of the
actuator position limit, that isd = 0.2u,,.«. The reference
model withoutu-modification is given as,, = —6x,, + 6r

along with the reference input= 0.7(sin(2t) +sin(0.4¢)).
Both, the system and the reference model are initialized at
zero. The adaptation rates are selectedyas= 1,v, =
1,7 = 1. Figs. 1(a)-1(d) demonstrate the closed-loop
tracking performance for various values of As expected,

the plots indicate that large values pf result in large
changes to the reference model dynamics. At the same time
Figs. 2(a)-2(d) demonstrate that by choosinigrge enough . )
the control deficiency is reduced, thus completely avoiding --
control saturation phenomenon. Consequently, the desigr
constanty, can be viewed as a tuning “knob” that allows

for a trade-off between the adaptive changes to the adaptive
reference model and a protection against saturating actuat
position which is required for tracking the model.

VIII. CONCLUSIONS

A direct adaptive model reference control design method-
ology is developed for uncertain linear systems in the
presence of input constraints and matched uncertainties. T

Fig. 1.

(c)p=10

(d) p = 100

Tracking performance for various valuesof
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novel term used in the direct adaptive control architecture -
is termedu-modification. It ensures asymptotic convergence

of the tracking error to zero. For stable systems the obdaine ,

results are global, while for unstable systems an estimate .-

of the domain of attraction is derived. The output feedback -
results can be obtained following the approach of [3].

Extension to nonlinear systems can be done following the
lines of [8] for formulating the error dynamics. Current
efforts are directed towards extension of the results to
multivariable systems with magnitude and rate constrained

control input.
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