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Abstract— This paper presents an anti-windup design
method for improving the performance of single input adaptive
control systems in strict feedback form with input saturation.
By an appropriate modification of the adaptation laws without
saturation, excessive adaptation is prevented during an input
saturation. A stability analysis and a proof of asymptotic
convergence of the output tracking error are provided. The
performance of the proposed design is demonstrated through
simulations.

I. INTRODUCTION

Many real systems have input constraints since actuators
have physical upper and lower limits. When applying a
control scheme developed without considering input con-
straints, the performance might not be guaranteed or the
system might become unstable because the controller does
not work as expected. This controller windup problem may
arise also in a nonlinear control scheme or in an adaptive
control scheme. Hard constraints may destroy the feedback
linearizing effect or the adaptation effect of the controller.

To overcome the windup problem, many studies have
been carried out, especially for linear systems [1]. A con-
ventional approach to solve the controller windup prob-
lem in LTI systems is the two-step design procedure.
First design a linear controller by ignoring the control
input nonlinearities, and then add anti-windup bumpless
transfer (AWBT) compensation to minimize the adverse
effects of any control input nonlinearities on the closed-loop
performance. Another approach is to view windup as an
inconsistency between the controller output and the states of
the controller, and to correct the inconsistency by modifying
the controller inputs. This conditioning technique as an
anti-windup scheme was originally formulated by Hanus
et al [2], [3]. Åström and Wittenmark [4] and Åström and
Rundqwist [5] proposed that an observer be introduced into
the system to estimate the states of the controller and hence
restore consistency between the saturated control signal and
the controller state. Another relevant study is by Zheng et
al [6], who has proposed a modified internal model control
(IMC) based anti-windup scheme.
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Some approaches have also been introduced to handle
constraints in designing nonlinear controllers. Calvet and
Arkun [7] have attempted to deal with windup by enforcing
feedback linearization, even in the presence of constraints,
thereby translating the constraints on the manipulated input
into state-dependent constraints on the input to the lineariz-
ing feedback loop. An alternative approach is to employ a
linear anti-windup scheme in the linear control loop [8], [9],
[10]. More recently, Kapoor and Daoutidis [11] proposed
a method for designing controller gains and a nonlinear
observer-based anti-windup scheme, and Hu and Rangaiah
[12] proposed a method to improve the performance of IMC
of nonlinear processes with input constraints in the presence
of modelling errors and unmeasured disturbances.

The purpose of this paper is to design a method to
improve the performance of adaptive control systems in
strict feedback form with input saturation. During an in-
put saturation, an adaptation algorithm to reduce an error
might not be helpful for controlling a system output. What
is worse, a parameter might be excessively adapted and
thus the adaptive controller could not work even in the
unsaturated region. To minimize the adverse effect of an
excessive adaptation, an algorithm to modify adaptive laws
is proposed.

The paper is organized as follows. In section II, an
adaptive control system in strict feedback form is introduced
and the anti-windup design problem is formulated. The anti-
windup algorithm and the key stability results are given in
section III. Simulation results are described in section IV,
and finally, conclusions are drawn in section V.

II. STATEMENT OF THE PROBLEM

Consider the tracking problem associated with the single-
input single-output (SISO) system with n-dimensional state
x = (x1, · · · , xn):

ẋ1 = x2

ẋ2 = x3

...
ẋn = f(x) + g(x)u

y = x1 (1)

where it is desired to pick a state-feedback control u so that
the output y tracks a given reference output trajectory yd. If
the functions f and g are exactly known, then the feedback
linearization control law

u =
1

g(x)
(−f(x) + v) (2)



where v is some affine state-feedback control, can stabilize
the system and make y(t) → yd(t) when Assumptions 2.1
and 2.2 below are satisfied [13].

Assumption 2.1: There exist a positive constant gl and a
positive function gl(x) such that

g(x) ≥ gl(x) ≥ gl > 0. (3)

An equivalent assumption and subsequent theory can be
developed for the case when g(x) is negative.

Assumption 2.2: The signal v(t) is given by

v(t) = y
(n)
d − αne(n−1)(t) − . . . − α1e(t) (4)

where the polynomial Λ(s) = (sn + αnsn−1 + · · ·+ α1) is
Hurwitz, and e is the tracking error

e(t) := y(t) − yd(t) (5)

where yd is the desired system output trajectory.

If f and g are partially unknown, the approach described
above cannot be directly applied. To solve again the tracking
problem in that case, [14] developed an adaptive control
scheme, by using a piecewise linear approximation network
(PLAN) to estimate the unknown parts of f and g. To
describe the results of [14], let f and g be written as

f(x) = f̄(x) + ∆f(x), g(x) = ḡ(x) + ∆g(x) (6)

where f̄(x)and ḡ(x) denote the known parts, and ∆f(x)
and ∆g(x) denote the unknown parts of f and g, respec-
tively. Let ∆f̂(x), ∆ĝ(x) be some estimates (approxima-
tors) for ∆f(x) and ∆g(x), respectively, and introduce

f̂(x) := f̄(x) + ∆f̂(x), ĝ(x) := ḡ(x) + ∆ĝ(x). (7)

The piecewise linear approximator (PLAN) used in [14] is

∆f̂(x) =

Nf
∑

i=1

(

w
T
fi

(x − cfi
) + bfi

)

µfi
(x), (8)

∆ĝ(x) =

Ng
∑

i=1

(

w
T
gi

(x − cgi
) + bgi

)

µgi
(x), (9)

where cfi
and cgi

indicate the centers, wfi
and wgi

indicate the connection weights, and bfi
and bgi

indicate
the biases of the i-th local region for the functions f
and g, respectively. µfi

and µgi
are locally defined influ-

ence functions that indicate local regions of applicability
for the linear approximations. The linear basis function
(

wT
fi

(x − cfi
) + bfi

)

is allowed to influence the approx-
imation only in some local neighborhood of cfi

, with the
degree of influence determined by µfi

(x).
Examples of generating functions for influence func-

tions include truncated radial basis functions and triangular

functions (i.e., first-order splines). Truncated radial basis
functions are defined by

µo
fi

(x) =

{

exp (−‖x − ci‖) , if exp (−‖x − ci‖) ≥ v
0 otherwise

(10)

where ‖‖ is a user defined norm and v is a user defined
parameter. The locally defined influence function µfi

(x) can
be obtained by

µfi
(x) =

µo
fi

(x)
∑Nf

j=1 µo
j(x)

. (11)

The local linear approximations (8), (9) can be brought
into the standard form with unknown parameters θf , θg , and
known basis functions φf , φg , as in:

∆f̂(x) = φT
f (x)θf , ∆ĝ(x) = φT

g (x)θg, (12)

where

θf = [wT
f1

, bf1
, . . . ,wT

fNf
, bfNf

]T , (13)

θg = [wT
g1

, bg1
, . . . ,wT

gNg
, bgNg

]T , (14)

φf (x) = [(x − cf1
)
T

µf1
(x), µf1

(x), . . . ,
(

x − cfNf

)T

µfNf
(x), µfNf

(x)]T , (15)

φg(x) = [(x − cg1
)
T

µg1
(x), µg1

(x), . . . ,
(

x − cgNg

)T

µgNg
(x), µgNg

(x)]T . (16)

Combining (7) and (12), f̂(x) and ĝ(x) are then represented
by

f̂(x) = f̄(x) + φT
f (x)θf , (17)

ĝ(x) = ḡ(x) + φT
g (x)θg, (18)

which show explicit linear dependence on the unknown
parameters θf and θg. The above PLAN is a universal
approximator [14]. Therefore, if the networks (i.e., Nf

and Ng) are made large enough, they can approximate the
functions f(x) and g(x) to any degree of accuracy ε. Due
to the linearity of the approximators in the approximating
parameters, and the assumption that φf and φg are basis
functions, there exists a unique θ∗f such that

θ∗f = arg min
θ

∫

‖∆f(x) − φT
f (x)θf‖

2
2dx, (19)

with ∆f(x) − φT
f (x)θ∗f = εf (x;Nf ) and ‖εf (x;Nf )‖ <

εf (Nf ) for a given Nf and approximation given by (12)
[14], [15]. Similarly, there exists a unique θ∗g , associated
with the approximation to ∆g(x). Combining this result
with (6) and (7) yields

f̂(x) − f(x) = θ̃T
f φf (x) − εf (x;Nf ), (20)

ĝ(x) − g(x) = θ̃T
g φg(x) − εg(x;Ng), (21)



where θ̃f := θf − θ∗f , θ̃g := θg − θ∗g . Then the adaptive
control of [14] is given by

uad(t) =
v(t) − f̂(x)

ĝ(x)
(22)

where f and g in (2) have been replaced by f̂ and ĝ,
respectively, with the counterpart of Assumption 2.1 in
place (with g replaced by ĝ).

This is not necessarily an effective controller because
of the approximation error ε. To compensate this error, a
sliding control will be added. An ideal sliding control with
time varying gain is defined as

usl(t) = −ksl(t)sgn(e1(t)) (23)

where e1 represents a sliding surface, which is defined as

e1(t) = βne(n−1)(t) + · · · + β1e(t) (24)

or in the s-domain E1(s) = Ψ(s)E(s), where Ψ(s) =
(

βnsn−1 + · · · + β1s
)

. Here the sliding gain is given by

ksl =
ε̄f + ε̄g|ū|

gl

, (25)

where ε̄f and ε̄g are upper bounds on |εf (x;Nf )| and
|εg(x;Ng)|, respectively.

The overall control law is then given by

u(t) = uad(t) + usl(t) (26)

When applying the control above to the real system, how-
ever, there may be some limitations (and thereby perfor-
mance degradation) because all physical systems are subject
to actuator saturation. Our objective in this paper is to
develop an anti-windup scheme to overcome this controller
windup problem.

III. ANTI-WINDUP DESIGN AND ANALYSIS

A. Anti-windup algorithm

If the control input is saturated at maximum or minimum
input levels, it might be impossible to follow the desired
system output yd(t). This windup phenomenon makes the
tracking error e(t) increase and thereby the parameters
change excessively. The excessive adaptation due to an
actuator saturation is not helpful in reducing the error and it
makes a delayed system response worse when the control
input returns to an unsaturated region. To overcome this
problem, we extend the anti-windup method in [12]. The
main idea is to redefine the error term in the adaptive law
so as to tame excessive adaptation.

If we denote a constrained input as ū, then

ū = sat(u) =







umax if u ≥ umax

u if umin < u < umax

umin if u ≤ umin

. (27)

Now let us first rewrite (26) in explicit form, using (22),
(23) and (27):

ū =
v(t) − f̂(x)

ĝ(x)
− ksl(t)sgn(e1(t)) (28)

where v and e1 can be represented as

v = y
(n)
d − αne(n−1) − . . . − α1e (29)

= (y
(n)
d + αny

(n−1)
d + . . . + α1yd)

−(αny(n−1) + . . . + α1y) (30)
= Λ(s)yd − (Λ(s) − sn)y, (31)

e1 = βne(n−1) + . . . + β1e (32)
= Ψ(s)(y − yd). (33)

Using (31) and (33), (28) can be rewritten as

Λ(s)yd − ksl(t)ĝ(x)sgn (Ψ(s)(y − yd))

= f̂(x) + ĝ(x)ū + (Λ(s) − sn)y. (34)

Now, let us consider equation (34) in a different way.
Assume ū is given and yd is a variable. Then we can find yd

which will be achieved using a given control input ū, that is,
by setting ū as umax or umin and solving the equation (34)
when a saturation happens, we can get a modified desired
output which can be achieved within the unsaturated input
range. The excessive adaptation can be prevented if this
modified desired output is used in adaptive laws. Define the
modified desired output as ȳd and thereby ē as y − ȳd and
ē1 as Ψ(s)ē. The error equation by considering the input
saturation can be represented as

Λ(s)ē = Λ(s)y − Λ(s)ȳd (35)
= sny + (Λ(s) − sn)y − Λ(s)ȳd (36)

= f(x) + g(x)u − f̂(x) − ĝ(x)ū

−ksl(t)ĝ(x)sgn(Ψ(s)ē) (37)

= −θ̃T
f φf + εf +

(

−θ̃T
g φg + εg

)

ū

−ksl(t)ĝ(x)sgn(Ψ(s)ē). (38)

If a saturation does not happen, ȳd is equal to yd and
thereby ē to e and ē1 to e1. For the proofs that follow, the
following assumption will be required.

Assumption 3.1: Ψ(s) is a Hurwitz polynomial and
Ψ(s)Λ−1(s) is minimal and strictly positive real.

The dynamic equation for the modified sliding surface ē1

is

ē1 =
Ψ(s)

Λ(s)

[

−θ̃T
f φf + εf +

(

−θ̃T
g φg + εg

)

ū

−ksl(t)ĝ(x)sgn(ē1)

]

. (39)

The adaptation law for θf is given by

dθf

dt
= Γf ē1(t)φf (x) (40)

where Γf is a matrix of positive adaptation rates. The
adaptation for θg will be constrained within the following



convex set S to satisfy Assumption 2.1 with g replaced by
ĝ:

S = {θg | g̃ := gl − ĝ(θg, x) ≤ 0}. (41)

Using the projection method [16], the adaptive law for θg

can be expressed as follows:

dθg

dt
=







Γg ē1(t)φg(x)ū if θg ∈ So or
(

θg ∈ S̄ and ūē1 ≥ 0
)

0 otherwise
, (42)

where Γg is a positive adaptation rate, So is the interior of
S, S̄ is the boundary of S, and θg(0) is chosen to be in S.
In this adaptive law, whenever θg ∈ S̄ we have θ̇T

g ∇θg
g̃ =

−Γgūē1φ
T
g φg ≤ 0. This implies that vector θ̇g points either

in the opposite or vertical direction to ∇θg
g̃, that is, it points

toward inside of S or along the tangent plane of S̄ at point
θg . Since θg(0) ∈ S, it follows that θg will never leave S,
i.e., θg(t) ∈ S ∀t ≥ 0.

B. Stability analysis

In this subsection, we provide a stability analysis for
the overall adaptive control system with the anti-windup
algorithm, and prove asymptotic convergence of the output
tracking error. Since Ψ(s)/Λ(s) is strictly proper by As-
sumption 3.1, (39) may be represented by the state-space
dynamic equation

ξ̇ = Aξ + B

[

−θ̃T
f φf + εf +

(

−θ̃T
g φg + εg

)

ū

−ksl(t)ĝ(x)sgn(ē1)

]

ē1 = Cξ. (43)

From Assumption 3.1, the triple (A, B, C) satisfies the con-
ditions of the Lefschetz-Kalman-Yakubovich lemma [16],
and hence there exist positive definite symmetric matrices
P and L, a vector q, and a scalar ν > 0 satisfying
PA + AT P = −qqT − νL and PB = CT . If we take
the Lyapunov candidate function as

V =
1

2

(

ξT Pξ + θ̃T
f Γ−1

f θ̃f + θ̃T
g Γ−1

g θ̃g

)

, (44)

its derivative along trajectories of the system is given by

V̇ = −
1

2
ξT (qqT + νL)ξ + (εf + εgū)ē1

−ksl(t)ĝ(x)sgn(ē1)ē1 − θ̃T
f φf ē1 − θ̃T

g φgūē1

+θ̃T
f Γ−1

f θ̇f + θ̃T
g Γ−1

g θ̇g. (45)

By applying the adaptive laws (40) and (42), the last four
terms can be eliminated for θg ∈ S. In case where θg(0) ∈
S̄ and ūē1 < 0, the term of θ̃T

g φgūē1 cannot be eliminated
since θ̇g = 0. Based on the assumption that θ∗g ∈ S, we
have θT

g ∇θg
g̃ ≥ 0 (i.e., −θT

g φg ≥ 0), when θg ∈ S̄. Since
ūē1 < 0 from the adaptive law, the term −θ̃T

g φgūē1 is

nonpositive. Then, by applying the sliding control of (23),
we obtain

V̇ ≤ −αξ2 + |εf + εgū||ē1| − ksl(t)ĝ(x)|ē1| (46)

where α = λmin(qqT + νL) > 0. The sliding gain (25)
yields

ksl(t)ĝ(x) =
ĝ(x)

gl

(ε̄f + ε̄g|ū|) ≥ |εf + εgū|. (47)

Finally, we get

V̇ ≤ −αξ2 ≤ 0. (48)

This implies that V, ē1, θ̃f , θ̃g ∈ L∞. This yields directly
θf , θg ∈ L∞. From (48), furthermore, ξ ∈ L2. Then,
|ē1| ≤ |C||ξ| implies ē1 ∈ L2. Since Ψ(s) is a Hurwitz
polynomial, ē ∈ L∞ ∩ L2. Also, it is clear that ξ̇ ∈ L∞

from (43). This means ξ is uniformly continuous. Therefore
from Barbalat’s Lemma [16] and the L2 property of ξ, we
conclude that ξ, ē1, and ē converge to zero asymptotically.
It means that the system output converges to the modified
desired output without an actuator saturation. We now
summarize this result in the following theorem:

Theorem 3.1: The system described by (1) with control
law given by (26) with (22) and (23), and parameter
adaptation laws given by (40) and (42), and the anti-windup
algorithm given by (34) under Assumptions 2.1, 2.2, and
3.1, is stable in the sense that

1) θ̃f , θ̃g , θf , θg ∈ L∞;
2) ξ, ē1, ē ∈ L∞ ∩ L2;
3) ξ, ē1, ē converge to zero asymptotically.

IV. SIMULATIONS

The performance of the anti-windup algorithm developed
is now illustrated through simulations. The plant and all
configurations used in the simulation are identical to those
used in [14]. The nonlinear system is given by

ẋ1 = x2

ẋ2 = f(x) + g(x)u(t)

y = x1, (49)

where

f(x) = 4

(

sin(4πx1)

πx1

)(

sin(πx2)

πx2

)2

(50)

g(x) = 2 + sin(3π(x1 − 0.5)). (51)

We use the same reference trajectory as in [14], which
is generated from a third-order system with a bandwidth
of 10 rad/s driven by a 0.4 Hz square wave with unit
amplitude, and 0.5 mean. The filters are selected to satisfy
Assumptions 3.1 as Ψ(s) = (s+15) and Λ(s) = (s+10)2.
All differential equations have been implemented by using
ode23(·) function in Matlab. The controller parameters
and regression vectors for parameter adaptation have been
updated every 0.01 s. The known portion of f and g are
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Fig. 1. The output trajectories. The solid line indicates the unsaturated
case. The dashdot line indicates the saturated case without an anti-windup
algorithm. The dotted line indicates the saturated case with the anti-windup
algorithm.
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Fig. 2. The f̂ trajectories. The solid line indicates the unsaturated
case. The dashdot line indicates the saturated case without an anti-windup
algorithm. The dotted line indicates the saturated case with the anti-windup
algorithm.

given by f̄ = 0 and ḡ = 2 and the lower bound on g is set to
gl = 1. The adaptation rate matrices are set to Γf = 750I ,
and Γg is a block diagonal matrix with the diagonal element
of [750 0; 0 10]. The approximation region was chosen by
[−0.41.4]×[−3.43.4]. Then the number of mode candidates
for f and g on the approximation region are Nf = 306 and
Ng = 9, respectively.

Figure 1 depicts the system output trajectories. Com-
paring with the unsaturated case, the performance of the
saturated case is worse because of the input constraint.
However, the proposed anti-windup method improves the
error by reducing the excessive adaptation effect. This ex-
cessive adaptation phenomenon can definitely be observed
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t

Fig. 3. The ĝ trajectories. The solid line indicates the unsaturated
case. The dashdot line indicates the saturated case without an anti-windup
algorithm. The dotted line indicates the saturated case with the anti-windup
algorithm.
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Fig. 4. The control input trajectories. The solid line indicates the
unsaturated case. The dashdot line indicates the saturated case without an
anti-windup algorithm. The dotted line indicates the saturated case with
the anti-windup algorithm.

in Figures 2 and 3. Without an anti-windup algorithm, f̂ , ĝ
vary largely during an input saturation because the error due
to an input saturation is large. This large variation makes
the control input large and thus stay in the saturated region.
It makes the system response slow. Figure 4 depicts the
control input trajectories. From this, we can see that the
saturated input escapes from the saturated region earlier
with the proposed anti-windup method than the saturated
case without an anti-windup algorithm. Through these sim-
ulations, it is thus shown that the proposed method can
improve the performance in the presence of input saturation.



V. CONCLUSION

In this paper, we have presented an anti-windup method
for single input adaptive control systems in strict feedback
form to improve the performance when there is constraint
on the input. To prevent an excessive adaption of parameters
in the presence of input saturation, we have modified the
desired output trajectory in the adaptation law, to assure that
the control input stays in the unsaturated region. Stability
analysis has shown that the system output asymptotically
converges to the modified desired output trajectory without
input saturation. Simulation results show that the proposed
method improves the performance in the presence of an
input saturation constraint. It seems possible that with some
effort this approach can be extended to adaptive control
systems in strict feedback form with multiple control inputs.
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