
  

  
Abstract— In this paper, neural net (NN)-based actuator 

saturation compensation scheme for the nonlinear systems in 
Brunovsky canonical form is presented. The scheme that leads 
to stability, command following and disturbance rejection is 
rigorously proved, and verified using a nonlinear system of 
“pendulum type”. On-line weights tuning law, the overall 
closed-loop performance, and the boundness of the NN weights 
are derived and guaranteed based on Lyapunov approach. The 
actuator saturation is assumed to be unknown, and the 
compensator is inserted into a feedforward path. The 
simulation results indicate that the proposed scheme can 
effectively compensate for the saturation nonlinearity in the 
presence of system uncertainty. 

I. INTRODUCTION 

aturation, deadzone, backlash, and hysteresis, are the 
most common actuator nonlinearities in practical 

control systems. Saturation nonlinearity is unavoidable in 
most actuators. Categories of saturation nonlinearities 
include constraints of the magnitude and the rate of actuator 
inputs. When an actuator has reached such an input limit, it 
is said to be “saturated”, since efforts to further increase the 
actuator output would not result in any variation in the 
output. Due to the non-analytic nature of the actuator 
nonlinear dynamics and the fact that the exact actuator 
nonlinear functions, namely operation uncertainty, are 
unknown, such systems present a challenge to the control 
design engineer [13], and provide an application field for 
adaptive control, sliding control and neural network-based 
control. Proportional-derivative (PD) controller has 
observed limit cycles if the saturation exists.  

To tackle this problem, Astrom and Wittenmark [1] 
developed the general actuator saturation compensator 
scheme; Hanus and Peng [6] addressed a controller based 
on the conditional technique; Walgama and Sternby [19] 
developed an observer-based anti-windup compensator; Niu 
[14] designed a robust anti-windup controller based on the 
Lyapunov approach to accommodate the constraints and 
disturbance; Chan [3] investigated the actuator saturation 
stability issues related to the number of the integrators in 
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the plant; Annaswamy et al. [2] addressed an adaptive 
controller to accommodate saturation constraints in the 
presence of time delays, which is applicable to 1st, 2nd and 
n-th order plants. 

In some seminal recent work several rigorously derived 
adaptive schemes have been given for actuator nonlinearity 
compensation [18]. Compensation for non-symmetric 
deadzone is considered in [15], backlash compensation is 
addressed in [17], and hysteresis in [18]. 

Much has been written on intelligent control using neural 
networks (NNs) [12]. With the universal approximation 
property and learning capability, NNs have proven to be a 
powerful tool to control complex dynamic nonlinear 
systems with parameter uncertainty. The common control 
strategies with regards to NN are direct adaptive NN 
control method with guaranteed stability, indirect adaptive 
NN control based on identification [13], and dynamic 
inverse NN control [12]. In general, NN is used to estimate 
the unknown nonlinear dynamics and/or function and to 
compensate for them. Unlike the standard adaptive control 
schemes, NN can also cope with a nonlinear system that is 
linearly unparameterizable. Recently, several research 
results [4], [11] have used NN in feedback linearization 
schemes, incorporating the Lyapunov theory, to ensure the 
overall system stabilization, command following, and 
disturbance rejection. 

Most saturation compensation approaches mentioned 
above focus on the linear plant and assume that the 
saturation is symmetric with the measurable actuator output. 
This paper proposes a NN-based scheme for saturation 
control for a class of nonlinear systems in the Brunovsky 
canonical form. The approach is applied to the n-th order 
feedback linearizable nonlinear plant, with a general model 
of actuator saturation assuming that the actuator output is 
not necessarily measurable. NN weights are tuned on-line, 
and the overall system performance is guaranteed using 
Lyapunov function approach. The convergence of the NN 
learning process and the boundness of the NN weights 
estimation error are all rigorously proven. The simulation 
results regarding to the nonlinear robot dynamics are 
provided. 
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This paper is organized as follows. Section 2 provides the 
preliminary remarks and definitions. Section 3 presents the 
saturation nonlinearity and converted expressions. Section 4 
addresses the Brunovsky canonical form nonlinear 
dynamics in the presence of saturation, the design process 
of out loop tracking controller and NN compensator, and 
the rigorous proof of the weights tuning laws. In Section 5, 
a simulation example of “pendulum type” nonlinear system 
with saturation nonlinearity is given. The conclusion is 
drawn in Section 6. 

II. PRELIMINARY REMARKS AND DEFINITIONS 

Let ℜ  denote real numbers, nℜ  denote the real n  
vector, and nm×ℜ  denote the real nm ×  matrices. Let S  be 
a compact simply connected set of nℜ . With 
map mSf ℜ→: , define )(SC  as the space such that f  is 

continuous. The initial condition is )( 00 txx ≡ , let the 

equilibrium point ex , and 
exU be the neighborhood of ex . 

Definition 1 (Vector and Matrix Norms): By  is 

denoted any suitable vector norm. When it is required to be 
specific we denote the P -norm by

P
. The supremum 

norm of )(xf , over S , is defined as 

  )(sup xf
Sx∈

, mSf ℜ→:  (1) 

Given nm
ij BaA ×ℜ∈= ],[  the Frobenius norm is defined 

by 

  �==
ji

ij
T

F
aAAtrA

,

22
)(  (2) 

with )(tr  the trace. The Frobenius norm is compatible with 

the 2-norm so that 
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Definition 2 (Uniformly Ultimate Boundness (UUB)) 
[11]: Consider the nonlinear system 

 ),( txgx =�  (5) 

with state ntx ℜ∈)( . The equilibrium point ex  is said to be 

uniformly ultimately bounded if there exists a compact set 
nS ℜ⊂ , so that for all Sx ∈0  there exists an 0>ε , and a 

number ),( 0xT ε  such that ε≤− extx )(  for all Ttt +≥ 0 . 

That is, after a transition period T , the state )(tx  remains 

within the ball of radius ε  around ex . 

Consider two-layer NN, consisting of two layers of 
tunable weights. The hidden layer has L  neurons, and the 
output layer has m  neurons 

 )( 0vxVWy TT += σ  . (6) 

The multilayer NN is a nonlinear mapping from input 
space nℜ  into output space mℜ , where  

 LinjVV ji ,,2,1;,,2,1],[ �� ===  (7) 

 mkLiWW ik ,,2,1;,,2,1,0],[ �� ===  (8) 
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T
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In order to include the thresholds in the matrix W , the 

vector activation function is defined as 
T

LWWWW )](),(),(,1[)( 21 σσσσ �= � where LW ℜ∈ . 

Tuning of the weights W  then also includes tuning of the 
thresholds. 

Many well-known results indicate that any sufficiently 
smooth function can be approximated arbitrary closely on a 
compact set using a two-layer NN with appropriate weights 
[5], Function )(⋅σ  could be any continuous sigmoidal 

function [5]. NN universal approximation property defines 
that any continuous function can be approximated 
arbitrarily well using a linear combination of sigmoidal 
functions, namely,  

  )()()( 0 xvxVWxf TT εσ ++= , (12) 

where the )(xε  is the NN approximation error. The 

reconstruction error is bounded on a compact set S  by 

Nx εε <)( . Moreover, for any Nε one can find a NN such 

that Nx εε <)(  for all Sx ∈ .  

The first layer weights V  are selected randomly and will 
not be tuned. The second layer weights W  are tunable. The 
approximation holds [7] for such NN, with approximation 

error convergence to zero of order ( )LC /Ο , where L  is 

the number of the hidden layer nodes (basis functions), and 
C  is independent of L . The approximating weights W  are 
ideal target weights, and it is assumed that they are bounded 
so that MF

WW ≤ . 

III. ACTUATOR SATURATION 

We study actuator saturation that appears in the nonlinear 
system plant, and the way of its compensation. 
Compensation technique is based on NN learning 
capabilities. 

Figure 1 is the linear saturation τ = )(usat , where τ  and 

u  are scalars. In general, τ  and u  are vectors. Saturation 



  

operation limits are minτ  and maxτ . In this paper, we assume 

that saturation nonlinearity is unknown.  
Assuming ideal saturation, mathematically, the output of 

the actuator )(tτ  is given by 
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where maxτ  is the chosen positive, and minτ  is the negative 

saturation limits. The control that can not be implemented 
by the actuator, denoted as )(tδ , is given by 
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The nonlinear actuator saturation can be described using 
)(tδ , see [2], [3], [9], [10]. In this paper, NN is used to 

approximate unknown function )(tδ . 

 

 
 Figure 1. Saturation nonlinearity  

IV. SATURATION COMPENSATION 

A. Nonlinear System Dynamics 
Consider the nonlinear systems with state space 

representation in the Brunovsky canonical form 
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with T
nxxxx ],,,[ 21 �= , ℜ→ℜ nf : , an unknown smooth 

function; ℜ→ℜ ng : , a known smooth function; τ  the 

control input. 
Assumption 1: Function )(xg is assumed to be known, 

such that ε>)(xg , where ℜ∈> εε ,0  . 

Define the desired state vector, )(txd , as 

 Tn
dddd yyytx ],,,[)( )1( −= �� . (16) 

Assumption 2 (Bounded Desired Trajectory): The desired 
trajectory )(txd is bounded and continuous, and Qtxd ≤)(  

with Q  known scalar bound. 

B. Tracking Error Dynamics and Feedback 
Linearization 

Define the state tracking error vector, )(te  as 

 )()()( txtxte d−= . (17) 

Let us define a filtered tracking error as 
 eKr T= , (18) 

where T
nkkkK ]1,...,,[ 121 −=  is appropriately chosen 

coefficient vector, so that 0→e  exponentially as 0→r  
[16], [11]. Then, the time derivative of the filtered tracking 
error can be written as 

 dYxgxfr ++= τ)()(� , (19) 

where �
−

=
++−=

1

1
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n
dd ekyY . 

Consider the saturation nonlinearity equation (14). The 
following n-th order nonlinear system dynamics 

 τ)()()(
1 xgxfx n += , (20) 

which is equivalent to (15), can be described as  
 δ)()()()(

1 xguxgxfx n ++= , (21) 

in which the saturation will be treated as input system 
disturbance [2]. 

Similarly, in terms of the filtered tracking error above 
system dynamics can be described as follows 

 dYuxgxfr +++= ))(()( δ� , (22) 

where dY  is a known function of the tracking error and the 

desired function. 
Choose the tracking control law as  

 )ˆ(
)(

1
rKvYf

xg
w vd −+−−=  , (23) 

where f̂ is the fixed approximation of function )(xf . The 

functional estimation error is given by 

 fff ˆ~
−=  . (24) 

Approximation f̂ is fixed in this paper and will not be 

adapted. Robust term v  is chosen for the disturbance 
rejection. The control law u  then consists of the tracking 
controller with the saturation compensator, shown in the 
Figure 2 and given by 
 ϕ̂−= wu , (25) 

where ϕ̂  is the approximation of modified saturation 

nonlinear function )(xδ . 



  

 
 Figure 2. Nonlinear system with saturation compensator. 

C. NN Saturation Compensator 
Using the general NN function approximation property, 

there exists a NN that closely approximates the modified 
saturation nonlinear function )(xδ  

 εσδ += )( NN
TT xVW  . (26) 

Implemented NN is actually an approximation of the 
ideal NN (26), and is given by 

 )(ˆˆ
NN

TT xVW σϕ =  , (27) 

where the NN weights approximation error is 

 WWW ˆ~ −=  . (28) 
Input to the NN saturation compensator is chosen as 

T
dNN exx ],[≡ . 

Assumption 3 (Bounded Ideal NN Weights): The ideal 
NN weights W are bounded so that MWW ≤ , with 

MW known bounds. 

 
Assumption 4 (Bounded Estimation Error): The estimate 

)(ˆ xf  of a nonlinear unknown function )(xf  is assumed 

known, so that that the functional estimation error )(
~

xf  

satisfies 

 )()(
~

xfxf M≤  (29) 

for some known function bounds )(xf M  [8], [13]. 

 
Using control law (23) and (25), and substituting into 

(22), overall closed-loop error dynamics is given by 
 εσ ν +−++= rKvxVWxgfr NN

TT )(
~

)(
~

�  . (30) 

D. Weights Tuning Law for Guaranteed Tracking 
Performance  

The purpose of NN saturation compensator is to design 
proper control laws and stable on-line NN weights update 
tuning rules, to guarantee the tracking performance of the 
overall closed loop systems under the unknown saturation 
nonlinearity. Moreover, an NN saturation compensator, if 
designed properly, should reduce the deleterious effect of 
saturation nonlinearity on the overall system performance. 

Theorem 1 (Tuning of NN Compensator): Given the 
system in (30) and Assumptions 1-4, choose the tracking 
control law (23), plus the saturation compensator (25), (27), 
and the robustifying term as  

 )()()( rsignxftv M−= , (31) 

where the )(xf M  are bounds on the functional estimation 

error, and sign(.) is standard sign function. Let the 
estimated NN weights be provided by the NN tuning 
algorithm 

 WrkSxgrxVSW NN
T ˆ)()(ˆ −= σ�

, (32) 

where  
TSS = >0: any constant matrix representing the learning 

rate of the NN 
k : small scalar positive design parameter. 

 
By properly selecting the control gains and the design 

parameters, the filtered tracking error )(tr and the NN 

weights Ŵ  are UUB (Uniformly Ultimately Bounded). 
 

Proof: Choose Lyapunov function candidate as 
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Differentiating yields 
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Whence substitution from (30) yields, 
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Applying the NN tuning rules, selected Lyapunov 
function is simplified to 

)ˆ~
()

~
(2 WWtrrkfrrKL T++++−= ενν

�   (36) 

Using (31) one has 
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Using the inequality, 
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which is guaranteed to remain negative as long as 
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which is equivalent to 
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The following remarks are relevant. 
 
Unsupervised Backpropagation Through Time With 

Extra Terms. The first term of (32) is modified version of 
the standard backpropagation algorithm. The k  term 
corresponds to the e-modification, to guarantee bounded 
parameter estimates. 
 

Bounds on the Tracking Error and NN Weights 
Estimation Errors. The right-hand side of inequality (39) 
can be taken as a practical bound on the tracking error in 
the sense that )(tr  will never stray far above it. Note that 

the stability radius may be decreased by any amount by 
increasing the PD gain vK . It is noted that PD, PID, or any 

other standard controller does not posses this property when 
saturation nonlinearity is present in the system. Moreover, it 
is difficult to guarantee the stability of such a highly 
nonlinear system using only PD. Using the NN saturation 
compensation, stability of the system is proven, and the 
tracking error can be kept arbitrarily small by increasing the 
gain vK . The NN weights errors are fundamentally bounded 

in terms of MW . The tuning of parameter k  offers a design 

tradeoff between the eventual relative magnitudes of 
F

W
~

 

and r . 
 

NN Weights Initialization. The weights V  are set to 
random values. It is shown in [7] that for such NN, termed 
random variable functional link (RVFL) NN, the 
approximation property holds. The weights W  are 
initialized at zero. Then the PD loop in Figure 2 holds the 
system stable until the NN begins to learn. 
 

Intelligent Anti-Windup Saturation Compensation. The 
proposed method utilizes an NN controller to compensate 
for the saturation nonlinearity effects. Initially, the NN 
controller “learns” and adjusts its weights to prevent the 
control signal from being saturated. After the initial 
learning period, which will be demonstrated below in the 
simulation, the NN signal effectively keeps the control 
signal within saturation bounds. Therefore, the proposed 
NN control scheme presents a form of Intelligent Anti-
Windup Saturation Compensation. 

V. SIMULATION OF NN SATURATION COMPENSATOR 

The simulation was performed to verify the effectiveness 
of the proposed NN saturation compensator. We consider a 
“generalized pendulum” nonlinear system given by 
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The control input is constrained by the saturation 
nonlinearity characterized by the parameters 

 1,5,5 minmax =−== mττ  . (43) 

The size of the NN affects the stability, performance, 
limitation of control efforts, and possible operating 
conditions. The slow convergence of the tracking error is 
usually due to the small network size. Moreover, if the 
network chosen size is too large, the computation burden 
increases. Common approach is to start with the smaller NN 
size, and gradually increase the number of hidden layer 
nodes until satisfactory performance is achieved. 

In this paper, the NN has four, ten and one neurons at the 
input, hidden and output layers, respectively. The first-layer 
weights V  are selected randomly [7], they are uniformly 
randomly distributed between –1 and +1. These weights 
represent the stiffness of the sigmoid activation function. 
The threshold weights for the first layer 0v  are uniformly 

randomly distributed between -15 and +15. The threshold 
weights represent the bias in activation functions’ positions. 
The second layer weights W  are initialized to zero or any 
random numbers, and the effect of the inaccurate 
initialization number can be retrieved by the on-line weights 
tuning law methodology. 

Tracking loop controller parameters are chosen so that 
10=vK , TK ]1,2[= . Initial conditions are T]0,0[ , and 

desired trajectory is given by )cos()(),sin()( 21 ttxttx == . 

The position tracking errors and the control input signal 
with and without NN saturation compensator are shown in 
Figure 3 and Figure 4. 
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Figure 3. Tracking errors e1(t) (solid) and e2(t) (dotted) without saturation 
compensator (left), and with saturation compensator (right). 
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Figure 4. Control torque τ(t) without saturation compensator (left), and 
with saturation compensator (right). 

 
The NN saturation compensator weights tuning 

parameters are chosen as 
 5,0001.0 == Sk  . (44) 

From the above simulation, it is clear that the proposed 
scheme can effectively compensate the saturation 
nonlinearity in a class of nonlinear systems. Note also that 
after some initial time required for NN to learn the 
unknown saturation nonlinearity, the NN saturation 
compensator effectively prevents the control signal from 
reaching saturation limits. NN is trained using the filtered 
tracking error, trying to minimize the same. That is 
achieved by keeping control signal under saturation limit 
range. Design tradeoff is that intelligent NN saturation 
compensator requires extra controller complexity and extra 
computational power. 

VI. CONCLUSIONS 

Neural network-based saturation compensation signal is 
inserted into the actuator control signal, effectively 
preventing it from being saturated. The proposed NN 
saturation compensation scheme presents a form of 
intelligent anti-windup saturation where NN adjusts its 
output to prevent saturation of the control signal. 
Simulation results show that the proposed saturation 
compensation techniques can be effective for a feedback-
linearizable class of nonlinear systems. 
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