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Abstract—The synchronous generators have a natural 
different time scale dynamics. That is why for modeling 
and control design in such systems the methods of 
singular perturbations are widely used. In this paper the 
possibilities of sliding mode control design for 
synchronous generators are analyzed. With this aim the 
concept of singular perturbation is revised in order to 
use it for relay control system with a discontinuous slow-
motion integral manifold. Obtained results are used for 
variable structure control of synchronous generator.  

 

Index Terms—sliding mode control, singular 
perturbations, nonlinear systems 

 
I. INTRODUCTION 

Simplifications of plant models is a classical tool for 
electric power systems control design, and the most typical 
way is the singular perturbation approach (see [1], [2], [3], 
[4]). From the other hand, a fruitful and relatively simple 
approach, especially when we are dealing with nonlinear 
plants subjected to perturbations, is based on Variable 
Structure Control technique with sliding mode [5]. However 
the usage discontinuous (relay) control to a plant model 
with the singular perturbation leads to some problems. 
Classical methods of singular perturbation (see [6], and [3]) 
are based on the spectrum separation and consequently these 
approaches need the smoothness of the models and control 
law. That is why the classical methods of singular 
perturbations are not valid for Singularly Perturbed Relay 
Control Systems (SPRCS). 

The decomposition methods for SPRCS were developed 
by [7], [8], [9], [10],[11], [12]. Some control algorithms for 
SPRCS was developed also in [12].The present paper 
discusses the advantages and possibilities of sliding mode 
control design for nonlinear SPRCS describing the 
synchronous generator dynamics. For this we use a Two 
Step Control Design (TSCD) procedure: 
  I. Eliminate the stator dynamics via singular perturbation 
methods and derive the reduced (6th order) model 
describing the slow mechanical and rotor fluxes dynamics.           
  II. Design a sliding mode excitation control law using 
block control technique [13]. 
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So the order of the original SPRCS is reduced in two steps: 
elimination of the fast dynamics and then the reduction of 
the slow dynamics via sliding domain.  

This paper is organized as follows. Section II introduces 
the basic equations of the synchronous generator. In Section 
III the concepts of singularly perturbed models with relay 
control are justified. In section IV the singular perturbation 
approach is applied to design a synchronous generator 
controller. Simulation results are shown in Section V. 
 

II. SYNCHRONOUS GENERATOR MODELS 

A. Basic Equations 

The mechanical equilibrium equations for a synchronous 
generator are given by 

bdt
d ωωδ

−=                               (1) 

( )em
b TT
Hdt

d
−=

2
ωω

                      (2) 

where δ is the power angle (rad.), ω  is the angular velocity 
(rad./sec.), bω  is the synchronous angular velocity 
(rad./sec.), H is the inertia constant (sec.), mT  is the 
mechanical torque (p.u.), and eT  is the electromechanical 
torque (p.u.). The equilibrium equations affected by the 
Park transformations, are expressed as 

td
dGiRV ϕϕω ++=                            (3) 

iL=ϕ                                                  (4) 
where tt bω= , bω  is the base angular velocity, t is the 
time in p.u., t is the time in seconds, 

[ ]Tkqkdgfqd iiiiiii ,,,,,= , [ ]Tfqd VVVV 0,0,0,,,= , 

[ ]Tkqkdgfqd ϕϕϕϕϕϕϕ ,,,,,=
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V means a voltage, i  means a current, ϕ  means a flux 
linkage, r  means a resistance, L  means an inductance, and 



 

the subscripts means: s is an astator,  d is a direct axis 
circuit, q is a quadrature axis circuit,  f is a field excitation 
circuit, g is a quadrature field circuit, kd is a direct axis 
damper, kq is a quadrature axis damper, md is a direct 
magnetizing, mq is a quadrature magnetizing. 

The equation for the electromechanical torque in terms of 
the currents and fluxes, is governed by  

dqqde iiT ϕϕ −=                           (5) 
and the excitator dynamics is represented by 

ubVaV ffff +−=&
                                      (6) 

where fa  and fb  are the excitator parameters and u is the 
control input. 

B. Complete Model 
From (1) to (5), we obtain the following model of 

synchronous generator of the 8th order: 
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   ),,,( 21
3 fVzxxFz =&µ                         (8) 

where ( )Txxxx 321
1 ,,= , ( )Txxxx 654

2 ,,= , ( )Tzzz 21 ,= , 
 δ=1x , ω=2x , fx ϕ=3 , gx ϕ=4 , kdx ϕ=5 , kqx ϕ=6 , 

diz =1 , qiz =2 , bωµ 1= ,  

(
















++
++++−

−
=

133532331

21251624252314222321

2

1 )
zaxaxa

zzazxazxazxazxaTd
x

F mm

sω

















++
++
++

=

233632431

123522321

213612411

2

zbxbxb
zbxbxb
zbxbxb

F ,















=

3

1 0
0

b
B , 













++++

+++++
= ∞

∞

q

fd

Vczczxcxxcxxc
VcVczczxcxxcxxc

F
25224122352223221

1615114221362124211
3 . 

The coefficients of (7)-(8) depend on the plant parameters. 
 

III. SINGULARLY PERTURBED APPROACH 

A. Singularly Perturbed Model 

In this paper we are dealing with the singularly perturbed 
model having the form:  

( )uzxf
dt
dx ,,, µ= ,         ( ) 00 xx =                   (9) 

( )uzxg
dt
dz ,,, µµ = ,          ( ) 00 zz =                 (10) 

where nRx ∈ , mRz ∈ , Ru ∈ , R∈µ ;  f and g are smooth 
functions of their argument and linear on z and u, 0>µ  is a 
small parameter, and u  is  

0uu ≤  with 00 >u .                            (11) 
B. Control Design Procedure 
The sliding mode control design procedure for original 

system (9), (10) consists of two steps.  

Step 1. Setting 0=µ  makes instantaneous the fast 
dynamics (10) 

( )uzxg ,0,,0 = .                              (12) 
Let us consider a smooth isolated solution of equation (12)  

( )uxhz ,=                                  (13) 
where z  presents the quasi-steady state. Substituting (13) in 
(9) we obtain the reduced order model (ROM) 

( )( )uuxhxf
dt

xd ,0,,,=                         (14) 

where )(tx  defines the solution of (14) for a fixed control 
)(xu . 

Step2. Design a nonlinear sliding surface 0)( =xs , Rs ∈  
for the system (14) , such that the solution of the equation 

( )( ) 0,0,,, == eqeq uuxhxfG
dt

sd
  

with respect to the equivalent control, )(xueq [5], does exist, 
and the sliding mode equation (SME) 

( )( ))(,0,, * xuxhxf
dt

xd
eq=  ,    ( ))(,)(* xuxhxh eq=  (15) 

0)( =xs                               (16) 
has the desired properties. Second, taking into account (16), 
it is selected a discontinuous control  
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that makes the sliding surface (16) to be attractive. 
Note that one of the vector x  components can be 

expressed from (16) as a function of other ( 1−n ) 
components. Therefore, in fact, SME (15) has the order 
( 1−n ). So, the order of the original system (9)-(10) is 
reduced first, by using the motion separation due to different 
time scale, and second, via sliding mode. 

To justify the proposed control design (TSCD) procedure 
(see steps 1 and 2), first we will analyze the behavior of the 
original SPRCS (9), (10) and (17) when the state vector 
reaches the switching surface, and then investigate the 
entrance of SPRCS solutions into the sliding mode domain 
(see subsection C). Finally, the stability condition for 
original SPRCS will be derived (see subsection D).  
 

C. Analysis of the Reaching Phase for SPRCS Solutions 

In this subsection we will study the behavior of the 
original SPRCS out from sliding mode domain. If a solution 
of the SPRCS is not crossing the discontinuity surface (16) 
it can be analyzed by classical method of singular 
perturbations (see [6], and [3]). From the other hand, the 
specific feature of SPRCS describing the behavior of 
synchronous machines is that the equations of slow 
variables depend on the relay control (17). We will show 
that in this case we can use the reduced order model to 
describe the SPRCS. Doing so, we have to describe specific 
features of SPRCS for both domains 0>s  and 0<s . 



 

Moreover, it is necessary to verify the attraction condition 
for the switching point.  

Denote the domains of definition for variables z and x as 
Z and X.  The discontinuity surface 0)( =xs  divides the 

domains X and Z into the parts defined as −X  and −Z  
for 0<s ,  and +X  and +Z  for 0>s , respectively; and 
define the system structure as 

( ) ( ))(,,,,, xuzxfzxf ++ = µµ , 

( ) ( ))(,,,,, xuzxgzxg ++ = µµ        for 0≥s  

( ) ( ))(,,,,, xuzxfzxf −− = µµ ,   

( ) ( ))(,,,,, xuzxgzxg −− = µµ         for 0≤s  

with   2, Cgf ∈++ [ ]],0[ 0µ×× ++ ZX , 

          [ ]],0[, 0
2 µ××∈ −−−− ZXCgf . 

C.1  SPRCS in the domain 0<s .  
Denote 

( ) ( )µµ ,,,, zxGfzx
dt

ds −
−

= ,  ( ) ( )µµ ,,,, zxGfzx
dt

ds +
+

=  

Suppose that −− ∈∈ ZzXx 00 , . It is natural to assume that 
for the original system (9), (10) and (17) the following 
conditions of the Tikhonov theorem (see, for example, [6]) 
hold: 
[a1] The function ( )xhz −− =  is an isolated solution of 

( )0,,0 zxg −=  for all −∈ Xx . 
[a2] The Cauchy problem for slow dynamics 

( )( ) ( ) 00,0,, xxxhxf
dt
xd

== −−−−−
−

            (18) 

has a unique solution )(tx −  on ],0[ st , where st  is the 

switching point i.e. the smallest root of equation ( ) 0)( =−
stxs .  

[a3] The equilibrium point 0=Π−z  of the system  
( ) ( )( )0,)(),( txhztxg
d

zd −−−−−
−

−

+Π=
Π
τ

 

is asymptotically stable, where µτ ttxhzz =







−=Π

−−−−
,)( , 

moreover, for all ],0[ st  

( ) 00)),((),(SpecRe <−<
Π∂

∂ −−−
−

−

αtxhtx
z

g . 

Define )( −Ψ h  as the domain of attraction of the equilibrium 

point 0=Π−z , and suppose that 
[a4] The initial value for fast variables belongs to the 
attraction domain, i.e. )(0

−Ψ∈ hz . 
[a5] The trajectory of the reduced system (15) reaches the 
switching surface 0)( =xs , without tangential touch, i.e. 

                 ( )( ) 00,)(),( >= −−−−
−

ss txhtxfG
dt
sd

. 

From Vasil’eva theorem [6] it follows that for sufficiently 
small µ  there exists a time moment )(µstt =  such that for 
the slow coordinate of the original SPRCS we have 

( ) 0)),(( =µµstxs , i.e. a solution of the original SPRCS will 
reach the switching surface. 
The following lemma is true [10]: 
Lemma 1. Suppose that the original SPRCS (9), (10) and 
(17) satisfies the conditions [a1]-[a5]. Then there exist 
small 00 >µ and 00 >δ , )(µst  such that for all ],0[ 0µµ ∈  
there is a unique solution ( )),(),,( µµ tztx  of Cauchy 
problem (9) and (10) on )](,0[ µst , and  

)](,0[)()(),(lim
0

µµ
µ sttfortxtxtx ∈== −

→
, 

( ) ( ))(,lim
0

txhtz −−

→
=µ

µ
  for ]-)(,[ 00 δµδ stt ∈ ,  00 >δ . 

Remark 1. In the same way, we can prove that it is possible 
to use the equations for slow motions in the case when a 
solution of (9), (10) and (17) leaves the domain ++ × ZX  
and reaches the switching surface [10]. 
 

C.2 Transition into sliding domain 
The behavior of the original SPRCS (9), (10) and (17) 

into the sliding domain, is described.  Denote the domains 

( ) ( )












<>=
+−

00),(,,00),(,:0 xhx
dt

dsxhx
dt

dsxS , 

( ) ( )












<>=
+−

0,,,0,,:),,( µµµµ zx
dt

dszx
dt

dszxS .   

Suppose that the control resources achieve the following 
sliding mode existence conditions [5]: 

[c1]     ( )( ) 00,)(),( >−−−
−

ss txhtx
dt
sd ,   

          ( )( ) 00,)(),( <−−−
+

ss txhtx
dt
sd . 

Now from the Tikhonov theorem it follows that for 
sufficiently small µ  

( ) 0)),(()),(( >= −
−

µµµ ss tztxGf
dt

ds   and   

( ) 0)),(()),(( <= +
+

µµµ ss tztxGf
dt

ds . 

This means that a solution of the original system (9), (10) 
and (17) enters into the sliding domain µS  without 
tangential motions. Therefore, we can consider the 
coordinate of the switching point ( ( )µµµµ ),(),),(( ss tztx ) 
as the initial condition for SPRCS into µS . Hence, a solution 
of the Cauchy problem (9), (10) with (17) into µS  is 
described by the following system [5]: 

( )),,(,,, ****
*

µµ zxuzxf
dt

dx
eq=                (19) 



 

( )),,(,,, ****
*

µµµ zxuzxg
dt

dz
eq=               (20) 

where )),(()),((* µµµµ ss txtx = , ( ) ( )µµµµ ),(),(*
ss tztz = ,

0)( * =xs , [ ]Ttt ),(0 µ∈  , 1* −∈ nRx , mRz ∈* , Ru ∈ , 

[ ]0,0 µµ ∈ , and  ),,( ** µzxueq   is the equivalent control 
calculated as a solution of  

( ) 0,,, ** == equzxGf
dt
ds µ , 0)( * =xs . 

Similar to the above case (subsection C.1) we suppose that 
for the system (19)-(20) the following conditions hold: 
[c2] The function ( )∗∗∗ = xhz  is an isolated solution of 

( ))0,,(,0,,0 **** zxuzxg eq=  for all 0Sx ∈ . 
[c3] The reduced ( by 0=µ ) sliding mode equation  

( ) *
0

* )(,)(,0),(, xtxxuxhxf
dt
xd

seq == ∗∗∗∗
∗

 

with )0),(,()( *** xhxuxu eqeq =∗  has a unique solution 

)(tx ∗  on ],[ Tts , and 0)( Stx ∈∗  for all ],[ Ttt s∈ . 

[c4] The equilibrium point 0* =Π z  of the system  
( ) ( )( )0,)(),( ****

*

*
txhztxg

d
zd

+Π=
Π

τ
, 

where ( ) µτ stttxhzz −=−=Π **** ,)( , is asymptotically stable, 
moreover, for all ],[ Ttt s∈  

( ) 0,00)),((),(SpecRe ***
*

*
><−<

Π∂

∂
ααtxhtx

z
g

. 

Define )( *hΨ  as the domain of attraction of the equilibrium 

point 0* =Π z , suppose that 
[c5] The initial value of the jump for fast variables at the 
switching point belongs to the attraction domain, i.e.  

( ) ( ) )()()( ** htxhtxh ss Ψ∈− −−− . 
The following lemma is true [11]: 
Lemma 2. Suppose that the original SPRCS (9), (10) and 
(17) satisfies the conditions [a1]-[a4] and [c1]-[c4]. Then 
there exist a small 00 >µ and 00 >δ  such that for all 

[ ]0,0 µµ ∈  there is a unique solution ( ) ( )( )µµ ,,, tztx  of (9), 
(10) and (17) on ],0[ T  and  

1) ( ) ( )txtx ∗∗

→
=µ

µ
,lim

0
   for ]),([ Ttt s µ∈ , 

2) ( ) ( )( ) ( ))(,,,,lim
0

txutztxu eqeq
∗

→
=µµµ

µ
, ],[ 0 Ttt s δ+∈ , 

3) ( ) ( )






∈
∈

==
−

→ ]),([)(
)](,0[)(,lim *0 Tttfortx

ttfortxtxtx
s

s

µ
µµ

µ
  , 

4) ( ) ( ))(,lim
0

txhtz −−

→
=µ

µ
  for ],[ 00 δδ −∈ stt ,  

     ( ) ( ))(,lim **
0

txhtz =
→

µ
µ

   for ],[ 0 Ttt s δ+∈ . 

Note if a solution of (9), (10) and (17) will leave the sliding 
domain, then it will not affect the zero approximation of the 
fast and the slow dynamics equations, since the slow motion 
integral manifold is continuous [10]. 
 

D. Stability Analysis 

Consider the case, when the original SPRCS has the 
equilibrium into µS . Solving (20) for ( ) ( )( )µµ ,,,* tztxueq  and 
substituting it in (19), we obtain the smooth algebraic - 
differential singularly perturbed system described the 
sliding mode dynamics. From the equation of the sliding 
surface, taking into account that 0≠G  one can express one 
coordinate or x as a function of other )1( −n  coordinates. 
Then a sliding mode dynamics is governed by the following 
singularly perturbed thmn )1( −+  order system: 

( )µ,, ⊗⊗⊗
⊗

= zxf
dt

dx ,  ( )µµ ,, ⊗⊗⊗
⊗

= zxg
dt

dz ,  (21) 

where the vector 1−⊗ ∈ nRx  consists of  the ( 1−n )  
independent coordinates of x , zz =⊗ , 1and, −⊗⊗ ∈ nRfg  
are the values of  g and the corresponding component of f 
computed at ( )µ,, ⊗⊗= zxuu eq . For the case of 

synchronous machine equations, ( )( ) 00,, =⊗⊗⊗⊗ xhxg has 

a unique solution ( )⊗⊗⊗ = xhz , then the slow dynamics in 
(21) are described by the system 

( ) ( )( )0,, ⊗⊗⊗⊗⊗⊗
⊗

== xhxfxf
dt

dx   

( )( )0,,0 ⊗⊗⊗⊗= xhxg .                      (22) 

Let us denote ⊗
eqx as the equilibrium point of (22). Then 

from Klimushchev – Krasovskii theorem [14] it follows that 
the equilibrium point of system (21) is uniformly 
asymptotically stable for [ ]0,0 µµ ∈ , if the matrices  

( )( )0,, ⊗⊗⊗
⊗

⊗

∂

∂
eqeq xhx

x
f

 and ( )( )0,, ⊗⊗⊗
⊗

⊗

∂

∂
eqeq xhx

z
g

 in 

(22) are  Hurwitz.  
Now we can conclude that in order to verify correctness 

of the proposed control design procedure it is sufficient to 
check the conditions presented in the subsections B. - D.  
          

IV. CONTROL OF GENERATOR 
 

In this section we will derive a reduced model and a 
discontinuous control law for the generator. 

A. Reduced Model of Synchronous Machine 

The fast dynamics (8) rewritten as  

fd VcVczczxcxxcxxcz 16151142213621242111 +++++= ∞&µ

                                          (23) 
∞++++= qVczczxcxxcxxcz 252241223522232212&µ  (24) 

can be neglected by making 0=µ , that is 

fRRR VBFzA ++=0                           (25) 
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and 2z  is calculated as 
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(26) 
Substituting (26) in (7) gives the following reduced ( th6  
order) model: 
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where  fg VAVAxAxAF 2423
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The coefficients of (27) depend on the plant parameters. 
B. Angular Speed Control 
The system (27) has the Nonlinear Block Controllable 

Form with internal dynamics. Therefore in order to design 
the nonlinear sliding surface we use the block control 
technique [13]. To satisfy the control objective, namely: 
rotor angle stability enhancement, we define the control 
error as 

bx ως −= 22 .                              (28) 
Then taking the time derivative of (28) along the trajectories 
of (27), gives 

ffmg VbxxxbTVxxf 23
21

2
21

22 ),(),,,( ++=ς&      (29) 
where 

( ))()()()()( 21251624252314222 ⋅⋅+⋅+⋅+⋅−= hhahxahxahxaTdf mm , 
)(2212 ⋅= hab , and )( 272617252 dadabf −−=  are positive 

functions of the time. To eliminate the old dynamics in (29) 
and introduce a new one we put  

[ ]skVbfbx ff −++⋅⋅−= −
2022

1
23 )()( ς ,  00 >k     (30) 

Then using (30) the switching surface can be defined as 
 

0)()()( 202232 =−++⋅+⋅= Bff xkVbfxbs ω           (31) 

The projection motion on the subspace ωs  can be derived 
using (31) and (30) of the form 

ubTVVxxfs smfgs += ),,,,( 21&  

where sf  is a bounded function, fs bab 47= , and is a 
positive function of the time.  

C. Stability  Analysis. 
C.1 Sliding mode stability. 

Under the following condition:  
),,,( 21

0 mgss TVxxfub ≥  

the proposed relay control law  
       )(0 ωssignuV f −= ,           00 >u         (32) 

ensures the convergence of the state to the surface (31) in a 
finite time.  
C.2 Sliding dynamics stability  

Once the sliding mode motion is achieved, this motion is 
governed by the reduced order ( th5  order) system: 

20221 , ςςς kx −== && ,  feqVxax += 3313&               (33) 

)),,,(),,,,(,,(, 21
2

21
1

21
2

2
fgfg VVxxhVVxxhxxFx =&         (34) 

where the two first equations (33) describing the linearized 
mechanical dynamics, has the desired eigenvalue 0k− , 
while the third equation and (34) represent the internal 
excitator and rotor flux dynamics. This system can be 
rewritten as linear system with nonvanishing perturbation 

feqVxax += 3313& ,  ( )mfgsm TVVxxfxAx ,,,,, 2122 +=&   

where 
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dbbdbdbb
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dbbdbdbb
Asm , and 

feqV  and ( )mfg TVVxxf ,,,, 21  are bounded functions. The 

matrix smA  is Hurwitz (see section V) and 031 >a  
therefore the zero dynamics on the invariant subspace  

0,0 21 == ςx   and 0)( =xs  is stable. Hence, the solution 

)(2 tx  is ultimately bounded [15], the control error 2ς  tends 
exponentially to zero, and the angle 1x  tends to a constant 
steady state ssδ . 
C.3 Fast dynamics stability  
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µ  is Hurwitz, 

hence the equilibrium point ( ) 0)0( =−=Π −− xhzz  of the 
system is exponentially stable. So all the assumptions 
described in section III are satisfied. 

V. SIMULATION RESULTS 
 

The proposed control algorithm was tested on the 
complete eight order model of synchronous generator 
connected through a transmission line to an infinite bus, 
Fig.1.  



 

 

 

       

 

 

Fig. 1. Single machine with infinite bus. 
 

The parameters of the synchronous machine and external 
network in p.u. are: 

.sec07.0.sec03.0.sec0.1.sec0.8 ""'' ==== qodoqodo TTTT

23.0,3.0,81.1 "' === ddd LLL , 6.0,76.1 ' == qq LL , 

001.0,1.0 == extext RL . From this we obtain the parameters 
of model (9)-(10), and (17). The controller gains was 
adjusted to 0k =10. The eigenvalues of (34) was calculated 
as, 77.384 −=λ , 5024.05 −=λ  and 04.276 −=λ . Figures 
2-4 depict results under a three-phase short circuit (150 ms. 
long) simulated at the transformer terminals.  

These Figures reveal some important aspects:  
1 State variables hastily reach a steady state condition after 
small and large disturbances, exhibiting the stability of the 
closed-loop system. 
2 The terminal voltage recovers their steady state value after 
the short circuit 

VI   CONCLUSIONS 
 

In this paper the possibility of usage a sliding mode control 
algorithms for nonlinear SPRCS describing a power system 
dynamics is analyzed. For this system the following two 
steps control design (TSCD) is proposed: firstly, the natural 
two scale properties of synchronous generator are used to 
obtain the reduced order model, and then the sliding mode 
control algorithm ensuring the desired behavior of the 
generator, is designed. The effectiveness of proposed 
algorithm is illustrated by simulations. 
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Fig. 2. Rotor angular velocity affected by a 0.15 sec. short circuit. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 3.  Power angle affected by a 0.15 sec. short circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Generator voltage affected by a 0.15 sec. short circuit.  
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