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Abstract— Tone and color reproduction functions (TRC or
CRC) characterize how a printer maps a desired tone or
color into the actual output. Ideally, the TRC/CRC should be
identity maps. Sensing the TRC/CRC is needed for closed loop
feedback control. Currently, sensing of the high dimensional
TRC/CRC is limited since only a small number of tone/color
sensor patches can be printed and measured at a time. Time-
sequential sampling is proposed to alleviate this difficulty by
sampling different tones/colors at different times. A Kalman
filtering approach is proposed to reconstruct the TRC/CRC
from the time-sequential samples. The effect of two sampling
strategies - lexicographical and bit-reversed strategies are
analyzed. It is shown that the periodic Kalman reconstruction
filter is effective, and that it can be interpreted to consist of
cascade of modulation, low pass and demodulation processes.

I. INTRODUCTION

A color xerographic (i.e. laser) printer can be considered
a mapping between the desired image and the output image.
An important performance criterion for a color printer is
that any desired colors in the desired customer image is
faithfully reproduced. By ignoring the spatial dimension
(such as lines and textures) of print quality for the moment
and focusing on the issue of consistent color reproduction
only, a color xerographic printer can be represented by the
color reproduction function: CRC : C → C, desired color 7→
output-color, where C is a 3-dimensional color space. An
ideal printer is the one in which the CRC is an identity
function.

A digital color xerographic printer generates color by
printing and overlaying the Cyan, Magenta, Yellow and
blacK (CYMK) separations. The printing of each color
separation is characterized by the tone reproduction curve
(TRC):TRC : [0, 1] → C, desired tone 7→ output-color,
where the tone τ of the separation is the solidness of the
primary toner color. For example, a patch with τ = 0.1 for
the magenta color separation corresponds to a light violet
whereas τ = 1.0 corresponds to solid magenta color. Physi-
cally, the tone of the primary separations are determined by
the pattern and size of the half tone dots printed. Roughly
speaking, the denser and bigger the dots are, the more
solid the color. The final color printed is a composition
of the colors of the individual separation. Thus, the so
called Image Output Terminal (IOT) portion of the printer
can be considered a mapping IOT : (tC , tY , tM , tK) 7→

Research supported by the National Science Foundation CMS-0201622
Please send all correspondence to Perry Y. Li. The authors

are with the Department of Mechanical Engineering, University of
Minnesota, 111 Church St. SE, Minneapolis MN 55455. E-mails:
{pli,tpsim,djlee}@me.umn.edu.

output-color where (tC , tY , tM , tK) are the tones for the
four color separations.

The xerographic printing process is subject to distur-
bances from many factors including temperature, humidity,
material age and variations etc.. Several xerographic actua-
tors such as laser power, corotron voltage and development
/ bias voltages can be used to combat these variations. The
goal of the xerographic color control system is to ensure
that the CRC is as close to the identity map as possible.
Unlike the control objective for most processes which is
to control or regulate the output of the process, the color
control problem consists in maintaining the process itself
to be constant and stable. The difference is due to the
fact that every customer image to be printed can contain
many and any possible colors which the xerographic printer
must reproduce correctly all at once. Moreover, xerographic
printers are often used in an on-demand manner in which
consecutive customer images are different.

A similar, but simpler control problem can be formulated
for the printing of each color separation. In this case,
the control objective is to maintain and stabilize the tone
reproduction curve (TRC) for each separation [1]. If the
manner in which the primary colors are combined is stable
and constant, then output color will also consistent when
the TRC for each separation has been effectively stabilized.

Both the CRC and TRC control formulations pose sig-
nificant problems for sensing and control. It is because both
the CRC and TRC as mappings are potentially infinite di-
mensional whereas there are only a small number actuators
and sensors available. Even when each color coordinate
is modestly discretized into 16 steps, the color quality of
163 = 100K desired colors need to be kept track of for the
color control problem, and 16 tones must be kept track of
for the TRC control problem for each separation. A solution
to this control problem has been addressed previously for
the TRC stabilization problem in [1] using a curve-fitting
technique. The sensing issue is addressed in the present
paper.

Feedback control for the stabilization of the TRC or
CRC such as in [1] requires sensing of the TRC or the
CRC. Process sensing for the xerographic printing process
consists in printing small color patches in the unused areas
of the photoreceptor and measuring the density or color
of the patches. Typically, only 3 to 5 patches are to be
printed every few photoreceptor belt cycles. This amounts
to sampling either the TRC or the CRC at 3 to 5 points once
in a while. Compared to the potentially large dimensionality
of the TRC or CRC to be controlled, this limited sensing



capability poses a significant difficulty for feedback control.
In this paper, time-sequential sampling strategy is pro-

posed to increase the utility of the available feedback
information. Time-sequential sampling was investigated in
the 1980’s and 1990’s for video and time varying imaging
applications (e.g. video and tomography) [2], [3], [4], [5],
[6], [7]. For time varying images, time-sequential sampling
refers to sampling the image at different spatial locations
at different sampling instances. Rastering in television is
an illustration. The benefit is that by trading off temporal
bandwidth with spatial bandwidth, the temporal bandwidth
of the time varying image that can be captured faithfully
beyond the Nyquist rate determined by the periodicity of
the sampling scheme alone. In another perspective, the
sampling rate can be reduced while retaining the same
information content. In our context, time-sequential sam-
pling means that at different sampling instances, different
tones or different colors are sampled. This maximizes the
information from the TRC/CRC samples and allows the
time varying CRC or TRC to be captured (and subsequently
reconstructed faithfully) even when only a small number of
samples of the CRC / TRC are available at each instant.

The rest of the paper is organized as follows. In section
II, the time sequential sampling approach for tone reproduc-
tion curves is formulated. Section III presents the spectral
content of time-sequentially sampled signals. Section IV
presents a Kalman filter approach to TRC reconstruction
from time-sequential samples. Section V presents an in-
terpretation of the periodic Kalman reconstruction filter.
Section VI contains some concluding remarks.

II. TIME SEQUENTIAL SAMPLING

Consider the time varying TRC(k) ∈ {F : [0, 1] →
C} where k = 0, 1, . . . denotes the time indices. The
time variation is due to disturbances or control actuation.
Suppose at each sampling instant k, n tones given by
[α1(k), α2(k), . . . αn(k)] are printed and measured. We call
α : Z → [0, 1]n, k 7→ [α1(k), α2(k), . . . , αn(k)] the
sampling sequence. The time sequentially sampled TRCs
is given by: for k = 0, 1, . . .,

TRCs(k) = TRC(k)[α(k)] =




TRC(k)[α1(k)]
TRC(k)[α2(k)]

...
TRC(k)[αn(k)]




In our research, we restrict α to be M−periodic, i.e. α(k+
M) = α(k) for all k ∈ Z , and n = 1.

We consider the following questions:
1. Given TRCs(k), the time sequentially sampled TRC
for k = 0, 1, . . . ,KT , obtained using a periodic time-
sequential sampling sequence α(·),how does one reconstruct
TRC(KT ). We are particularly interested in causal recon-
struction so that the reconstruction at time t only requires
measurements at kT ≤ t.
2. How do sampling sequences affect the reconstruction
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Fig. 1. Bit Reversed and Lexicographical Time-sequential sampling
sequence with M = 16 points.

accuracies? Suppose that we have determined that there are
M tones τ0, . . . , τM−1 that will be sampled. Let g : k 7→ τk
be a monotone map that maps the index to the actual tone.
We focus particularly on two sampling sequences:
• Lexicographic: Here α(k) = g(αg(k)) and αg(k) :=
mod(k,M)) so that the order of sampling is according
to its index.

• Bit reversed: Here αg(k) is given by 1) representing
the index k as a binary number, 2) reversing the order
of the significant bits. Finally, α(k) = g(αg(k)). The
idea of the bit-reversed order is that it is roughly an
even sampling of the time-tone space.

These two sequences (αg(k)) are shown in Fig. 1. It is
apparent that the lexicographical sequence does not cover
the spatial-temporal domains as evenly as the bit-reversed
sequence. In the rest of the paper, we interchange the use
between α(k) and the corresponding tone index αg(k).

Exactly the same approach can be applied to a color
reproduction curve. In this case the sampling sequence is:
α : Z → Cn since CRC is to be sampled at n colors. The
benefits of time-sequential sampling is will be even more
important since the dimensionality of the CRC is larger.

III. SPECTRAL CONTENT OF TIME-SEQUENTIALLY
SAMPLED TRC

Let ω(τ, t) ∈ < be a tonal-temporal signal such as a
TRC. Allebach [2] shows that the fourier transform of a
time-sequentially sampled signal is given by the original
spectrum Ω(u, f) (u is the tonal frequency, f is the temporal
frequency), aliased by its weighted tonal and temporal
frequency translates:

Ωs(u, f) =
∑

m,p

QmpΩ(u−m/A, f − p/B)

Qmp =
1

M

M−1∑

l=0

exp−j
2π
M (mα(l)+pl)
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Fig. 2. Aliasing weights Qmp for lexicographical (top) and bit-reversed
sequences (bottom). The tonal (spatial)

where B = MT is the periodicity of the sampling sequence
and A/M is the tonal resolution with A being the tone range
(A = 1 in our case). Notice that the frequency translates
are given by (m/A, p/B)) when Qmp 6= 0. Also, both
the frequency translates and the weights depend on the
sampling sequence.

If the TRC has a tonal frequency support less than
M/(2A), and a temporal frequency support less than
1/(2B) = 1/(2MT ), then no-aliasing occurs. The original
signal can (theoretically) be reconstructed perfectly via
a low pass spatial/temporal filter. M/(2A) and 1/(2B)
are therefore the tonal and temporal Nyquist frequencies.
Note that when M is large to satisfy its tonal (color)
frequency requirements, 1/(2B) can be very small for time-
sequentially sampled signal.

When the signal is temporally undersampled, the effi-
cacies of different sampling sequences are related to the
aliasing patterns.

For the lexicographic sequence and the bit-reversed se-
quence with M = 21, the aliasing patterns (Qmp) for the
lexicographical sequence and the bit-reversed sequence are
shown in Fig. 2. The aliasing weights for the lexicographical
sequence are concentrated on a line, whereas for the bit-
reversed case, the weights are more evenly distributed,
eventhough the sums of Qmp for both sequences are the
same. The consequence of this result is that for signals with
low spatial / temporal bandwidths (e.g. if the signal support

lies within the triangle, {(u, f)|u ≤ M/2(1 − f · 2T ))}),
the lexicographical sampling strategy has the potential of
perfect reconstruction. On the other hand, although the
bit-reversed sampling sequence cannot provide for perfect
reconstruction, it is more tolerant to high temporal/spatial
bandwidth signal.

IV. RECONSTRUCTION VIA A KALMAN FILTER

Assuming that no aliasing occurs, traditionally, time-
sequentially sampled signals are reconstructed by low pass
temporal-spatial filtering based on the assumed signal spec-
tral support. This approach, however, is problematic in
feedback control application for the following reasons:
• The ideal low pass filter cannot be implemented

causally.
• When the reconstructed TRC is used for feedback

control, the frequency content of the TRC will be
significantly increased due to the control input. This
induce undue aliasing, while the inherent process dy-
namics actually remains the same. However, it is not
apparent how to incorporate the known information
about the control input in the low-pass reconstruction
technique.

These difficulties can be resolved using an alternate ap-
proach based on Kalman filtering.

We assume that the TRC is well represented by its values
at M = 21 tones so that TRC(k) ∈ <M=21. To exhibit its
tonal spectral contents, we further parameterize TRC(k)
by its DFT so that:

TRC(k) = G · x(k)

where k ∈ Z+ is the time index, G ∈ <M×M is a matrix
of Fourier basis functions and x(k) ∈ <M is the vector of
Fourier coefficients.

For simplicity, we model the TRC dynamics as having
random drifts w(k), and the time-sequentially sampled
signal is subject to measurement noise n(k):

x(k + 1) = x(k) + w(k)

TRCs(k) = Cα(k)G · x(k) + n(k) (1)

where Cα(k) ∈ <1×M is a M-periodic sampling matrix
for the time-sequential sampling pattern α(k). It has a 1 at
the α(k) index (actually the αg(k)-th entry), and 0 at other
locations. In our study, we assume that w(k) and n(k) are
zero mean white noise sequences with covariances Rww
and Rnn. However, the model can be easily generalized
when they are pink noise sequences. This will be useful
for making tonal-temporal frequency tradeoffs. Effect of
control actuators can also be easily incorporated into (1).
For simplicity, we assume that in (1), the effect of controls
have been subtracted out.

In our study below, we use M = 21, T = 0.4s,
A = 1, 1/B = 0.12Hz so that the tonal-temporal Nyquist
frequencies are (u, f) = (10.5cycles/tone, 0.06Hz).
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Because span{Cα(k), k = 0, . . . ,M − 1} = <M , Eq.(1)
is a M−periodic observable linear system and admits a M-
periodic Kalman filter in the steady state:

x̂(k + 1) = Ac(k)x̂(k + 1) +Bc(k) · TRC(k)

T̂RC(k) = Gx̂(k + 1) (2)

where

Ac(k) = I − L(k)Cα(k)

Bc(k) = L(k)Cα(k)

and L(k) is the periodic Kalman filter gain obtained by
solving the periodic Riccati equation:

P̄ (k + 1) = P̄ (k)− L(k)Cα(k)GP̄ (k) +Rww

L(k) = P̄ (k)GTCTα (k)
[
Rnn + Cα(k)GP̄ (k)GTCTα (k)

]−1

P̄ (k) = P̄ (k +M) (3)

In (2), the unsampled TRC(k) ∈ <M (instead of the
time sequentially sampled TRCs(k) ∈ <) is considered as
the input to the Kalman filter and the reconstructed TRC,
T̂RC(k) ∈ <M as the output.

To test the Kalman filter we generate the TRC(k) by
superimposing on a typical TRC a signal of the form
a · cos(2π(uτ − f · t)) which has a single tonal-temporal
frequency (u, f). The mean squared reconstruction error,

σ2
e := ‖TRC(·)− T̂RC(·)‖22

:=
∑

k

‖TRC(k)− T̂RC(k)‖22

for each pair of (u, f) can be used to compare the filter
performances at different frequencies. Fig. 3 shows the
mean squared reconstruction errors of the Kalman filters
using lexicographical, and bit-reversed sampling sequences.
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Notice that at low tonal-temporal frequencies, both filters
reconstruct well. Noticeably, at high tonal frequencies (near
the Nyguist frequency of u = 10), the Kalman filter for the
lexicographical sequence reconstructs worse than the one
for the bit-reversed sequence, especially near the temporal
Nyguist frequency f = 0.06Hz. This result can also be
seen from the actual reconstruction error in Fig. 4 and 5.

The mean-squared error does not convey the worst case
error however. The worst case error (after convergence) for
the two sampling strategies are shown in Figs. 6-7. They
show that although perfect reconstruction is achieved at low
temporal frequencies, the performance degrades as the tonal
and temporal (u, f) frequencies increase. It also shows that
with lexicographical strategy, the reconstructed TRC tends
to be out-of-phase from the actual TRC. This causes the
worst case error using the lexicographical strategy to be
worse than that of the bit-reversed strategy. In both cases,
the reconstruction at low tonal frequency (u = 1) and
high temporal frequencies introduce high tonal frequency
artifacts. This is present because the TRC signal model in
Eq. (1) assumes that the TRC’s spectral support is rectan-
gular. If we had assumed that the tonal frequency content
decreases as the temporal frequency content increases, then
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Fig. 6. Input TRC (consisting of a typical TRC with various single
tonal-temporal frequency imposed on it) and its worst case steady state
reconstruction, for Kalman filter designed for the lexicographic strategy.
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Fig. 7. Input TRC (consisting of a typical TRC with various single
tonal-temporal frequency imposed on it) and its worst case steady state
reconstruction, for Kalman filter designed for the bit-reversed strategy.

reconstruction is expected to improve.

V. DECOMPOSITION OF THE KALMAN FILTER

We now describe our analysis of the Kalman filter (2).
Since the steady state Kalman filter is M-periodic, it is
difficult to talk about its frequency response. Instead, we
decompose its input/output relationship using Floquet the-
ory for periodic systems [8]. According to Floquet theory,
the transition matrix Φ(t, t0) for the M− periodic discrete
time (2) system can be written as:

Φ(t, t0) = P (k)Λk−k0P−1(k0)

where Λ := Φ(M, 0)1/M is a constant matrix and P (k) ∈
<M×M is a M−periodic matrix sequence given by:

P (k) =

{
Φ(k, 0)Λ−k for k ∈ [0,M − 1]

P (k −M) when k ≥M .
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Fig. 8. Transformation of a sinusoidal temporal-spatial (u = 4, f =
0.01) TRC input through the three processes in the Kalman filter. From top
to bottom are the temporal spectra for a particular tone: 1) original signal;
2) transformed by GP (k+1)−1Bc(k); after filtering by Λ; demodulation
by GP (k)G−1.

Using this decomposition and applying it to the convo-
lution formula for (2), we have:

T̂RC(k) = [GP (k)G−1]·
{
G

k−1∑

k′=k0

Λk−k
′+1G−1[GP (k′ + 1)−1Bc(k

′) · TRC(k′)]

}
.

(4)

Eq. (4) shows that, in the original TRC coordinates, the
Kalman filter operates on the TRC(k) in three steps:

1) multiplication by the periodic static operator - y(k)→
GP (k + 1)−1Bc(k) · y(k).

2) time invariant linear filtering by the filter - y(k) →
Gx(k) with x(k + 1) = Λx(k) +G−1y(k)

3) multiplication by another periodic static operator -
y(k)→ GP (k)G−1y(k).

The three steps are illustrated for a low single tonal-
temporal frequency TRC input signal (at one tone) in Fig. 8.
Step 1 modulates the input signal by duplicating weighted
copies of the original signal according to the spectrum of
GP (k′+ 1)−1Bc(k

′). Step 2 represents a low pass filtering
according to the matrix Λ which eliminates nearly all but
the original signal frequency and one extra copy. Step 3
corresponds to a demodulation due to the multiplication by
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Fig. 9. Lexicographic sequence: Tonal-temporal spectral after the first
transformation for various input frequencies (u, f).

GP (k)G−1. Interesting, the demodulation folds the high
frequency copy of the signal after step 2 back to the low
frequency, resulting in a reconstruction with minimal error.

The modulation effect of step 1 can also be thought of
as modulating the spectral content of the map GP (k +
1)−1Bc(k) by the input signal. Figs. 9-10 show the spectra
of the signal after the first transformation for different
input tonal-temporal frequencies. As the temporal frequency
increases (left to right), copies of the spectral of the map
approach each other on the temporal frequency domain
(horizontally); and similarly as the tonal frequency increases
(bottom to top), copies of the spectral of the map approach
each other on the tonal frequency domain (vertical). Notice
that for the lexicographical sampling sequence, the overlap
is very distinct and sudden; whereas for the bit-reversed
sampling sequence, the overlap process is much more
diffused.

Since step 2 is a linear time invariant filter, it has a
traditional frequency response as shown in Fig. 11. As
expected, it has a low pass temporal response independent
of the tonal frequency.

VI. CONCLUSIONS

Time-sequential sampling has been proposed to increase
the printers’ ability to sense the high dimensional time
varying tone or color reproduction functions (TRC/CRC),
which is useful for control of color consistency. A Kalman
filter based method has been developed and shown to
be effective to reconstruct the original function from
the time-sequential samples. The efficacy of the time-
sequential sampling scheme depends both on the signal
model and the sampling strategy. Using Floquet theory,
it is shown that the periodic Kalman reconstruction filter
consists of a cascade of modulation, low pass filtering, and
demodulation transformations. In fact, this decomposition
can also be interpreted as a polyphase filter bank. This
topic will be explored in the future.
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Fig. 11. The frequency response of the low-pass filter B
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