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Abstract— This paper describes a robust estimation algo-
rithm (REA) for estimating the device-specific parameters of
the so-called spectral Neugebauer model. This physics-based
model is used to characterize the response of color printers.
The various steps required to use REA are given. A detailed
case study, using a high-end color printer, was conducted to
evaluate the performance of REA relative to the methods of
least squares and total least squares. The main result of the
study shows that the model obtained with REA achieves the
smallest approximation errors in both spectral and L∗a∗b∗

color spaces.

I. I NTRODUCTION

Printer calibration plays a central role in print quality
assurance. Calibration is necessary to guarantee that a given
printer will consistently output the correct colors, despite
aging and toner variations. Quantitative printer models are
required in most printer calibration methods [1], [2]. These
quantitative models are then inverted so that the printer’s
digital control values (e.g., cyan, magenta, yellow, and
black) can be calculated as a function of the desired output
color.

Approaches for printer modeling can be grouped in
two categories: model-based approaches and empirical or
interpolation-based approaches. The interpolation-based ap-
proaches have the potential of being more accurate if a
large enough number of experiments is available [3], [4]. In
contrast, the model-based approaches take advantage of the
physics behind the process to achieve accuracy, especially
in areas of the color space where experimental data is
sparse [5], [6], [7], [1]. The model-based approach is the
preferred approach when, due to cost and time constraints,
the number of experiments available for tuning the model
is limited.

References [8] and [9] have introduced a robust estima-
tion algorithm (REA) for estimating the parameters of a
physics-based model referred to as the spectral Neugebauer
model [10]. This model takes as input the digital control
valuesCMY K, which encode the desired amount color
toners to be placed on the paper, and returns the spectral
reflectance of the printed patch. The device-specific param-
eters of the Neugebauer model are determined from spectral
measurements of the printed colors.

The fundamental advantage of REA relative to other
techniques for parameter estimation, such as least squares
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and total least squares [1], is that the models generated
with REA tend to be less sensitive to inevitable spatial
nonuniformities and color drifts that arise depending on
when and where on the paper the measurements are taken.
On the other hand, REA is more elaborate and requires
prior information on the uncertainty associated with the
measurements in order to produce models with higher levels
of robustness.

A block diagram of the spectral Neugebauer model is
shown in Fig. 1. The equations associated with each block in
the diagram are given in section II. The device-specific pa-
rameters are the four nonlinear mappings referred to as the
dot-growth functions, and the primary reflectances which
are used in the so-called Neugebauer equation indicated in
Fig. 1. REA estimates these parameters by minimizing the
largest worst-case spectral approximation error over a set
of training experiments. For a given experiment, the worst-
case approximation error is the maximal difference between
the model output and the set of all reflectances obtained by
perturbing the measured reflectance with an unknown but
bounded perturbation. This bounded perturbation models
measurement errors and modeling uncertainty. In theory, the
model generated by REA is less susceptible to variations in
the data than the models obtained with least-squares and
total-least squares.

The present paper describes the robust estimation algo-
rithm REA introduced in [8] and [9]. The data and steps
required to execute the algorithm are explained in detail.
The results of a case study using a high-end xerographic
printer are also presented. A detailed comparison of the
approximation errors in both spectral space andL∗a∗b∗

color space suggests that the models generated with REA
outperform the models obtained with the methods of least
squares and total least squares.
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Fig. 1. Block diagram of the spectral Neugebauer model.



Notation

ro True (unknown) reflectance
r̂ Model output reflectance
r̂P Model primary reflectance
r Measured reflectance
rC , rM , rY , rK Cyan, magenta, yellow, and black single

colorant measured reflectances
C, M , Y , K Cyan, Magenta, Yellow, and Black digital

control values
c, m, y, k Cyan, magenta, yellow and black nondi-

mensional actual areas
n Yule-Nielsen correction factor
w Neugebauer area
λ Wavelength
σ Reflectance error bound
| · | Entry-wise absolute value for sequences

‖x‖2 =

√∑N

k=1
x2

k `2 norm of the sequencex = (x1, . . . , xN )

II. T HE NEUGEBAUERPRINTER MODEL

Four-colorant printers may be modeled by the following
spectral Neugebauer equation [11], [10]

r̂(λ) =

{
16∑

i=1

wir̂
1/n
P,i (λ)

}n

(1)

where r̂(λ) is the output reflectance predicted by the
model at wavelengthλ, wi ≥ 0 represents the so-called
Neugebauer primary area,r̂P,i(λ) denotes theith primary
reflectance, and the numbern is the Yule-Nielsen correction
factor.

For printers using rotated halftone screens, the Neuge-
bauer areaswi can be modeled with the following equations

w1 = (1− c)(1−m)(1− y)(1− k) (2a)

w2 = c(1−m)(1− y)(1− k) (2b)

w3 = (1− c)m(1− y)(1− k) (2c)

w4 = (1− c)(1−m)y(1− k) (2d)

w5 = (1− c)(1−m)(1− y)k (2e)

w6 = cm(1− y)(1− k) (2f)

w7 = c(1−m)y(1− k) (2g)

w8 = c(1−m)(1− y)k (2h)

w9 = (1− c)my(1− k) (2i)

w10 = (1− c)m(1− y)k (2j)

w11 = (1− c)(1−m)yk (2k)

w12 = cmy(1− k) (2l)

w13 = cm(1− y)k (2m)

w14 = c(1−m)yk (2n)

w15 = (1− c)myk (2o)

w16 = cmyk (2p)

wherec,m, y andk are the nondimensional areas occupied
by cyan, magenta, yellow and black toner, respectively.
These nondimensional areas are determined by the digital
control valuesC, M, Y and K, which are nondimensional
integers from 0 to 255. Equations (2) are known as the
Demichel equations [12].

Figure 1 depicts the input-output printer model composed
by equation (1), the Demichel equations (2), and the dot

growth functionsC 7→ c,M 7→ m,Y 7→ y, and K 7→ k.
For the model to be fully specified the following parameters
must be known:

i) the dot growth functionsC 7→ c,M 7→ m,Y 7→ y,
andK 7→ k;

ii) the model primary reflectanceŝrP,1(λ), . . . , r̂P,16(λ);
iii) the Yule-Nielsen factorn.

Section III explains the algorithm proposed in [8] and [9]
for estimating these device-specific parameters.

III. T HE ROBUST ESTIMATION ALGORITHM (REA)

The fundamental concept behind REA is the worst-case
approximation error in spectral space, which is defined as

Eworst = max
ro

‖r̂ − ro‖2 (3)

In this equation,r̂ = (r̂(λ1), r̂(λ2) . . . , r̂(λN )) is a se-
quence of output reflectances with componentsr̂(λk) cal-
culated from (1), in response to a digital control input
CMY K. The maximization in (3) is over all reflectances
ro that satisfy the following inequality

|ro(λk)− r(λk)| ≤ σ(λk) (4)

for all wavelengthsλk, k = 1, . . . , N , where r(λk) is
the measured output reflectance for theCMY K digital
control input, andσ(λk) is a given sequence. Essentially,
if ro(λk) satisfies (4) then it differs from the measured
reflectancer(λk) by no more thanσ(λk). The reflectance
ro is interpreted as the true, but unknown, reflectance. The
difference betweenro andr is due to the inherent modeling
inaccuracy and the actual measurement errors. The sequence
σ(λk) is a bound on the size of this difference at each
wavelength. The approximation errorEworst in (3) is the
largest difference between the model output reflectancer̂
and the set of reflectancesro that satisfies the error bound
in the inequality (4). It has been shown in [8] that the worst-
case error may be computed from the simple expression

Eworst = ‖ |r̂ − r|+ σ‖2 (5)

Ideally, one would like to determine the parame-
ters of a spectral Neugebauer model that minimize the
largest worst-case approximation errorEworst over a set
of experiments that span the entire printer gamut. That
is, given the P measured reflectance sequencesrj =
(rj(λ1), rj(λ2) . . . , rj(λN )), j = 1, . . . , P , then the model
parameters are obtained by solving the following optimiza-
tion

min max
1≤j≤P

‖ |r̂j − rj |+ σj‖2 (6)

wherer̂j is the model reflectance computed with (1) and (2).
The outer minimization in (6) is over the model parameters,
which are: the four dot growth functionsC 7→ c, M 7→ m,
Y 7→ y, andK 7→ k, the 16 primary reflectanceŝrP,1, . . . ,
r̂P,16, and the Yule-Nielsen correction factorn.

The ideal minimization problem defined in equation (6)
is non-convex, with local optima that may not be global.



Reference [9] has given an algorithm to compute a subopti-
mal solution to this problem by splitting it into two simpler
problems: the estimation of the dot growth functions and
the estimation of the corrected primary reflectances, both
problems with constantn. These problems are simpler be-
cause they do not involve products amongst the optimization
variables. The algorithm introduced in [9] is the so-called
robust estimation algorithm (REA), which makes use of the
following experimental data.

A. Experimental Data

Primary reflectances: The measured primary re-
flectance sequences are denoted by

rP,j = (rP,j(λ1), . . . , rP,j(λN )) (7)

where j = 1, . . . , 16, indexes the specific reflectance
and λ1, . . . , λN , are the wavelengths of interest. These
sixteen output reflectances are obtained in response to all
16 possible combinations of digital control inputsC, M ,
Y , K where each control value is either 0 or 255.

Responses to single colorant inputs:The measured
output reflectance sequences in response to a set of single
colorant digital control valuesC, M , Y , K, are denoted by

rC,j = (rC,j(λ1), . . . , rC,j(λN )) (8a)

rM,j = (rM,j(λ1), . . . , rM,j(λN )) (8b)

rY,j = (rY,j(λ1), . . . , rY,j(λN )) (8c)

rK,j = (rK,j(λ1), . . . , rK,j(λN )) (8d)

where the subindexC, M , Y , or K represents the re-
flectance obtained in response to digital control values
of the form (C, 0, 0, 0) (cyan only),(0,M, 0, 0) (magenta
only), (0, 0, Y, 0) (yellow only), or(0, 0, 0,K) (black only),
respectively. The subindexj is an integer that denotes the
experiment number and it runs from1 to Q.

Responses to multicolorant inputs:To obtain a good
representation of the input color space, colors combining
C, M , Y and K are also included. The measured output
reflectance sequences of these colors are denoted by

rj = (rj(λ1), . . . , rj(λN )) (9)

where j = 1, . . . , L, with L denoting the number of
multicolorant experiments.

Error bounds: The error bound sequences are denoted
by

σj = (σj(λ1), . . . , σj(λN )) (10)

where the subindexj indicates the reflectance sequence
under consideration; see also equation (4).

B. The Robust Estimation Algorithm (REA)

The algorithm proposed in [8] and [9] to estimate the dot
growth functions, the corrected primary reflectances and the
Yule-Nielsen correction factorn is as follows.

Initialization: Fix the primary reflectances to the mea-
sured sequences (7). Fix a value for the Yule-Nielsen cor-
rection factorn. Compute initial values for theQ samples of
the dot-growth functionsC 7→ c, M 7→ m, Y 7→ y, K 7→ k
by calculating the non-dimensional areasc∗1, c

∗
2, . . . , c

∗
Q;

m∗
1,m

∗
2, . . . , m

∗
Q; y∗1 , y∗2 , . . . , y∗Q; k∗1 , k∗2 , . . . , k∗Q, from the

following scalar optimization problems,

c∗` = arg min
c`∈[0,1]

‖ |r̂C,` − rC,`|+ σ`‖2 (11a)

m∗
` = arg min

m`∈[0,1]
‖ |r̂M,` − rM,`|+ σ`‖2 (11b)

y∗` = arg min
y`∈[0,1]

‖ |r̂Y,` − rY,`|+ σ`‖2 (11c)

k∗` = arg min
k`∈[0,1]

‖ |r̂K,` − rK,`|+ σ`‖2 (11d)

where r̂C,`, r̂M,`, r̂Y,`, and r̂K,`, for ` = 1, . . . , Q, are the
model output reflectance sequences andrC,`, rM,`, rY,`, and
rK,` are the measured reflectance sequences corresponding
to single colorant inputs defined in (8).

Main step:

1) Fix the primary reflectances to the current guess. Re-
fine the estimation of the dot-growth functionsC 7→
c, M 7→ m, Y 7→ y, K 7→ k by calculating the non-
dimensional areasc∗1, c

∗
2, . . . , c

∗
Q; m∗

1,m
∗
2, . . . , m

∗
Q;

y∗1 , y∗2 , . . . , y∗Q; k∗1 , k∗2 , . . . , k∗Q, from the following
scalar minimax optimization problems,

c∗` = arg min
c`∈[0,1]

max
j∈Ωc`

‖ |r̂j − rj |+ σj‖2 (12a)

m∗
` = arg min

m`∈[0,1]
max

j∈Ωm`

‖ |r̂j − rj |+ σj‖2 (12b)

y∗` = arg min
y`∈[0,1]

max
j∈Ωy`

‖ |r̂j − rj |+ σj‖2 (12c)

k∗` = arg min
k`∈[0,1]

max
j∈Ωk`

‖ |r̂j − rj |+ σj‖2 (12d)

where Ωc`
, Ωm`

, Ωy`
, and Ωk`

denote the sets of
experiments from (8) and (9) with control values
fixed, respectively, atC = C`, M = M`, Y = Y`,
andK = K`.

2) Set the dot-growth functions to the ones computed
in step 1 and computeN samples of the corrected
primary reflectances by solving

[r̂∗P,1, . . . , r̂
∗
P,16] =

arg min max
j
‖ |r̂j − rj |+ σj‖2 (13)

s.t. |r̂P,i(λk)− rP,i(λk)| ≤ σ(λk),

i = 1, . . . , 16, k = 1, . . . , N

where r̂j is the model output reflectance, which
depends on the unknown primary reflectances
r̂P,1, . . . , r̂P,16. In (13),rj is the measured reflectance
corresponding to single or multicolorant responses in
(8) or (9), respectively, andσj is the error bound
corresponding to the measured reflectancerj .



The main step may be iterated to obtain improved pa-
rameter estimates. Also, both the initialization and the main
step need to be executed for a range of values of the Yule-
Nielsen correction factorn to identify the best one. The
minimization problems in main steps 1 and 2 can be solved
using functions from the Matlab Optimization Toolbox [13].
Further details may be found in [8] and [9].

IV. CASE STUDY

This section describes the performance of several spectral
Neugebauer models for a high-end color printer. The models
were obtained using three different methods, the robust es-
timation algorithm (REA), the least squares (LS) algorithm
and the total least squares (TLS) algorithm. The LS and TLS
algorithms are from [1]. For each method, the models were
constructed using training data sets with increasing number
of reflectances. The study has two main objectives: the first
one is to compare the approximation errors of REA, LS,
and TLS, and the second one is to investigate the variation
of approximation errors with the size of the training set.

A. The Experimental Data

The three data sets used for parameter estimation are the
following. Training set 1: Single colorant reflectances of
the form (8) obtained withQ=17 digital control values for
each input, totaling 68 reflectances.Training set 2: Training
set 1 plus 17 gray reflectances obtained withC = M = Y
and K = 0. Training set 3: Training set 2 plus 68
multicolorant reflectances of the form (9) obtained with
L = 17 values of each single digital control input with
the remaining digital control inputs set to mid-range.

In addition, the responses to 16 control values corre-
sponding to the primary reflectances in equation (7) are
used to initialize the algorithms.

Test set: This data is used for model validation and
consists of125 control values taken from a homogeneous
5×5×5 grid in theCMY color space and converted to the
CMY K color space using a standard undercolor removal
algorithm.

All printed patches were measured at four different spa-
tial locations on the charts. Reflectances were measured at
10nm intervals between 380nm and 730nm using a Gretag
spectrophotometer model SPM50. The reflectances used for
parameter estimation and model validation were obtained
averaging the four measurements available for each control
value.

The error bound sequencesσj defined in (10) are re-
quired to implement the REA. These sequences have been
estimated considering identical error bounds for all the
reflectances; i.e.,σj = σ for all j. To determine the
sequenceσ the four measurements available per control
input in the training set were used. The mean of each
four-measurement group was removed from the measured
reflectances and the error bound sequenceσ was taken to
be twice the standard deviation of the resulting data.

B. Analysis of the models

Nine models were computed, 3 LS models, 3 TLS
models, and 3 REA models. The LS and TLS models were
obtained by applying the algorithms in [1] to the three data
sets individually. The three REA models were obtained
by applying two iterations of the algorithm described in
section III-B to the three training sets. All the models were
computed with Yule-Nielsen factorn = 7.

Worst-case approximation errors over the training sets:
The distribution of the worst-case errors over the three
training sets were calculated for each model. Specifically,
for each of the nine models, the worst-case approximation
errors Eworst were calculated from equation (5) with the
reflectances in the training set used to estimate the parame-
ters of the model under consideration. Figure 2 shows two
indicators of the magnitude of the worst-case errors, the
largest worst-case error in the distribution (top plot), and
the mean value of the distribution. This figure also shows
the standard deviation of the worst-case error distribution.
Notice that the largest worst-case error is exactly the cost
function in equation (6) that REA seeks to minimize.
For this reason, as shown in the top plot, these errors
are minimal with REA for all three training sets. Notice
also that the largest and mean values of the worst-case
error distributions increase as experiments are added to the
training sets. This is explained, in part, by the fact that
the training sets are used for evaluation also, which in turn
implies that the largest worst-case error will increase as
experiments are added. It is interesting to note that the worst
case errors (largest and mean values) with REA exhibit the
smallest growth rate as experiments in the training set are
included. This result suggests that REA is the least sensitive
method to the variations in the training sets. This conclusion
is also supported by the standard deviation plots, which
show that REA achieves the smallest dispersions regardless
of the training set.

Worst-case approximation errors over the test set:The
distribution of the worst-case errorsEworst of each model
was also calculated over the test set. This allows to compare
the worst-case behavior of the models using validation data
which was not used for parameter estimation. In this analy-
sis, the worst-case error distributions were evaluated using
the same test data set for all nine models. Figure 3 shows
the largest and mean values, and the standard deviation,
of the worst-case error distributions. Notice that the worst-
case errors (largest value or mean) tend to decrease as more
experiments are used to train the models. This behavior,
which holds for LS, TLS, and REA, is also intuitive as
more, properly chosen, samples in the training set generally
achieve lower approximation errors in the test set. The
variations across models are not significant. However, REA
achieves the best overall result; i.e., the smallest worst-case
errors (largest or mean value) are obtained with REA and
training set 3. Notice also that REA achieves the lowest
standard deviations also.
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Fig. 2. Comparison of the largest value, mean value, and standard
deviation of the worst-case error distributions with the training sets used
for estimation. Black: LS, Gray: TLS, White: REA.

Approximation errors in L*a*b* color space:Approx-
imation errors were also computed in theL∗a∗b∗ color
space1 using the color difference metric∆E∗

ab [14]. This
analysis used two data sets for all the nine models: train-
ing set 3 and the test set. The∆E∗

ab error distributions
were generated as follows. For each control value in the
training set 3, 1000 reflectances were randomly gener-
ated using a normal distribution with mean equal to the
average reflectance measurement, for that control value,
and standard deviation equal toσ/2. A similar process
was used to generate 1000 random reflectances for each
control value in the test set. These random reflectances
were converted toL∗a∗b∗ color space to generate 1000
“L∗a∗b∗ measurements” for each particular control input.
The resulting “L∗a∗b∗ measurements” were then compared
with the L∗a∗b∗ color output of each model1, using the
color difference metric∆E∗

ab. Hence, for each control
valueCMY K, there are 1000 values of∆E∗

ab, which are
classified into training set 3 and test set, depending on the
particular control value used.

Figure 4 shows the mean and the standard deviation of

1Reflectances are converted toL∗a∗b∗ color space under the CIE
illuminant D50.
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Fig. 3. Comparison of the largest value, mean value, and standard
deviation of the worst-case error distributions with the test set. Black:
LS, Gray: TLS, White: REA.

the ∆E∗
ab error distribution from training set 3. The three

methods exhibit the same trend as additional experiments
are incorporated in the data sets used to train the models.
In most cases, the mean approximation error decreases with
the number of experiments used in the training set. The
variation amongst the models is not significant. However,
REA achieves the best overall result when used on training
set 3; i.e, the model obtained with REA has the lowest
average∆E∗

ab with the lowest standard deviation. It is
important to remark that REA does not minimize the mean
approximation error inL∗a∗b∗ color space; hence, the
REA-based model is not optimal under this measure of
performance. Figure 5 shows the mean and the standard
deviation of the∆E∗

ab error distribution from the test set.
The results are similar to the ones in Fig. 4. The main
difference is that the models obtained with REA achieve the
lowest average approximation errors and standard deviations
for all the cases.

V. CONCLUSIONS

A robust algorithm (REA) to estimate the device-specific
parameters of the so-called spectral Neugebauer model was
described. This algorithm is based on the idea that the most
robust set of parameters is the one that minimizes the largest
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Fig. 4. Comparison of the mean and standard deviation of the approxi-
mation error distributions inL∗a∗b∗ color space with the training set 3.
Black: LS, Gray: TLS, White: REA.

worst-case spectral approximation error over the entire set
of training experiments. This minimization problem is not
convex and hard to solve. REA gives a suboptimal solution
to this problem by splitting it into two simpler subproblems,
the estimation of dot growth functions and the estimation
of the corrected primary reflectances.

The results of a case study using a high-end color
printer were given. The analysis of approximation errors
in spectral space showed that REA is capable of producing
distributions of the worst-case approximation error with the
smallest values (max and mean), and the least dispersion
(Fig. 2). Hence, the models obtained with REA achieve the
best performance, uniformly over the various training sets.
Further analysis with test data, not used for parameter es-
timation, showed comparable performance for all the three
methods, LS, TLS and REA. However, the model obtained
with REA and training set 3 showed the best performance
amongst all nine models (Fig. 3). This conclusion also holds
true when the models are evaluated in theL∗a∗b∗ color
space (Figs. 4 and 5).
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