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Abstract— A new approach to computing the mixed µ upper
bound (ν) is presented. The method exploits the fact that a
positive de£nite matrix V (α) becomes singular when the scalar
parameter α decreases to a critical value for a given frequency.
A two-level optimization strategy is used with a bisection
algorithm branching on the de£niteness of V in an outer
loop, and a Semi-De£nite Programming (SDP) problem is
formulated in an inner loop. Three different formulations are
posed for the inner loop. The £rst uses a feasibility formulation
(no objective function) with a constraint V � 0, which tends
to make V singular if possible. The second introduces an
additional variable that makes the SDP feasible at all times.
In the third formulation, the trace of V is minimized with the
constraint V � 0, which tends to minimize the rank of V and
hence make V singular. The method is applied to a distillation
column benchmark problem. Although it is computationally
more expensive than existing methods when computing ν for
a single frequency, it is a conceptually simple method that can
be ef£cient when computing the supremum of ν with respect
to frequency.

Keywords: bisection, LMI, µ, ν, performance, rank mini-
mization, robustness, SDP, uncertainty

I. INTRODUCTION

All controller designs are implicitly, or explicitly, a
trade-off between performance and robustness in different
frequency regions and to different kinds of disturbances. In
methods based on a minimization of a single criterion the
trade-offs are the result of the choice of weight functions,
which in many cases is not a trivial task. Also, performance
and robustness speci£cations on the closed loop are typi-
cally not included in the synthesis (optimization) but have to
be con£rmed afterwards. If the speci£cations are not met, a
criterion with new weight functions must be formulated and
tried. If the speci£cations are met, a controller achieving
better closed loop performance, still meeting the speci£ca-
tions, could often be found if a different criterion were used.
Hence, it is desirable that the speci£cations be included in
the synthesis so that the effect of a change of speci£cations
can easily be related to a change in performance. One way

of formulating this problem is

K∗ = arg min
K
J(K), (1)

‖Ψj(K,∆)‖∞ ≤ cj , j = 1, . . . , N, ∀∆ ∈ ∆,

where J is a performance measure to be minimized, and Ψj

are closed loop transfer functions (possibly weighted) that
has to meet speci£cations cj for all ∆ de£ning a deviation
from the nominal plant model. ∆ is the set of all such
possible plant uncertainties, and K belongs to a class of
controllers.

The non-convex problem formulation (1) was used in
[7] to design controllers robust to parametric uncertainties
in the plant model. Each of the constraints in (1) was
expressed as a constraint on supω∈R

ν, the supremum with
respect to frequency of the upper bound of the structured
singular value (denoted µ). The most common approach to
computing such constraints is by frequency gridding and
subsequent use of the upper bound algorithm by Fan et
al. [4] (implemented in, e.g., the routine mu in the µ-
Analysis and Synthesis Toolbox [1] for Matlab [9]), for each
frequency. For each iteration in the outer optimization loop
of (1), calculating a constraint value thus involves solving
a series of inner loop optimization problems. Achieving ac-
curate constraint values is necessary for convergence in the
outer loop but also very costly in terms of computation time
because we have to calculate ν for multiple frequencies. In
fact, calculating ν for a single frequency is NP hard [17]
and although solutions can often be found in practice, it is
nevertheless a costly computation.

This paper presents an alternative, simple, method for
calculating supω∈R

ν. A two level optimization strategy is
proposed where a bisection algorithm is applied in the upper
level and a Semi-De£nite Programming (SDP) problem is
formulated in the lower level. It is shown that computation
time can sometimes be reduced relative to the established
routine mu in [1].



P

K

[
∆ 0
0 ∆f

]

M

∆

✲ ✲

✛

✲
✲

✛

✛

✲

y∆u∆

zd

yu

[
y∆

z

][
u∆

d

]
∆P

F�(P, K)

Fig. 1. Closed loop system in an LFT setup (left) and in a robust
performance setup (right).

II. PRELIMINARIES

Consider a controller K(s) regulating an uncertain gen-
eralized plant P∆(s), de£ned as the transfer function from
some disturbances d and control signals u to performance
outputs z and plant outputs y. If the uncertainties can be
separated from the plant in a linear fractional transfor-
mation (LFT) [2] fashion, the system can be described
as in the left part of Figure 1. Here, P is the nominal
(generalized) plant and ∆ is a structured block diagonal
matrix representing all admissible uncertainties (de£ned
later by the set ∆). Using lower LFT, a nominal closed
loop system M can be de£ned as M = F�(P,K) such that[

y∆
z

]
=M

[
u∆

d

]
=

[
M11 M12

M21 M22

] [
u∆

d

]
. (2)

Now, connect z with d by a block matrix ∆f (sometimes
referred to as a £ctitious uncertainty block) having the
property ‖∆f‖∞ ≤ 1, and de£ne ∆P = diag{∆,∆f}. The
system can then be drawn as in the right part of Figure 1. To
guarantee that the closed loop system F�(P∆,K) is stable
(robust stability) as well as that ‖F�(P∆,K)‖∞ < 1 for all
admissible ∆ (robust performance), the theory for µ can be
used [3], [13]. µ, like the singular values σ, is a frequency-
dependent scalar measure of matrix size, the main difference
from σ being that it takes structured uncertainties in the
matrix elements into account.

This study concerns the mixed uncertainty case where
the system may have both real parametric and complex
uncertainties. The mixed µ involves three types of blocks:
repeated scalar blocks, complex repeated scalar blocks and
full blocks with real or complex entries. Introduce integers
k1, . . . , kSr

, r1, . . . , rSc
, and m1, . . . ,mF such that the

ith repeated real scalar block is ki × ki, the jth repeated
complex scalar block is rj × rj and the �th full block is
m�×m�. The set of admissible uncertainties is then de£ned
as

∆ = {diag[ δiIki
, φjIrj

, ∆� ] :

δi ∈ R, φj ∈ C, ∆� ∈ C
m�×m�}, (3)

where i = 1, . . . , Sr, j = 1, . . . , Sc, � = 1, . . . , F,
‖φi‖∞ < 1, ‖δj‖∞ < 1, ‖∆�‖∞ < 1. For a given
frequency ω, let σ(∆) denote the largest singular value of
∆, and let M ∈ C

n×n. If ∃ ∆ ∈ ∆ : det(I −M∆) = 0,
the structured singular value of M with respect to ∆ is
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Fig. 2. Feedback system with a nominal plant G, a controller K,
an LFT matrix Ptd, uncertainty blocks ∆ and ∆td, disturbance
signals w and ñ, and weights W .

de£ned as

µ∆(M) =
1

min{σ(∆):∆ ∈ ∆, det(I − M∆)=0} . (4)

If no ∆ ∈ ∆ makes I −M∆ singular, then µ∆(M) = 0.
It is not suitable to compute µ(M) with (4) because the
resulting optimization problem may have multiple optima.
However, upper and lower bounds for µ can be computed
as in [4], [19] (implemented in [1]), for example. Often the
lower and upper bounds coincide, but when this is not the
case, conservative solutions with respect to the uncertainties
can be expected. Since the function µ : C

n×n → R does
not satisfy the triangle inequality, it is not a norm. Despite
this we de£ne

‖M‖∆

µ = sup
ω∈R

µ∆(M(jω)).

For future reference, also de£ne the sets D and G:

D = {diag[Di, D̃j , d�Im�
] : Di = D∗

i � 0,

D̃j = D̃∗
j � 0, d� > 0, dF = 1},

G = {diag[Gi, 0, 0 ] : Gi = G∗
i },

where Di ∈ C
ki×ki , D̃j ∈ C

rj×rj , d� ∈ R, and Gi ∈
C
ki×ki .

III. ROBUST PERFORMANCE

Let G(s) denote an open loop plant model, K(s) a
controller, and S(s) = (I − G(s)K(s))−1 and KS(s) =
K(s)(I−G(s)K(s))−1 the sensitivity function and control
sensitivity function respectively. In the single input-single
output (SISO) case, 1/‖S‖∞ is the shortest distance from
the open loop (GK) to the instability point in the Nyquist
diagram and hence ‖S‖∞ is a natural robustness measure.
In the multiple input-multiple output (MIMO) case, ‖S‖∞
can be seen as a robustness measure related to the damping
of the system. KS is the transfer function from measure-
ment noise (or the reference signals) to the control signals,
implying that ‖KS‖∞ is a measure of the activity in the
control signals caused by measurement noise or changes
in the reference signals—the control activity. To achieve a
controller that results in good closed loop performance and
robustness it is often desirable to keep these two measures
restricted to ‖S‖∞ ≤ cS and ‖KS‖∞ ≤ cKS say. These
design constraints can be readily extended to hold for all
admissible uncertainties ∆ by utilizing the theory for µ as
follows.



Consider a nominal plant G with input multiplicative
uncertainty ∆W∆ and input time delay uncertainty rep-
resented in LFT form by ∆td and Ptd. Assume that a
controller K has been synthesized, and that we want to
check if ‖S‖∞ ≤ cS , and ‖KS‖∞ ≤ cKS ∀∆ ∈ ∆.
Introduce the weights We, Wn as in Figure 2, and choose
We = c−1

S I , Wn = c−1
KSI . Formulate two µ problems: In

the £rst choose d = w and z = e, and in the second choose
d = ñ and z = u. With Ti = (I+KG)−1KG, Si = I−Ti,
and Ptd partitioned analogously to M in (2), the nominal
closed loop systems for the two problems become

 y∆y∆td

e


 =MS


 u∆

u∆td

w


 ,


 y∆y∆td

u


 =MKS


 u∆

u∆td

ñ


 ,

MS =


−W∆Ti W∆SiPtd,21 −W∆KS

−Ti ( 1
2I − Ti)Ptd,21 −KS

c−1
S SiG c−1

S SiGPtd,21 c−1
S Si


 ,

MKS =


−W∆Ti W∆SiPtd,21 −c−1

KSW∆KS
−Ti ( 1

2I − Ti)Ptd,21 −c−1
KSKS

−Ti −TiPtd,21 −c−1
KSKS


 .

Let ∆P be de£ned as in Section II and Figure 1 such
that a full complex matrix ∆f connects e with w and u
with ñ respectively. Then by the performance robustness
theorem [3], the resulting closed loop system is stable and
the speci£cations on S and KS are satis£ed for all ∆ ∈ ∆
if and only if ‖MS‖∆P

µ ≤ 1, and ‖MKS‖∆P
µ ≤ 1.

IV. THE µ UPPER BOUND

It is well known that µ(M) ≤ infD∈D σ̄(DMD−1)
[3], which forms the basis for computation techniques for
the complex µ problem (i.e. no real uncertainties). This
bound is often conservative, especially when Sr > 0, and
an improved upper bound for the mixed µ problem was
presented in [4]:

µ(M)≤ inf
D∈D

ν(DMD−1)≤ inf
D∈D

σ̄(DMD−1), (5)

where

ν(M) ≡
√

max{0, inf
G∈G

λ̄[M∗M + j(GM −M∗G)]}.

It was also shown that the improved upper bound can be
obtained as

inf
D∈D

ν(DMD−1) = max{0,
√
αopt}, where

αopt = inf
D∈D,G∈G

max
α∈R

{α : λ̄[−V ] ≥ 0}, (6)

V (α,D,G) ≡ αD −M∗DM − j(GM −M∗G).

A. A bisection algorithm for ν

The following lemma uses the property that V is singular
at the solution to (6) [4]:

Lemma 1: Let Dopt and Gopt denote the scaling matrices
at the solution to (6). Then,
λ̄[−V (α,Dopt, Gopt)] = 0 at the solution to the optimization
problem

max
α>0

{α : λ̄[−V (α,Dopt, Gopt)] ≥ 0}.
Therefore,

max
α>0

{α : λ[V (α,Dopt, Gopt)] = 0}.
is an equivalent formulation. ✷

In view of lemma 1 and (6), we thus have that

αopt = inf
D∈D,G∈G

max
α>0

{α :V (α,D,G) singular}. (7)

Singularity of V (α,D,G) can be asserted in several ways
and here, three strategies will be discussed. Since V is
linear in D and G, we propose to solve (7) by determining
D and G in an inner loop and applying a bisection
algorithm for α, based on the de£niteness of V .

Bisection Algorithm for α
1) Set k = 1. Initialize αk = α0 and set upper and lower

bounds for α: 0 < α < ᾱ.
2) Determine Dk and Gk by solving the SDP prob-

lem P1, P2, or P3 in Proposition 1 and compute
V (αk,Dk, Gk).

3) If λ[V ] < 0, α = αk; otherwise V is positive semi-
de£nite and we can set ᾱ = αk.

4) If ᾱ − α < tol, return αopt = αk, D
opt = Dk,

Gopt = Gk; otherwise set k = k + 1, update
αk = (ᾱ+ α)/2 and go to 2.

Proposition 1:

inf
D∈D,G∈G

max
αk>0

{αk : V (αk,D,G) singular} ⇔

min
α>0

{αk : V (αk,Dk, Gk) singular},
where Dk and Gk are determined for each αk by any of
the three following SDP problems:

P1 : Dk, Gk = arg min
D∈D,G∈G

{0 :

V (αk,D,G) � 0, D − εI � 0}
P2 : Dk, Gk = arg min

D∈D,G∈G
{γ :

V (αk,D,G) + γI � 0, D − εI � 0, γ > 0}
P3 : Dk, Gk = arg min

D∈D,G∈G
{Tr[V (αk,D,G)] :

V (αk,D,G) � 0, D − εI � 0}
Tr denotes the matrix trace operation Tr(V ) =

∑n
i Vi,i

and ε denotes a small number > 0. ✷

P1, P2, and P3, which can be solved by any suitable SDP
solver (such as the LMI Control Toolbox [8], PENSDP



[10] or SeDuMi [15]) are now discussed in more detail
to motivate Proposition 1.

P1: For any αk > 0, we want to £nd out if there
exist D ∈ D and G ∈ G such that V (αk,D,G) � 0;
i.e., solve a feasibility problem. It is well known that SDP
problems have a tendency to result in semi-de£nite (rather
than strictly de£nite) solutions whenever possible. In our
case, this corresponds to making V (αk,D,G) singular,
hence motivating P1. Also note that for £xed D ∈ D and
G ∈ G, λ̄[−V ] is a strictly decreasing function of α [4]
and therefore we also have that λ[V ] is a strictly increasing
function of α.

P2: Note that P1 becomes infeasible when αk > αopt.
Historically, infeasible problems have caused dif£culties
for numerical optimization algorithms, including interior
point algorithms, although recent software packages such as
SeDuMi are able to handle these dif£culties nicely [16] by
use of a self-dual embedding technique [18], for example.
However, the interpretation of a feasible solution is more
clear and it gives some insight to the problem discussed in
this study. By introducing a new variable γ ≥ 0, we ensure
that the problem is feasible at all times. We now have a
choice of branching on the de£niteness of V or on the value
of γ. In the latter case, however, the bisection algorithm will
have to be modi£ed slightly. It will be shown that γ is a
strictly decreasing function of α and that the unique solution
αopt is located at the intersection of γ and λ[V ]. Thus, αopt

is the only value of α for which both λ[V ] = 0 and γ = 0.
P3: The motivation for P3 relies on minimum-rank

theory. The general rank-minimization problem for real
matrices can be expressed as

min
V ∈Rm×n

{Rank(V ) : V ∈ C}, (8)

where C is a convex set, e.g., described by Linear Matrix
Inequalities (LMI’s). While (8) is hard to solve in general,
the following convex optimization problem tends to mini-
mize the rank of V and hence approximate the solution of
(8) [5], [12]:

min
V ∈Rm×n

{‖V ‖∗ : V ∈ C}. (9)

The nuclear norm ‖ · ‖∗ is de£ned by

‖V ‖∗ =
min(m,n)∑

i=1

σi(V ),

where σi(V ) =
√
λi(V TV ) denote the singular values of

V .
When V is positive semi-de£nite and Hermitian, and the

constraint set C is de£ned by LMI’s, (9) can be expressed
as an SDP problem [6]:

min
V ∈Rm×n

{Tr(V ) : V � 0, V ∈ C}. (10)

In our case, V ∈ C
m×n but by applying the following

transformation to V we can obtain real valued matrices

needed for the rank minimization technique:

V →
[

Re(V ) Im(V )
−Im(V ) Re(V )

]
.

V. NUMERICAL EXAMPLE

Our experience is that the semi-de£nite
programming/large-scale optimization package SeDuMi,
which runs on top of MATLAB [9], is currently the
most robust solver available for solving SDP problems. It
exploits sparsity and can handle infeasible problems. A
MATLAB interface yalmip [11] provides easy translation
from the matrix forms in Proposition 1 to the input format
of many SDP solvers, including SeDuMi.

A. Plant model

The method is applied to a distillation column benchmark
problem (30th IEEE Conference on Decision and Control,
Brighton, England, 1991) with independent real gain and
time delay uncertainty at the input channels. The uncertain
plant is de£ned by

G(s) =
1

1 + 75s

[
87.8 −86.4
108.2 −109.6

] [
g1e

−θ1s 0
0 g2e

−θ2s

]
,

where g1, g2 ∈ [0.8, 1.2], θ1, θ2 ∈ [0, 1].

The time delay was modeled by a second order Padé
approximation which proved to be suf£cient in this example,
and the nominal plant is de£ned by g1 = g2 = 1, and
θ1 = θ2 = 0.5. By introducing norm-bounded uncertainty
blocks ∆,∆td ∈ ∆ with Sr = 4, k1 = k2 = k3 = k4 = 1,
Sc = 0, F = 1, m1 = 2 (see (3)), we can de£ne the plant
as

G(s) = G0(s)(I2 +W∆∆)Fu(Ptd,∆td),

where W∆ = 0.2I2, ∆ =
[
δ1 0
0 δ2

]
,

Fu(Ptd,∆td) =

[
4−δ3s
4+δ3s

0
0 4−δ4s

4+δ4s

]
, δi ∈ [−1, 1].

B. Computing µ∆P
(M)

We calculate the upper bound of µ∆P
(MS) and

µ∆P
(MKS ) with the bisection algorithm in Section IV-

A for the example plant in Section V-A and a controller
achieving ‖S‖∞ ≤ 1.7, and ‖KS‖∞ ≤ 2 ∀∆ ∈ ∆, and
compare with results from the µ-Analysis and Synthesis
Toolbox. For this purpose, we chose 100 logarithmically
spaced frequencies in the interval ω = [0.01, 100]. The
bisection algorithm was initialized with α = 0, ᾱ = 10,
and α0 = 5 for the £rst frequency. Thereafter, α0 was
chosen as the optimal value for the previous frequency. The
convergence tolerances for the SDP problem P1, P2, or P3
as well as in the bisection search were chosen to be 10−4,
and for this value the bisection algorithm converges in 15
iterations. The parameter ε was set to 0.1 to ensure positive
de£niteness of D. When computing the upper bound with
the µ-Analysis and Synthesis Toolbox, maximum accuracy
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Fig. 3. The µ upper bound vs. ω for MS (top) and MKS (bottom).
Circles correspond to solutions with the bisection algorithm in Sec-
tion IV-A using the SDP formulation P1, and crosses correspond
to solutions with the µ-Analysis and Synthesis Toolbox.

(level C9) had to be requested in order to match the results
of the bisection algorithm.

Figure 3 shows the results for the bisection algorithm
using P1 (circles) and the µ-Analysis and Synthesis Toolbox
(crosses). (The results using P2 or P3 are very similar to
those for P1 and are omitted for graphical clarity.) Clearly,
the two approaches result in the same upper bound for both
µ∆P

(MS) and µ∆P
(MKS ). With the chosen tolerances, the

bisection algorithm is signi£cantly more expensive compu-
tationally (for this example) as shown in Table I. Note that
since ‖MS‖∆P

µ = 1 and ‖MS‖∆P
µ = 1, the speci£cations

are achieved precisely. Also note that in practice, one could
obtain similar curves with less demanding tolerances.

Figure 4 shows how λ[V ] and γ vary with α for the
bisection algorithm with the SDP formulation P2 and ω = 1
rad/s. The £gure con£rms the statement made earlier that
αopt is the only value of α for which both λ[V ] = 0 and
γ = 0. Further, the £gure shows that λ[V ] and γ are non-
decreasing and non-increasing functions of α respectively.

C. Computing ‖M‖∆P
µ

During controller synthesis it is often suf£cient to have
information about the value of ‖M‖∆P

µ = supω∈R
µ∆P

(M)
rather than the upper bound at each frequency. Note that the
general mixed µ problem is not necessarily a continuous
function of ω, and may only be upper semi-continuous
[14]. This means that one has to compute µ for in£nitely
many frequencies in order to ensure that ‖M‖∆

µ is not
underestimated. However, it was shown in [14] that for
the robust performance problem, continuity of mixed µ

Method Matrix CPU [s]
Bisection + P1 MS 141
Bisection + P1 MKS 95
Bisection + P2 MS 151
Bisection + P2 MKS 107
Bisection + P3 MS 177
Bisection + P3 MKS 130

µ Toolbox MS 32
µ Toolbox MKS 33

TABLE I

COMPUTATIONAL RESULTS FOR 100 VALUES OF THE µ UPPER BOUND

OF MS AND MKS USING DIFFERENT METHODS. ALL CALCULATIONS

WERE DONE WITH A 1GHZ PENTIUM III PROCESSOR.
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Fig. 4. λ[V ] (top) and γ (bottom) vs. α during a bisection search
with P2 for ω = 1 rad/s and α0 = 5.

is ensured if µ∆(M11) < µ∆P
(M), which can easily be

checked for.
To compute ‖M‖∆P

µ , we apply the bisection algorithm
for successive frequencies but add another stopping criterion
to make the algorithm computationally more ef£cient. Let
Ω = {ωq}Nq=1 denote a set of N discrete frequencies
for which we want to compute µ∆P

(M), and denote by
ωp the current frequency being applied in the bisection
algorithm (1 ≤ p ≤ N ). Further, de£ne the set Ap to
include the optimal solutions for all q ≤ p such that
Ap = {αopt(ωq)}pq=1. We then have that the search for
αopt(ωp+1) can be terminated if

αk < max
α∈Ap

α. (11)

‖MS‖∆P
µ and ‖MKS‖∆P

µ were computed by this strategy
for the example plant in Section V-A, and Figure 5 com-
pares the results of the bisection algorithm using P1 (circles)
and the µ-Analysis and Synthesis Toolbox (crosses). From
Table II, which summarizes the results for all methods, we
see that when computing ‖M‖∆P

µ , one can save signi£cant
computation time by adding the stopping criterion (11)
to the bisection algorithm. Importantly, this example also
shows that in some cases, it is computationally cheaper to
compute ‖M‖∆P

µ with a simple bisection algorithm in the
outer loop and an SDP solver in the inner loop, than with the
µ-Analysis and Synthesis Toolbox. When ‖M‖∆P

µ appears
as constraints in the general controller synthesis problem
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Fig. 5. The µ upper bound vs. ω for MS (top) and MKS (bottom).
Circles correspond to solutions with the bisection algorithm in Sec-
tion IV-A using the SDP formulation P1, and crosses correspond
to solutions with the µ-Analysis and Synthesis Toolbox.

Method Matrix CPU [s] ‖M‖∆P
µ ω∗[ rad

s ]
Bisection + P1 MS 52 1.00 1.15
Bisection + P1 MKS 25 1.00 0.031
Bisection + P2 MS 56 1.00 1.15
Bisection + P2 MKS 28 1.00 0.031
Bisection + P3 MS 80 1.00 1.15
Bisection + P3 MKS 39 1.00 0.031

µ Toolbox MS 32 1.00 1.15
µ Toolbox MKS 33 1.00 0.031

TABLE II

COMPUTATIONAL RESULTS FOR ‖MS‖∆P
µ AND ‖MKS‖∆P

µ USING

DIFFERENT METHODS. ALL CALCULATIONS WERE DONE WITH A 1GHZ

PENTIUM III PROCESSOR.

(1), the importance of these computational savings may be
of importance.

VI. CONCLUSIONS

A new approach to compute the mixed µ upper bound
(ν) has been presented. The method exploits the fact that
a matrix V is singular at the optimal ν value for a given
frequency, and is based on a two-level optimization strategy
where a bisection algorithm, branching on the de£niteness
of V , is used in an outer loop, and an SDP problem
is formulated in an inner loop. The inner loop computes
scaling matrices D and G for a £xed value of ν and the
outer loop searches for the optimal value of ν for £xed
matrices D and G.

It has been shown that the SDP problem in the inner loop
may take various forms and in particular, three different
problems (P1, P2, P3) were posed, see Section IV-A and

Proposition 1. The £rst formulation was shown to be most
ef£cient although the second has the nice property that it is
feasible at all times. The third formulation, which relies on
rank-minimization theory, was the slowest.

The method was applied to a distillation column bench-
mark problem. Although computationally more expensive
than an existing method (the µ-Analysis and Synthesis
Toolbox) when computing ν for a single frequency, the
proposed method is conceptually simpler than the standard
method, and can be more ef£cient when computing the
supremum of ν with respect to frequency. The method could
be combined with a frequency search for the supremum of
ν (based on global optimization for example) to make it
even more ef£cient. Applying such methods to the general
controller synthesis problem, for example, could lead to
signi£cant computational savings.
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