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Abstract— In this paper, we consider the problem of robust
stability analysis with uncertain parameters entering nonlin-
early into the coefficients of the polynomial of interest. In
this nonlinear setting, the few results which are available in
the literature apply to special cases, or, due to computational
complexity, are tractable for only a few uncertain parameters.
The objective of this paper is to demonstrate the efficacy
of the so-called “dilation integral” method of [1] and [2]
in a robust stability context. This rather general method
involves a “softening” of the robustness formulation to allow
for an “acceptably small” volume of performance violation in
parameter space.

I. INTRODUCTION

In this paper, we consider the robust stability problem
for systems whose characteristic polynomial has coefficients
which depend nonlinearly on the uncertain parameters. We
consider the polynomial

p(s, q) .= an(q)sn + · · ·+ a1(q)s + a0(q)

with coefficients ai(q) being multivariable polynomials
in q

.= (q1, q2, . . . , q`) and associated compact bounding
set Q ⊂ R`. Without loss of generality, this family of
polynomials is assumed to have at least one stable mem-
berp(s, q0) and we further assume thatp(s, q) has invariant
degree; i.e., without loss of generality, we assume thatan(q)
is positive for allq ∈ Q.

While there is voluminous literature addressing the case
when q enters linearly into the coefficients, for example,
see [3]–[4], results obtained for nonlinear problems are
limited in that they either apply to rather special cases,
involve computations which are tractable only whenq
has low dimension or involve Monte Carlo sampling e.g.,
see [7]–[10]. In contrast, the approach taken here, the so-
calleddilation integral method, is based on exact arithmetic
and symbolic computation. For the robust stability problem,
we obtain a sequence of exact volume estimates for the set
of performance violators

Qbad
.= {q ∈ Q : p(s, q) is unstable}.

A. The Starting Point

In this paper, we work with the classicalHurwitz ma-
trix H(q) associated withp(s, q). The takeoff point for
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the dilation integral approach pursued here is the following
lemma, a special case of the results given in [1] and [2].

B. Lemma

For all positive even integersk, it follows that

Vol(Qbad) ≤ min
α≥0

∫
Q

(
1− α detH(q)

)k

dq.

Moreover, ask →∞, the right hand side above converges
to zero if and only if the given family of polynomials is
robustly stable.

C. Remarks and Rate of Convergence

The lemma above enables us to obtain an upper bound
on the volume of violation which can be expressed as a
fraction of the total volume by minimizing the scalar convex
function

εk(α) .=
1

Vol(Q)

∫
Q

(
1− α detH(q)

)k

dq

with respect toα ≥ 0 to obtain

ε∗k
.= min

α≥0
εk(α).

Two key points to note are as follows: First, while a system
may fail to be robustly stable in a strict theoretical sense,
we may choose to deem itpractically stable if, for pre-
specifiedε > 0, we certify, via solution of the optimization
problem above, thatε∗k < ε. Second, we note that the
functionεk(α) can be obtained exactly because polynomials
involved in detH(q) are readily integrated in closed form
whenQ is a hypercube. In comparison with classical Monte
Carlo solutions of nonlinear problems as in [7]–[9], the
approach given here avoids the need to bring issues such as
statistical measures of confidence and sample size into play.
One fundamental concern, however, is that the symbolic
expressions associated with the computation above may
contain a large number of terms if a highk value is needed
to obtain a low volume certification forQbad. To address
this issue, a certainunderlying conditionerθ is introduced
in [1] and [2]. More specifically, with

f(q) .= −detH(q)

and its rangef(Q), the underlying conditionerθ is defined
to be the percentage deviation off(Q), expressed as a frac-
tion, about its midpoint. It is noted that smallθ corresponds
to a well-conditioned problem, a highθ corresponds to an
ill-conditioned problem, andθ < 1 is equivalent to robust



stability. For example, iff(Q) = [−2,−5], the midpoint
is f0 = −3.5 and the half-width isσ = 1.5. Hence,
the maximum percentage deviation, expressed as a fraction
is θ ≈ 0.4286.

D. Lemma

For all positive even integersk, it follows that ε∗k ≤ θk

and θk
.= ε∗k

1
k defines a non-decreasing sequence which

converges toθ in the strictly robust case and unity other-
wise.

E. Implications and Objectives

Combining the above lemmas, we obtain the inequality

Vol(Qbad)
Vol(Q)

≤ min
α≥0

εk(α) ≤ θk

as the basis for computations to follow. To illustrate, for a
robustly stable family of polynomials withθ ≈ 0.4286 as
in the example above, we are guaranteed that the volume
of Qbad will be less than one percent of Vol(Q) with k = 6.
As stated earlier, for cases when a suitably low volume
certification is obtained, say Vol(Qbad) < εVol(Q) for some
small user-definedε > 0 is deemed acceptable, we say that
practical robust stabilityhas been certified. In this regard,
for prescribed δ > 0, we can also consider the case of
practical instability obtained whenθ > 1 − δ. While a
family of polynomials may be robustly stable in a strict
mathematical sense, we adopt the point of view that when
θ is high, the large percentage spread about the midpoint
of the uncertainty range suggests that the system is liable
to lose its stability when uncertainty bounds differ slightly
from those assumed in our analysis.

In the remainder of this paper, our first objective is
to illustrate, via four benchmark examples, the type of
computations involved when the dilation integral method
is specialized to the robust stability setting. Our second
objective is to provide a plausible explanation why certain
well-known examples from the literature are known to be
notoriously difficult.

II. ACKERMANN’S TRACK-GUIDED BUS

Ackermann’s track-guided bus problem, as given in [5], is
a benchmark example which includes nonlinear parameter
dependence and has been studied by many authors in the
robustness literature. For this system with fifth order plant
and third order compensator, the lightly damped poles of
the system make classical robust stability analysis quite
challenging to perform. Our objective in this section is to
show that difficulties in robust stability analysis for this
example are reflected in the rate of convergence ofε∗k to zero
and the closeness of the conditionerθ to one. We consider
the characteristic polynomial

p(s, q) =
8∑

i=1

ai(q)si,

with uncertain parameters bounding setQ = Qµ described
by 11.5 − 8.5µ ≤ q1 ≤ 11.5 + 8.5µ and 21 − 11µ ≤
q2 ≤ 21 + 11µ with 0 ≤ µ ≤ 1 defining the radius
of uncertainty, and coefficientsai(q) as given in [5]. For
this system, it is well known that asµ → 1, we obtain
an uncertainty domainQ = Qµ which nearly touches the
instability boundary in parameter space. This fact suggests
that the robustness analysis may be difficult in this case.
To this end, we seek to demonstrate that our analysis based
on Lemmas B and D is consistent with this observation;
i.e., the ill conditioning of this problem is manifested by a
high θ value and slow rate of convergence ofε∗k to zero.

Using the dilation integral method, we consider the
“difficult” case µ = 1 and seek to estimate an upper
bound for the volume of violation with variousk values.
In order to apply lemmas B and D, we first verify that the
family of polynomials above has a stable member. Indeed,
with q = q0 = (11.5, 21), we obtain stable roots. Using the
formula for εk, we now illustrate computation using lemma
B. Carrying out the requisite integrations, we obtain

ε2(α) = 1 + 2.7566× 1023α + 3.6459× 1047α2;
ε4(α) = 1− 5.5132× 1023α + 2.1875× 1048α2

− 6.4471× 1072α3 + 8.8731× 1096α4

and note that finding the minima of these convex functions
results in an upper bound on the fractional volume of
violation in parameter space and estimates of the underlying
conditioner. For example withk = 4, the minimum value
of ε4(α) is 0.9292 with corresponding estimateθ4 ≈
0.9818.

Based on these results, since the true value ofθ is at
least equal toθ4, we conclude that this problem is highly
ill-conditioned. While a classical analysis indicates that
the system is robustly stable, our point of view, based
on the extremely highθ certification given, is that this
system should be viewed as “practically unstable.” It is also
interesting to note that a highθ value will result for levels of
uncertainty far below those considered here. For example,
with µ = 0.2, it can readily be verified thatθ ≥ 0.95.

III. ACKERMANN’S UNSTABLE ENCLAVE

We consider the polynomial, given in [6], described by

p(s, q) = s3 + (q1 + q2 + 1)s2 + (q1 + q2 + 3)s
+(1 + d2 + 6q1 + 6q2 + 2q1q2),

where d > 0 is a parameter which can be viewed
as part of the given data. The range for the uncertainty
is 0.3 ≤ q1 ≤ 2.5 and0 ≤ q2 ≤ 1.7. With this setup, it is
easy to see that this family of polynomials has an “unstable
enclave” described by(q1−1)2+(q2−1)2−d2 > 0. That is,
for q ∈ Q, stability is guaranteed if and only ifq is outside
the circle with radiusd, centered at(1, 1). Since the size of
the unstable enclave can be made arbitrarily small by choice
of d > 0, this example provides a good benchmark against
which one can demonstrate the efficacy of a formal theory



aimed at “detection” of the instability. To this end, we
applied lemmas B and D with increasingly smaller values
of d > 0. For a first computation we tookd = 0.5 and
k = 6 and found the minimum ofε6(α) to beε∗6 ≈ 0.5536,
corresponding to at most a55.36% volume of violation.
This finding, via lemma D, gives us a lower bound on the
underlying conditionerθ ≥ θ6 ≈ 0.9061. Therefore, even
at value as high asd = 0.5, we already deem this system
ill-conditioned and it is arguable that this system is to be
categorized as “practically unstable”. Next, we carried out a
similar analysis for the smaller radiid = 0.1 andd = 0.01.
For the cased = 0.1, we obtainedε∗6 ≈ 0.3356 with
corresponding lower boundθ ≥ θ6 ≈ 0.8336, and for the
cased = 0.01, we obtainedε∗6 ≈ 0.3294 andθ6 ≈ 0.8310.
For both of these cases, due to the highθk value, it is
arguable that the system should be deemed ill-conditioned
and practically unstable.

Finally we carried out the same analysis for the extreme
cased = 0 with (q1, q2) = (1, 1) being the only unstable
point in the uncertainty domain. In this case, based on the
computed valueε∗6 ≈ 0.3293 with corresponding lower
boundθ ≥ θ6 ≈ 0.8310, we continue to deem this system
practically unstable even though an exact analysis indicates
that the instability set has measure zero.

IV. PROBLEM OF SAYDY, TITS AND ABED

This problem, based on the theory in [10] and taken from
an exercise in [4], is addressed here via the dilation integral
method. Indeed, we consider the robustly stable family of
matrices described byA(q) = A0 + A1q + A2q

2 with

A0 =
[
−5 6

2 −4

]
;A1 =

[
1 1
1 1

]
;A2 =

[
−1 −1
−1 −1

]
and uncertainty boundq ∈ [0, 1]. Now, we form the Hurwitz
determinant

detH(q) = 34q4 − 68q3 + 203q2 − 169q + 72.

Subsequently, we computedε∗k for various values ofk. For
example, fork = 8, we obtainedε∗8 ≈ 1.03 × 10−4 and
for k = 10, we haveε∗10 ≈ 1.343× 10−5. With these small
values for ε∗k, upper bounds on the fractional volume of
violation, we deem this system to be practically stable.

V. AN INTERVAL MATRIX STABILITY PROBLEM

As a final example, we analyze the robust stability of
a 3×3 interval matrix described byA(q) = A0 +4A(q),
with

A0 =

 −1 0 0
0 −1 0
0 0 −1

 ; 4A(q) =

 q1 q2 q3

q4 q5 q6

q7 q8 q9


and the uncertainty bounds|qk| ≤ 0.21 + 0.01k for k =
1, 2, . . . , 8, 9. Beginning with the characteristic polyno-
mial p(s, q) = det(sI − A(q)), we minimizedεk(α) for
various values ofk and rapidly certified a low volume of
violation. For example, fork = 6, a symbolic computation
yields ε∗6 ≈ 0.19× 10−3.

VI. CONCLUSION

In this paper, we used four benchmark problems to
demonstrate the efficacy of Lemmas B and D for problems
with nonlinear parameter dependence. Most notably, in
some of the examples, while the polynomial was robustly
stable in the strict theoretical sense, we deemed it to
be “practically unstable” based on considerations of the
conditioner θ. By way of future research, it would be
of interest to investigate efficient computational methods
which would enable the integrand in Lemma B to raised
to higher k powers, while still remaining calculable. It
would also be of interest to investigate the possibility of
exploiting the structure of the Hurwitz matrix in lessening
the computational burden.
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