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Abstract— In this paper, a new theoretical concept is
introduced for polynomials: the Stepwise Hurwitz Property.
Subsequently, it is shown how this concept can be used to sys-
tematically achieve robust output feedback stabilization for
large classes of uncertainty structures. A principal motivation
for this paper is the fact that the state feedback controller
construction methods do not readily admit modifications to
handle the output feedback case. One of the fundamental
technical issues addressed in this paper involves the handling
of poles and zeros at the origin. For example, high-gain
control results which are available to robustly stabilize an
uncertain minimum phase plant G(s, q) via output feedback,
do not readily extend to plants of form smG(s, q).

1. Introduction

The main results of this paper bear on the large body of
literature involving construction of robustly stabilizing
controllers for systems which include an uncertain
parameters or nonlinear elements with known bounds. A
principal motivation for this paper is the fact that results
for robust stabilization via state feedback do not readily
admit modifications to handle the output feedback case;
e.g., for state feedback solutions, see [10], [1], [16], [20],
[21], [19] and for the case of linear systems and [3], [8],
[9], [11], [13], [14] and [15] for the case of nonlinear
systems. As far as the literature on robust output feedback
stabilization is concerned, results for minimum phase
plants are the benchmark against which the results this
paper can be compared; e.g., see [2], [18] and [22] where
an input-output linear system description is the starting
point and [6] and [12] where lower triangular state space
uncertainty structures are considered.

By way of motivation, letq denote a finite-dimensional
vector of uncertain parameters with known compact
bounding setQ and takeG(s, q) to be a plant transfer
function with one-sign high-frequency gain,q entering
continuously into its coefficients and having the form

G(s, q) =
smN(s, q)
D(s, q)

with N(s, q) and D(s, q) being uncertain polynomials.
Notice that ifN(s, q) is robustly Hurwitz andm = 0, this
minimum phase uncertain system is readily stabilizable

via high-gain output feedback. On the other hand,
with m > 0, it turns out that a naive high-gain approach
will fail.

The simple uncertainty structure above generalizes a
number of uncertainty structures in the literature; see
[1], [17], [19] and [21]. The structure is generated via a
sequence of up and down augmentations. Special cases
of this structure include the well-known lower-triangular
structure and upper-triangular structure. By way of
concrete illustration, the system

ẋ1 = −q1x1 + x2 + q2x4;
ẋ2 = x3;
ẋ3 = q3x3 + x4;
ẋ4 = −x1 + u;
y = x3

with q
.= (q1, q2, q3) does not admit a parameter-

independent transformation taking it to a triangular form
but has transfer function

G(s, q) =
s(s + q1)

s4 + sd(s, q) + 1

with d(s, q) being a second order polynomial. Now,
with arbitrarily large uncertainty boundsq−i ≤ qi ≤ q+

i

with q−1 > 0, the non-minimum phase zero ats = 0 is
problematic as far as high-gain robust output feedback
stabilization. However, for this system, since the sign of
the low-frequency gain is positive, the results given in
this paper lead to a systematic construction of a robust
output feedback stabilizing compensator; see Section 3
where this example is revisited.

Analogous to the case above, when the transfer function
has one-sign low-frequency gain and is of the form

G(s, q) =
N(s, q)

smD(s, q)

with D(s, q) robustly stable, while zero feedback is needed
when m = 0, the case withm > 0 and non-minimum
phase becomes challenging. This provides a second exam-
ple from the class of systems for which a robust stabilizer
can be constructed using the results in this paper.



2. The Stepwise Hurwitz Property

In this section, we introduce two new concepts: theStep-
wise Hurwitz Propertyand the notion ofRobust Hurwitz
inducibility, are introduced.

2.1 Preliminaries for Polynomials: Let H denote
the set of Hurwitz polynomials; i.e., polynomials
with all roots in the strict left half plane. Now,
if f0(s), f1(s), f2(2), . . . , fN (s) are polynomials andα =
(α1, α2, · · · , αN ) ∈ RN is fixed, we consider theparam-
eterized polynomial

f(s) .= f0(s) + α1f1(s) + α2f2(s) + · · ·αNfN (s).

For givenα ∈ RN , this parameterized polynomial is said
to have theStepwise Hurwitz Propertyif f(s) ∈ H and,
for k = 0, 1, · · · , N − 1, the partial sums

Fk(s) .= f0(s) + α1f1(s) + α2f2(s) + · · ·αkfk(s)

satisfy the following condition: For eachk, there exists a
non-negative integerik such that

s−ikFk(s) ∈ H.

When such a selection ofα exists, the polynomial se-
quence{fk(s)}N

k=0 is said to be(Stepwise) Hurwitz in-
ducibleandf0(s) is called theHurwitz core.

2.2 Remarks: In a control theoretic context, if we view
the αi above as parameters which correspond to compen-
sator coefficients, it is apparent that Hurwitz inducibility
is equivalent to stabilizability. In the sequel, one of the
main technical novelties associated with robust stabiliza-
tion is our relabelling of the compensator coefficientsαi

so that the Stepwise Hurwitz inducibility is guaranteed.
That is, the obvious ordering for selection of compensator
parameters corresponding to the increasing or decreasing
degrees ofsk in Nc(s) or Dc(s) does not necessarily lead
to satisfaction of the Stepwise Hurwitz Property.

2.3 Example: To illustrate the concepts above, we consider
the parameterized polynomialf(s) above with compo-
nentsf0(s) = s3 + s2; f1(s) = 2s4 − s2 + s; f2(s) =
s5 + s and f3(s) = s2 − s + 3. Now, for the fixed
choice of parametersα1 = α2 = 0.25, α3 = 0.05
and indicesi0 = 2, i1 = i2 = 1 and i3 = 0, a
straightforward calculation leads to thes−ik shifted partial
sums s−2F0(s), s−1F1(s), s−1F2(s) and F3(s) are
readily verified to be Hurwitz polynomials. Hence, for
this selection of theαk, the resulting polynomial has the
Stepwise Hurwitz Property.

2.4 Notation: Given a sequence of polynomials
f1(s), f2(s), . . . , fN (s), we define the associated

sequence ofpartial polynomial vectors

f (k)(s) .= [f0(s) f1(s) . . . fk(s)]; k = 0, 1, . . . , N.

We now defineIk, the maximum indexof f (k)(s), to be
the maximum degree of thefi(s) comprising this partial
vector; i.e.,

Ik
.= max{degf1(s), degf2(s), . . . , degfN (s)}

We also defineik, the minimum indexof f (k)(s) as
follows: Let sji be the lowest power ofs appearing in
fi(s) with a non-zero coefficient. Then,

ik
.= min{j1, j2, . . . , jk}.

Note thatIk andik are non-decreasing and non-increasing,
respectively. We conclude this section by generalizing the
discussions above to uncertain polynomials.

2.5 Robustness Generalizations: For the case when the
polynomials fk(s) have coefficients depending continu-
ously on a vectorq of uncertain parameters, we re-
place f(s), fk(s) and Fk(s) by their uncertain counter-
parts f(s, q), fk(s, q) and Fk(s, q), respectively. Then,
given a compact bounding setQ for the parametersq, we
say that the Stepwise Hurwitz Property holdsrobustly if
f(s, q) ∈ H for all q ∈ Q and for each partial sumFk(s, q)
with k < N , there exists a non-negative integerik such that
s−ikFk(s, q) ∈ H for all q ∈ Q. Finally, it should be noted
that in this case, the maximum and minimum indices of the
partial polynomial vectorf (k)(s, q), respectively denoted
by Ik(q) and ik(q), are functions ofq.

3. Robust Hurwitz Inducibility

3.1 Theorem of Robust Hurwitz Inducibility (see Sec-
tion 4 for proof): Given the sequence of uncertain poly-
nomials fk(s, q), q ∈ Q, k = 0, 1, . . . , N , suppose the
following conditions are satisfied:

(i) The polynomials−i0f0(s, q) is a robustly Hur-
witz with a positive highest degree coefficient.

(ii) The maximum and minimum indices of the par-
tial uncertain polynomial vectorsf (k)(s, q) are
invariant, and thus denoted byIk and ik, respec-
tively.

(iii) Ask increases from zero toN , for each transition
of k → k + 1, Ik (respectively,ik) can increase
(respectively, decrease) by one at most.

(iv) For k = N , the minimum index isiN = 0.

Then, the sequence{fk(s, q)}N
k=0 is robustly Hurwitz

inducible.

3.2 Motivating Example Revisited: To illustrate how the
Stepwise Hurwitz Theorem applies to classes of systems
which are not covered by the existing literature, we revisit



the motivating example given in Section 1. This example,
while analyzed in somewhat of an ad hoc manner here,
is addressed more formally in Section 5. Accordingly, the
procedure below will be formalized as part of a step-by-
step procedure. We begin with the plant transfer function

G(s, q) =
s(s + q1)

s4 + (q3 − q1)s3 + (q2 − q1q3)s2 − q2q3s + 1
,

with its uncertain parameter bounds given by1 ≤ q1 ≤ 2,
−1 ≤ q2 ≤ 1, −1 ≤ q3 ≤ 1 and note that the analysis to
follow could equally well be carried out with arbitrarily
large uncertainty bounds with the the proviso thatq1 > 0.
We now specify a second order controller of the form

C(s) =
n2s

2 + n1s + n0

d2s2 + d1s + d0

.=
Nc(s)
Dc(s)

.

To demonstrate that all hypotheses in the Stepwise Hurwitz
Theorem are satisfied, we first consider the closed loop
polynomial

f(s, q) = sN(s, q)Nc(s) + D(s, q)Dc(s)

which is rewritten as

f(s, q) = N(s, q)Nc(s)+d0D(s, q)+d1sD(s, q)+d2s
2D(s, q).

We now claim that the hypotheses of the theorem are
satisfied by takingNc(s) to be any positive coefficient
Hurwitz polynomial and lettingf0(s, q) = sN(s, q)Nc(s),
f1(s, q) = sD(s, q), f2(s, q) = D(s, q) and f3(s, q) =
s2D(s, q). Now with i0 = 1 and recalling thatq1 ≥ 1,
it is readily verified thats−i0f0(s) = (s + q1)Nc(s)
is robustly Hurwitz. Also, the corresponding minimum
and maximum indicesi0 = i1 = 1, i2 = i3 = 0,
I0 = 4, I1 = I2 = 5 and I3 = 6 and the associated
coefficients satisfy the required invariance requirements of
the theorem. It follows that the parameterized closed loop
polynomialf(s, q) is robustly Hurwitz inducible. Now, in
accordance with the previous section, it is now possible
to construct a robustly stabilizing compensator. Indeed, a
lengthy but straightforward computation leads to a robust
stabilizer given by

C(s) = 20
s2 + s + 1
s2 + 5s + 5

.

4. Proof of Theorem 3.1

4.1 Preliminaries: Given ann-th order polynomial

p(s) = ansn + an−1s
n−1 + · · · a0

with an > 0, the associated Hurwitz matrix is denoted
by H. Note that the last column ofH has zero entries
except its last element and thatp(s) is Hurwitz if and
only if all the principal minors ofH are positive.

4.2 Proof of Theorem: We proceed by induction. That is,
assumingα1, · · · , αk are chosen such thats−ikFk(s, q)

is robustly Hurwitz, we need to prove thatαk+1 can
be chosen to makes−ik+1Fk+1(s, q) robustly Hurwitz.
Adopting the shorthand notationα

.= αk+1, g0(s, q)
.=

s−ik+1Fk(s, q), g1(s, q)
.= s−ik+1Fk+1(s, q) andg(s, q) .=

s−ii+1fk+1(s, q) and suppressing the(s, q) arguments,
we haveg1 = g0 + αg. We now consider four cases
corresponding to various combinations ofIk+1 and ik+1.

Case 1: Ik+1 = Ik and ik+1 = ik. In this case,g0 is
robustly Hurwitz and degg0 ≥ degg. It follows from
continuous dependence of the roots of a polynomial on
its coefficients thatg1 is robustly Hurwitz for sufficiently
small α > 0.
Case 2: Ik+1 = Ik + 1 and ik+1 = ik. In this case, we
observe thatg0 is robustly Hurwitz, degg = degg0 + 1,
and the highest degree coefficient ofg1 is positively
invariant. Hence, for this special case, it follows from
existing results in the literature (see [2] or [18]) thatg1

is robustly Hurwitz for suitably smallα > 0.
Case 3: Ik+1 = Ik and ik+1 = ik − 1. In this case, we
defineḡ0 = s−ikFk and observe thatg0 = sḡ0 and ḡ0 are
robustly Hurwitz. Furthermore, degg ≤ degg0, and the
zeroth degree coefficient ofg is positively invariant. We
now reduce this situation to Case 2 as follows: Forming
the reversed-order polynomialĝ1 by reversing the ordering
of the coefficients ofg1, it is straightforward to see thatg1

is robustly Hurwitz if and only ifĝ1 is robustly Hurwitz.
Now for ĝ1, the problem of selectingα reduces to that in
Case 2.
Case 4: Ik+1 = Ik + 1 and ik+1 = ik − 1. In this
case,g0 = sḡ0, where ḡ0 = s−ikFk is robustly Hurwitz,
degg = degg0 + 1, and both the highest and the zeroth
degree coefficients ofg are positively invariant. Letting
n = deg ḡ0, it follows that degg1 = degg = n + 2..
Furthermore, expressing the highest and lowest coefficients
of g1 asαgn+2 andαg0 respectively, it follows that these
quantities are positively invariant whenα > 0. It is now
straightforward to verify that that the Hurwitz matrix for
g1 is given by

H1(α, q) =




H1,0(q) + αH1,1(q) 0

H1,2(q, α) αg0(q)




whereH1,0(q) is the Hurwitz matrix ofḡ0 when viewed
as an(n + 1)-th order polynomial; i.e., withan+1 = 0,
forming the Hurwitz matrix foran+1s

n+1 + ḡ0. Also, in
the expression above,H1,1(q) is the part of the Hurwitz
matrix for g with the last row and column deleted. Further
examination shows thatH1,0(q) has the structure

H1,0(q) =




an(q) [an−2(q) · · ·]

0 H0(q)




where a0(q), a1(q), · · · , an(q) are the coefficients of̄q0

andH0(q) is its Hurwitz matrix.



In view of the structural properties above, we claim
that all the leading principal minors ofH1(q, α) are
positively invariant for sufficiently smallα > 0. To
prove the claim, we consider the highest order minor
detH1(q, α), noting that a similar proof applies to the
other lower order minors as well. Indeed, we write

detH1(q, α) = αg0(q)(an(q) det H0(q) + o(q, α))

where the termo(q, α) vanishes uniformly inq asα → 0.
That is, given anyε > 0, there exists a suitably small
α > 0 such that |o(q, α)| ≤ ε for all q ∈ Q. Now
using the properties of̄g0, we know thatdetH0(q) and
an(q) are both positively invariant. Therefore, for suitably
small α > 0, detH1(q, α) is positively invariant. In
view of this claim, we now conclude thatg1 is robustly
Hurwitz for suitably smallα > 0. It follows by induction
that α1, α2, · · · , αN > 0 can be selected recursively to
make s−i1F1(s, q), s−i2F2(s, q), · · · , s−iN FN (s, q) ro-
bustly Hurwitz with iN = 0.

5. Stabilizable Transfer Function Structures

In this section, we provide robust stabilization results for
the two transfer function structures discussed in Section
1. As previously mentioned, poles or zeros at the origin
preclude the use of simple high-gain or low-gain results.

5.1 Pseudo-Minimum Phase Uncertain Plants: Recalling
the discussion in Section 1, we consider a proper transfer
function of the form

G(s, q) =
smN(s, q)
D(s, q)

wherem ≥ 0, N(s, q) is an v-th order robustly Hurwitz
polynomial with a positively invariant zeroth degree
coefficient and D(s, q) is an n-th order uncertain
polynomial with a positively invariant highest degree
coefficient. Whenm > 0, it is further assumed that the
zeroth order coefficient,d0(q), of D(s, q), is sign-invariant
so that there is no unstable zero-pole cancellation. Since
the numerator of the plant has its zeros at the origin
and in the open left half plane, we refer to the plant as
pseudo-minimum phase.

Now for the non-trivial case whenD(s, q) is non-Hurwitz,
we apply a proper compensatorC(s) = Nc(s)/Dc(s) and
the objective is to select the coefficients ofNc(s) and
Dc(s) to assure that the resulting closed loop polynomial

f(s, q) = smN(s, q)Nc(s) + D(s, q)Dc(s)

is robustly Hurwitz. When such a compensator exists, the
system isrobustly stabilizable via output feedback.

5.2 Theorem: The pseudo-minimum phase uncertain plant
G(s, q) is robustly stabilizable via output feedback. Fur-
thermore, a robustly stabilizing proper controllerC(s) =
Nc(s)/Dc(s) can be chosen to be minimum phase and
satisfying the following conditions:

(i) Whenm = 0,

degNc(s) = degDc(s) = r − 1;

(ii) Whenm > 0 and d0(q) > 0,

degNc(s) = m + r − 2;

degDc(s) = max{m− 1, m + r − 2};
(iii) Whenm > 0 and d0(q) < 0,

degNc(s) = degDc(s) = m + r − 1.

Furthermore, the controllerC(s) can be designed using
the following procedure:

Step 1: ChooseNc(s) to be any Hurwitz polynomial
with the degree as given above and take the
Hurwitz core to be

f0(s, q) = smN(s, q)Nc(s).

Step 2: If m = 0, for k = 1, 2, . . . , r, let fk(s, q) =
sk−1D(s, q), k = 1, 2, . . . , r. If m > 0, take

D̄(s, q) =
{

D(s, q) if d0(q) > 0;
D(s, q)(s− 1) otherwise,

and

f1(s, q) = sm−1D̄(s, q);
f2(s, q) = sm−2D̄(s, q);

· · · · · ·
fm(s, q) = D̄(s, q).

Whenr > 1, continue with

fm+1(s, q) = smD̄(s, q);
fm+2(s, q) = sm+1D̄(s, q);

· · · · · ·
fm+r−1(s, q) = sm+r−2D̄(s, q).

Step 3: Apply Stepwise Hurwitz Theorem to recursively
select theαi. If r ≤ 1, take

D̄c(s) = α1s
m−1 + α2s

m−2 + · · ·+ αm.

Whenr > 1, let

D̄c(s) = α1s
m−1 + α2s

m−2 + · · ·+ αm

+αm+1s
m + αm+2s

m+1 + · · ·
+αm+r−1s

m+r−2.

Then,Dc(s) is given by

Dc(s) =
{

D̄(s)(s− 1) if m > 0 & d0(q) > 0;
D̄(s) otherwise.



Proof. It is easy to verify that the specified dimensions
guarantee that the controllerC(s) is proper. Hence, it
suffices to show that thefk sequence, constructed via the
procedure above, is robustly Hurwitz inducible. We first
consider the case wherem = 1 and d0(q) is negatively
invariant. In the design procedure above, for this case, we
first modify D(s, q) by multiplying the factor(s − 1). It
is straightforward to check that the resulting denominator
D̄(s, q) has a positively invariant zeroth degree coefficient.
Thus, this case is reduced to the case wherem > 0
and d0(q) is positively invariant but with a new degree
n̄ = n+1 and relative degreēr = r+1. Suppose the mod-
ified uncertain transfer functionsmN(s, q)/D̄(s, q) can
be robustly stabilized by a controllerNc(s)/D̄c(s) with
degNc(s) = m+ r̄−2 and deḡDc(s) = max{m−1, m+
r̄− 2}. Then it follows that the original uncertain transfer
function N(s, q)/D(s, q) can be robustly stabilized by
Nc(s)/Dc(s) with Dc(s) = D̄c(s)(s − 1). Becausēr =
r + 1 and m ≥ 1, degNc(s) = degDc(s) = m + r − 1.
Hence, in the sequel, we only need to consider the cases
m = 0 and the casem > 0 with d0(q) > 0.

Note thati0 = m ands−i0f0(s, q) is robustly Hurwitz with
a positively invariant zeroth degree coefficient. For the case
m = 0, we haveik = 0 for all k and Ik+1 = Ik + 1. By
Theorem 3.1, it follows that thefk sequence is robustly
Hurwitz inducible. For the casem > 0, we claim thati1 =
i0−1 andI1 = I0+1. The first part of the claim is easy to
see becausef1(s, q) has a factorsm−1 whereasf0(s, q) has
a factorsm and bothD(s, q) andN(s, q) have positively
invariant zeroth degree coefficients. To proveI1 = I0 + 1,
by noting that bothD(s, q) and N(s, q) have positively
invariant highest degree coefficients, it follows that

I0 = degsmN(s) + degNc(s)
= (n− r) + (m + r − 2) = n + m− 2

and

I1 = (m− 1) + degD(s, q) = (m− 1) + n = I0 + 1.

Next, for k = 1, 2, . . . , m − 1, it is easy to verify that
the specified dimensions guarantee thatIk+1 = Ik and
ik+1 = ik−1. A particular consequence of this fact is that
im = 0. Finally, if m + r − 2 > m− 1, we have

Im+1 = Im + 1; im+1 = im = 0;

Im+2 = Im+1 + 1; im+2 = im+1 = 0.

Continuing in an identical manner for any indices above
Im+2, by Theorem 3.1, thefk sequence is again robustly
Hurwitz inducible.

5.3 Pseudo-Stable Uncertain Plants: Recalling the dis-
cussion in Section 1, we consider a proper transfer function

of the form

G(s, q) =
N(s, q)

smD(s, q)

wherem > 0, D(s, q) is an n-th order robustly Hurwitz
polynomial. Without loss of generality, we assume that
D(s, q) has positively invariant coefficients. Finally, the
uncertain polynomialN(s, q) is assumed to have a sign-
invariant zeroth degree coefficient. The degree,v(q), of
N(s, q) is allowed to vary withq, provided thatG(s, q)
remains proper. Since the denominator has all its roots
at the origin and in the open left half plane, we refer to
the plant as beingpseudo-stable. The result below follows
easily from Theorem 3.1.

5.4 Theorem: The pseudo-stable uncertain plantG(s, q)
above is robustly stabilizable via output feedback. Fur-
thermore, a robustly stabilizing proper controllerC(s) =
Nc(s)/Dc(s) can be chosen to be stable satisfying

degNc(s) = degDc(s) = m− 1

and the controller can be designed using the following
procedure:

Step 1: Choose Dc(s) to be any (m − 1)-th order
Hurwitz polynomial and let the Hurwitz core be
f0(s, q) = smD(s, q)Dc(s, q).

Step 2: For k = 1, 2, . . . , m, let fk(s, q) =
sm−kN(s, q)SN , where SN is the sign of the
zeroth degree coefficient ofN(s, q).

Step 3: Apply Stepwise Hurwitz Theorem to recursively
design theαi. Then, let

Nc(s) = SN (α1s
m−1 + α2s

m−2 + · · ·+ αm)

5.5 Remark: In Theorems 5.2 and 5.4, we specified the
order of the stabilizing controller. It is easy to construct
examples show that stabilizing controllers may not exist
in general if the order is lower than those given in the
theorems.

6. Stabilizable State-Space Structures

In this section, we show that the pseudo-minimum phase
uncertainty structure given in the previous section cov-
ers a large class of uncertain systems in the state-space
framework. These systems admit a so-called theStepwise
Augmentation Structurewhich can be generated recur-
sively using the so-calleddown augmentationsand up
augmentations. Such structures, first introduced in [1],
were called theadmissible shuffles. Later in [17], the term
anti-symmetric stepwise configurationwas used to describe
a similar class of systems. For such systems, it is shown in
[1], [17] that a robust linear, time-invariant state feedback
stabilizer can be constructed. Such structures were also
studied recently in [5] in the context of output regulation



control via state feedback. The purpose of this section is
to prove that a large class of such structures is robustly
stabilizable via output feedback, provided that a suitably
chosen output is available.

In the construction to follow, we begin with an uncertain
system

ẋ = A(q)x + b(q)u
y = cT (q)x

where q ∈ Q represents uncertain parameters as before,
A(q) is an n × n continuous matrix function,b(q) and
c(q) aren×1 continuous vector functions, andu, x andy
are the input, state and output of the system, respectively.
We call Σ = (A(q), b(q), c(q)) a generating system.

6.1 Down-augmented Systems: Given a generating sys-
tem Σ = (A(q), b(q), c(q)), the system

ẋ = A(q)x + b(q)xn+1;
ẋn+1 = βT (q)x + α(q)xn+1 + θ(q)u;

y = cT (q)x

with n+1 state variables is said to be adown augmentation
of Σ if the added vectors and scalarsα(q), β(q) andθ(q)
depend continuously onq and θ(q) is sign-invariant. We
call xn+1 the augmenting state variable.

6.2 Up-augmented Systems: Given a generating system
Σ = (A(q), b(q), c(q)), the system

ẋ0 = βT (q)x;
ẋ = A(q)x + b(q)(α(q)x0 + u);
y = cT (q)x

with n+1 state variables is said to be anup augmentation
of Σ if the added vector and scalarα(q) andβ(q) depend
continuously onq and the first entry ofβ(q) is sign-
invariant. In this case,x0 is called theaugmenting state
variable.

6.3 Stepwise Augmentation Structure: Let Σ =
(A(q), b(q), c(q)) be a generating system with a robustly
minimum phase transfer function. Then, a system is said to
be astepwise augmentation structureif it is obtained from
Σ via a sequence of up and down augmentations, and in
addition, if up augmentations are involved, theA(q)-matrix
of the augmented system is nonsingular for allq ∈ Q.

6.4 Examples: To illustrate the stepwise augmentation
structure, we list some of the uncertain systems which fit
into this framework. Using the notation

M(q) .= [A(q) | b(q)]

we consider the four possible structures forM(q) associ-
ated with 4-th order systems


∗ θ 0 0 0
∗ ∗ θ 0 0
∗ ∗ ∗ θ 0
∗ ∗ ∗ ∗ θ


 ;




0 θ ∗ ∗ 0
0 0 θ ∗ 0
0 0 0 θ 0
∗ ∗ ∗ ∗ θ


 ;




0 θ ∗ 0 0
0 0 θ 0 0
∗ ∗ ∗ θ 0
∗ ∗ ∗ ∗ θ


 ;




0 θ ∗ ∗ 0
0 0 θ 0 0
0 0 ∗ θ 0
∗ ∗ ∗ ∗ θ




where ∗ denotes entries that are arbitrary functions of
q and θ denotes the entries which are sign-invariant. For
each matrix, the underlined state variable corresponds to
the generating system. For example, for the third matrix
M(q) above, the generating system is described by

ẋ = θ(q)u

The sequences of augmentations for the structures above
are respectively down-down-down, down-up-up, down-up-
down and down-down-up. In all of the examples above,
the generating system is a scalar system of the form

ẋk = a(q)xk + θ(q)u;
y = xk

which is clearly robustly minimum-phase. It is also possi-
ble to give examples which is somewhat more complicated
in the sense that the order of the generating system is
higher than one.

6.5 Theorem: Let Σ = (A(q), b(q), c(q)) be a generating
system. Then, a down augmentation does not introduce any
new zeros and each up augmentation introduces at most
one zero ats = 0. Furthermore, ifm up augmentations are
involved and the finalA-matrix for the augmented system
is nonsingular for allq ∈ Q, then the augmented system
has exactlym new zeros ats = 0.

6.6 Corollary: A stepwise augmentation structure is ro-
bustly pseudo-minimum phase, and thus robustly stabiliz-
able via output feedback.

Sketch of Proof of Theorem 6.5: We suppress the depen-
dence of the system onq and denote the transfer function
of the generating uncertain system byG(s) = N(s)/D(s).
Taking Laplace transforms and expressing the transfer
function βT (sI − A)−1b as Nβ(s)/D(s), a calculation
leads to

Y (s) =
N(s)

D(s)(s− α)−Nβ(s)
U(s).

Hence, the down augmentation does not introduce any
new zeros. Now, the transfer function of the up-augmented
system is similarly computed. We obtain

Y (s) =
sN(s)

sD(s)− αNβ(s)
U(s).



Hence, at most one new zero ats = 0 can be introduced
by each up augmentation. Finally, ifm up augmentations
are involved (regardless of the number of down augmen-
tations), the numerator of the augmented transfer function
will be smN(s, q). The new factorsm can not be cancelled
if the denominator of the augmented transfer function has a
sign-invariant zeroth degree coefficient. This is guaranteed
if the A-matrix of the augmented system is nonsingular
for all q ∈ Q.

Proof of Corollary 6.6: By definition, the generating
system of a stepwise augmentation structure is robustly
minimum phase. By Theorem 6.5, down augmentations do
not introduce new zeros and, ifm up augmentations are
involved, m new zeros ats = 0 are introduced because
the A(q)-matrix of the augmented system is nonsingular
for all q ∈ Q. This implies that the denominator of the
augmented transfer function has a sign-invariant zeroth
degree coefficient. Therefore, the transfer function of a
stepwise augmentation structure is a robustly pseudo-
minimum phase system, and thus robustly stabilizable via
output feedback, according to Theorem 5.2.

7. Conclusion and Future Research

In this paper, we introduced the Stepwise Hurwitz
Property as a means for extending a number of robust
stabilization results from the full state feedback case to
the output feedback case. Via the techniques introduced in
this paper, it becomes possible to address large classes
of uncertain systems falling into the pseudo-minimum
phase or pseudo-stable categories. The results of this
paper suggest some directions for future research. Most
notably, the recursive design approach offered in this
paper is a frequency domain approach, which is applicable
to time-invariant parameters. If the uncertain parameters
are time-varying, an analogous recursive method in the
state-space domain is needed. In this regard, the concept
of quadratic stabilization, which employs a parameter-
independent quadratic Lyapunov function, is particularly
useful. In fact, the state feedback design methods in [1],
[19], [17] and [21], involve uncertainty structures similar
to the Stepwise Augmentation Structure but with time-
varying uncertainties. It would be important to investi-
gate the extent to which our frequency domain approach
also has a Lyapunov function interpretation. This sort of
Lyapunov function interpretation would also be a stepping
stone to output feedback stabilization of nonlinear systems
with similar structures.
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