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Abstract A practical approach to the design of controllers
with fixed structure (low order, decentralized etc.) that can
be tuned viaH2 or H∞ performance measures is proposed.
The design problem is split into a convex subproblem that
can involve a large number of decision variables, and a
nonconvex subproblem with a small number of decision
variables. The former problem can be solved with efficient
Riccati solvers, while the latter one is solved using genetic
algorithms. The proposed method is flexible and can be
used for differentH2 or H∞ performance or robustness
measures. In this paper low-order robustH2 design and low-
order decentralized mixed sensitivity design are presented.
Application of these methods to a benchmark problem
and a large scale industrial problem demonstrates that the
approach is numerically efficient and leads to performance
comparable or superior to that of previously published
methods.

Key words: Fixed structure controller, robust control,
decentralized control, algebraic Riccati equation, genetic
algorithms.

I. I NTRODUCTION

In many practical control problems, the structure of
admissible controllers is restricted, e.g. by an upper bound
on the controller order or by constraints on the information
that is available for feedback in each loop. In this paper we
present a new approach to solving such problems and illus-
trate the method by applying it to the problem of designing
robust low order and decentralized controllers. The key idea
is to split the problem in two parts: a convex part that can
involve a large number of decision variables and is solved
efficiently by solving an algebraic Riccati equation, and a
non-convex part that involves a small number of decision
variables and is solved by Genetic Algorithms.

The problem of designing decentralized controllers was
extensively studied in the 1970’s, see e.g. [11] or [12]. For
full state feedback a complete solution was given in [6]. In
[5] a sufficient nonlinear matrix inequality condition for the
existence of a solution is provided.

The low order controller design problem has no complete
solution up to date either. It is well known however that a
constraint on the controller order can be formulated as a
rank constraint on a Lyaponuv matrix (see e.g. [13],[9]). In
[10] an alternative projection method was proposed as an
efficient computational tool for handling an LMI plus the

rank constraint problem. In [8] a new heuristic algorithm
called the dual iteration algorithmwas proposed using an
LMI formulation. Due to the non-convexity of this problem,
most of the published methods consider simple design
techniques like pole placement.

In this paper as one application we consider the design of
fixed structure controllers that are robust against parameter
uncertainty. An approach that has proven to be useful in
practical applications is the design of robustH2 optimal
controllers, i.e. controllers that minimize the worst-case
H2 norm. In [7] a design procedure was presented for
controllers referred to as ”H2/Popov” controllers. The main
problem with this approach is the computational effort
needed for estimating the gradients and for the gradient
search algorithm. In [2] an iterative method for designing
full order H2/Popov controllers that minimize an upper
bound on the worstH2 norm is proposed. The problem
is formulated as Bilinear Matrix Inequality (BMI) and
solved using a similar approach to that proposed in [4],
however this approach is not useable if constraints on the
controller structure are imposed. In this paper we present
a numerically efficient procedure for designing robustH2

controllers with fixed order and compare the performance
with that achievable with the method proposed in [2]. To
illustrate the flexibility of our approach, we also present
a mixed-sensitivityH∞ optimal design of a low-order
decentralized controller for a large scale industrial problem.

The paper is organized as follows: Section 2 introduces
the idea of splitting a problem into a convex and a non-
convex subproblem and solving it iteratively by using
Riccati solvers and genetic algorithms. In Section 3 this
approach is used to construct an algorithm for solving the
low-order robustH2 problem. The proposed method is
applied to a standard benchmark problem and compared
with the method given in [2]. In Section 4, we present
an algorithm for designing low-order decentralizedH∞
optimal controllers and illustrate it with an application to
a large scale industrial problem. Finally conclusions are
drawn in section 5.

II. A C OMBINED RICCATI EQUATION - GENETIC

ALGORITHMS APPROACH

Let A, Q and R be realn × n matrices withQ and
R symmetric, andB and V matrices of compatible size.
Consider the algebraic Riccati equation



AT P + PA− (PB + V )R(BT P + V T ) + Q = 0 (1)

Efficient solvers are available for finding a solutionP >
0 (if it exists); this problem appears often in a wide range
of control applications.

Consider now the modified problem where the above
matrices are all functions of a common parameter vector
θ ∈ IRm, i.e. A(θ), B(θ), V (θ), Q(θ), R(θ): Find P =
PT > 0 andθ that satisfy

A(θ)T P + PA(θ)− (PB(θ) + V (θ))R(θ)(B(θ)T P+

V (θ)T ) + Q(θ) = 0 (2)

This problem is non-convex and cannot be solved using
standard solvers. Note however that for any fixed valueθ =
θo the problem can again be solved via Riccati solvers.
The approach proposed in this paper for designing fixed
structure robustH2 or H∞ optimal controllers is based on
transforming these problems into the form of (2).

Note that the solutionP is symmetric and containsN =
1
2 (n + 1)n decision variables. It will be seen below that in
applications we typically haveN À m. This observation
motivates the idea to split the original problem into a small
non-convex part solved by a GA, and a large convex part
solved with a Riccati solver. The rationale for doing this is

• to let a fast and efficient Riccati solver take care of the
large convex part of the problem: for a givenθ find the
unique solutionP (if it exists), and

• to let GA - which may be unreliable for a large number
of decision variables - deal with the smaller non-
convex part and search overθ (which usually contains
the controller parameters and stability multipliers).

Thus GA is used to construct the vectorθ , and then a
Riccati solver is applied to calculateP (if exists). The full
chromosome is constructed by adjoining the decision vari-
ables inθ andP . On the other hand, if a standard GA is used
alone to solve the original problem, the GA chromosomes
must code bothθ andP , and ifP is large, the chromosome
consequently will be too long for an efficient and reliable
solution. Reducing the dimension of the solution space for
the GA not only accelerates the evolution process, but also
increases the chances of converging to the global solution
of the problem.

The overall algorithm is shown in Figure 1. Once the full
chromosomes are constructed, the fitness value is evaluated.
Note that all the standard GA operations (reproduction,
crossover, mutation) are performed onθ only (effective
population). The full chromosome length is used only for
the fitness evaluation process as shown in Figure 1.

All numerical results presented in this paper were im-
plemented using Matlab 6.5. The GA preferences are as
follows:

• Floating point representation of chromosomes

Create Random

 EP , N=0

   EP-Parent   Supplement
   Population

ARE

 Evaluate Fitness

 Is Solution
Acceptable?    Output Solution

YES
   Reproduction

      Crossover

        Mutation

EP

  Parent = Child

New Child

NO

EP = Effective Population

If  N < N
max

N = N + 1

     No Solution
NOYES

Fig. 1. The structure of the ARE-GA algorithm

• Stochastic universal sampling with linear ranking fit-
ness assignment is used for selection.

• Non-uniform mutation was implemented for better
fine-tuning characteristic

• Simple and arithmetic cross-over were applied during
each evolution process

• Elitism mechanism is applied.

III. PARAMETRIC ROBUST H2 SYNTHESIS: ARE-GA
APPROACH

In this section a combined ARE-GA approach is used to
address the problem of designing fixed structural controllers
that minimizes an upper bound on the worst-caseH2 norm.
The analysis results given in this section are taken from [3]
(chapter 8) and [2].

A. Problem Formulation

Consider the following LTI system subject to sector
bounded nonlinear uncertainty, i.e. a Lur’e system ([3] page
119), described by:

ẋ = A0x + B1w1 + B2w2 + Bu

z1 = C1x + D1w1

z2 = C2x + D2uu

y = Cx + D2ww2 (3)

w1 = φ(z1)

where x ∈ Rn is the state vector,u ∈ Rnu is the
control input,w2 ∈ Rnw2 is a unit intensity white noise
process,y ∈ Rny is the measured output,z2 ∈ Rnz2 is
the performance output,w1 ∈ Rnz1 and z1 ∈ Rnz1 are
the input and output of the nonlinear uncertaintyφ. The
nonlinear perturbationφ is assumed to satisfy the sector
bound[0, 1], φ ∈ Φ see [3] (page 129) for definition ofΦ. If
we consider the special case where the functionφ is linear,
i.e, φ(z1) = ∆z1 where∆ is a diagonal matrix that satisfies



∆ = diag(δ1, δ2, ..., δnz1
), δi ∈ [0, 1], i = 1, ..., nz1}

the above description simplifies to an important class of
uncertain system considered in many references [7]. These
systems are described byẋ = (A0+Ã)x+B2w2+Bu, Ã ∈
Ã, whereÃ = {Ã ∈ Rn×n : Ã = B1∆C1}. Such systems
are known systems subject to parametric uncertainty.

Using the definition of worst-case performance of non-
linear systems in [15], [2] we define the worst-caseH2

performanceJ for (3) as

J = sup
nw2∑

i=1

∫ ∞

0

zi(t)T zi(t)dt, (4)

where the supremum is taken over all nonzero output
trajectories{z1(t), ..., znw2

(t)} of the nonlinear system (3)
starting fromx(0) = 0.

Theorem III.1 If there exists a Lyapunov function

V (x) = xT Px + 2
nz1∑

i=1

λi

∫ C1,ix

0

φi(σ) dσ (5)

where C1,i denotes theith row of C1, and Λ =
diag(λ1, ..., λn) ≥ 0,and T = diag(τ1, ..., τn) ≥ 0,
satisfying
[

AT P + PA + CT
z Cz PB1 + AT CT

1 Λ + CT
1 T

BT
1 P + ΛC1A + TC1 ΛC1B1 + BT

1 C1TΛ− 2T

]
≤ 0

(6)
then the upper bound ofJ is finite and can be computed
by minimizingTr BT

w(P + CT
1 ΛC1)Bw, over the variables

P, Λ, and T , i.e. by solving the problem

minimize Tr BT
2 (P + CT

1 ΛC1)B2 (7)

subject to : (6), P > 0 , Λ ≥ 0 , T ≥ 0

Proof: See [3], (pages 121-122).

B. Controller Synthesis

The problem considered in this section is to find a strictly
proper controller

K(s)
{

ζ̇(t) = AKζ(t) + BKy(t)
u(t) = CKζ(t))

(8)

where ζ ∈ IRnc with nc fixed, such that the worst-
case performance upper boundTr BT

w(P + CT
1 ΛC1)Bw of

the closed-loop system is minimized; such a controller is
referred to as Popov controller [10].

The closed-loop representation of the above system is
given by

[
ẋ

ζ̇

]
= Ā

[
x
ζ

]
+ [B̄1 B̄2]

[
w1

w2

]

[
z1

z2

]
=

[
C̄1

C̄2

] [
x
ζ

]

w1 = φ(z1)

where

Ā =
[

A0 BCK

BKC AK

]
, B̄1 =

[
B1

0

]
, B̄2 =

[
B2

BKD2w

]

C̄1 = [C1 D1CK ], C̄2 = [C2 D2uCK ]

Using the Schur complement, the inequality constraint (6)
of Theorem III.1 can be written as

ĀT P + PĀ + C̄T
z C̄z − (PB̄1 + ĀT C̄T

1 Λ + C̄T
1 )·

R−1(B̄T
1 P + ΛC̄1A + TC̄1) ≤ 0 (9)

R = ΛC1B1 + BT
1 C1TΛ− 2T ≤ 0 (10)

Since the optimal solutionP subject to the above inequal-
ity constraint occurs always on the boundary, the inequality
can be replaced by an equation. Note that the left hand side
of inequality (9) has the same form as the Riccati equation
(2), whereθ = col(Ak, Bk, Ck, Λ, T ) and col(M1, . . . ,Mn)
denotes the columns of the matricesMi stacked together in
one column vector.

Note that the size of the matrixP = PT is (n + nc) ×
(n + nc). Even if the order of the controller is low, the
size of the Lyaponuv matrix will be large when dealing
with large scale systems. For example, consider the task
of designing a first order controller for a 10th order SISO
uncertain system with scalar uncertainty. Solving (9) with
GA alone means that each chromosome should consist of 72
decision variables (floating number). Splitting the problem
means that GA is searching only for the controller and the
multiplier (the chromosomes consist of just 6 variables), and
a Riccati solver is used to search for the uniqueP which
allows the evaluation of the objective function (7).

The population structure for this example is shown in
Table I below. Once the solutionP is available, the upper
bound onJ is calculated asTr BT

2 (P + CT
1 ΛC1)B2. Then

the fitness of each chromosome (K(s), P, T, Λ) is evaluated
as a linear function ofJ(Pi,Λi).

GA ARE Worst-Case Fit-
Controller variables Multipliers P H2 Cost ness

Ak1 ,Bk1 ,Ck1 ,Dk1 Λ1,T1 P1 J(P1, Λ1) f1
Ak2 ,Bk2 ,Ck2 , Dk2 Λ2,T2 P2 J(P2, Λ2) f2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Aknp

,Bknp
,Cknp

,Dknp
Λnp ,Tnp Pnp J(Pnp , Λnp ) fnp

TABLE I

GA POPULATION STRUCTURE

IV. N UMERICAL EXAMPLE : THREE-MASS-SPRING

SYSTEM

The efficiency of the approach presented in the previous
section is illustrated by comparing it with the method pro-
posed in [2], one of the most efficient synthesis techniques
reported so far. To make the comparison fair, the same



example used in [2] was used here again. The system
consists of three masses connected by two springs, in which
the spring uncertainty between the second and the third
mass is expressed in the formK2 = k2,nom(1 + δ) where
k2,nom is the nominal value, and the uncertainty is captured
by δ ∈ R. All the system parameters are set to a nominal
value (m1 = m2 = m3 = 1 , k1 = k2,nom = 1).
The uncertainty in the spring stiffness is approximated as
K2(y) = k2,nom[y + ρφ(y)], whereρ > 0 is a measure
of the relative guaranteed uncertainty bound, andφ(y) is
a [−1, 1] sector-bounded memoryless nonlinear function of
the spring displacementy.

The population size is 60, the number of iterations is 300,
with an average computation time of less than 5 minutes
for one complete run (computed on a Pentium 5 2.0G cpu
speed, 256 DDR ram).

The plant model is of 6th order, and it turns out that with
the ARE-GA approach it can be stabilized with controllers
of 3rd order or higher. Table IV shows that while a 3rd
order controller leads to higher bounds on the costJ , a 4th
order controller leads to cost values almost identical with
the full order controllers reported in [2]. Figure IV below
shows that ARE-GA controllers achieve robustness against a
larger range of variation in the spring constantK2 compared
with the controller derived using the approach proposed in
[2] and a standard LQG controller.

Controller Upper bound Upper bound Upper bound
order on J , 5% on J , 10% on J , 20%

Uncertainty Uncertainty Uncertainty
3rd order ARE-GA 4.6 4.84 5.75
4th order ARE-GA 3.22 3.36 3.69

Full order [2] 3.19 3.34 3.69

TABLE II

COMPARISON OF THE WORST-CASE H2 BOUND OF ARE-GA AND

LMI- BASED POPOV CONTROLLERS

V. M IXED SENSITIVITY DECENTRALIZED LOW-ORDER

CONTROLLER DESIGN FOR AHVDC SYSTEM

In this section we present the application of the ARE-
GA approach to a large-scale industrial problem: control
of a high voltage direct current (HVDC) system. HVDC
systems are used in electrical power grids as a supplement
to AC transmission. Power transfer by means of HVDC
is used in case of (i) inter-connecting asynchronous AC
systems with different power frequencies, (ii) high voltage
cables longer than about 80km, and (iii) long overhead lines
with lengths in excess of about 600km. A two-input two-
output state space model for such a plant was presented in
[1]; the controlled outputs are the direct currentIDC1 on the
rectifier side and the direct voltageVDC2 on the inverter side
and control inputs are excursion in firing anglesu1 andu2.
The high dynamic order (35 state variables) reflects the large
number of passive elements. This model has been linearized
for nominal AC voltages (1pu) and nominal firing angles
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Fig. 2. H2 cost vs. parameter variation for Popov and ARE-GA
controller, both designed assuming 10% uncertainty inK2. A standard
LQG controller is included for comparison.

(rectifier firing angleα = 21o, inverter extinction angleγ =
25.6o) and extensively validated against nonlinear EMTDC
simulation for small changes. A controller is to be designed
that achieves a fast response to command step changes with
little overshoot and little cross-coupling between channels.
Moreover, the controller should have low order and must
use only the information available on one side of the DC
link for feedback, i.e. only measurement ofIDC1 is used
to generateu1 and measurement ofVDC2 for u2.

To solve this problem, we use the generalized plant model

ẋ = Ax + Bww + Bu

z = Czx + Dzww + Dzu

y = Cx + Dww

The task is to find a biproper (DK 6= 0) controller K(s)
such that theH∞ norm of the closed loop systemT (s) is
less thanγ, where T(s) is given by:

T (s)
{

ẋcl = Āxcl + B̄w
z = C̄xcl + D̄w

In addition, the controller must satisfy the constraints on
the information available for feedback. We will design a
mixed sensitivityH∞ optimal controller, and make use of
the following result.

Theorem V.1 The matrixĀ is stable and‖T‖∞ < γ if and
only if there exists a symmetric solutionP = PT > 0 to
the system of LMIs

[
ĀT P + PĀ + γ−1C̄T C̄ P B̄ + γ−1C̄T D̄

B̄T P + γ−1D̄T C̄ −γI + γ−1D̄T D̄

]
≤ 0

(11)
Proof: See [3].



Again using the Schur complement, the inequality (11)
of Theorem V.1 holds if and only if

ĀT P + PĀ + γ−1C̄T C̄ − (PB̄ + γ−1C̄T D̄)R−1·

(B̄T P + γ−1D̄T C̄) ≤ 0 (12)

R = −γI + γ−1D̄T D̄ ≤ 0 (13)

For a mixed sensitivity design we solve the problem

min
K(s)∈K

γ subject to
∥∥∥∥

WS(s)S(s)
WT (s)T (s)

∥∥∥∥
∞

< γ

whereK denotes the set of admissible controllers. We
consider two possible choices of controller structures:K
can either contain all controllers of the form

Kf (s) =

[
g1

T1s+1
T2s+1 g3

g4 g2
T3s+1
T4s+1

]

with variablesgi andTi, or all controllers

Kd(s) =

[
g1

T1s+1
T2s+1 0
0 g2

T3s+1
T4s+1

]

where g3 and g4 have been fixed to zero. In this ex-
ample the parameter vectorθ in (2) becomesθ =
[g1 g2 g3 g4 T1 T2 T3 T4]T . Note that the size of the of
Lyapunov matrixP in (12) is n + nc + order of weighting
filters = 35 + 2 + 4 = 41. If GA is used alone to solve the
above problem, there will be 861 variables inP in addition
to the controller variables. This huge number of variables
requires a length of chromosomes which would render the
use of GA impractical.

In contrast, if the ARE-GA approach is applied the
chromosomes will consist of only 8 variables for the con-
troller Kf (s) and 6 variables for the decentralized controller
Kd(s). For a given controller, equation (12) is solved
easily using a Riccati solver. The advantage is that the
size of the plant does not contribute to the size of the
chromosomes, leading to a much faster evolution process
and better chances of convergence to the global minimum.

To limit the size of this paper, all minor details (filter
selection and tuning) will be omitted. Applying the ARE-
GA algorithm yields the controllers

Kf (s) =
[

0.1711.555s+1
1.145s+1 0.122

0.394 −0.2541.120s+1
1.266s+1

]

and

Kd(s) =
[

3.155 0.552s+1
6.537s+1 0
0 −1.6306 0.6214s+1

2.263s+1

]

The singular values of the sensitivity functionsS(s) and
T (s) (see e.g. [14]) and the corresponding weighting filters
for the two controllersKf (s) and Kd(s) are shown in
Figures 3 and 4 respectively. Note that a second order filter
Ws is used to shape the low frequency response of the
system (for good tracking and fast response). On the other
hand, the first order filterWT was just used to limit the peak
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Fig. 3. Singular values of sensitivity and complementary sensitivity
function with Kf (s)
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Fig. 4. Singular values of sensitivity and complementary sensitivity
function with Kd(s)

of T (s) within the frequency range of interest to control the
oscillatory behavior of the closed loop system.

The tracking behavior in terms of settling time, steady
state error and peak overshoot can be further improved by
shaping the response with a pre-filter

Kpre(s) =
[ 1

0.015s+1 0
0 1

0.01s+1

]

Figures 5 and 6 show the closed loop step response of the
HVDC system withKf (s) andKd(s) respectively. Figure 5
also shows the responses obtained with a manually designed
lead-lag compensator that uses unconstrained information
for feedback (not decentralized). When comparing the per-
formance of both controllers it should be kept in mind
that the manual design of a lead-lag compensator for
each channel is a time-consuming, tedious trial and error
procedure, whereas the GA-ARE design is carried out in
a semi-automatic manner and can be easily repeated for



controllers of different order or structure. It can also be
seen that the cross-coupling betweenIDC1 andVDC2 with
controllerKd(s) is worse than with controllerKf (s); this
is due to the constraint on the information available for
feedback.

The total computation time for 200 iterations with 50
chromosomes is less than 12 minutes (all calculations were
performed on the full order model with 35 states).
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Fig. 6. Closed-loop step response withKd(s)

VI. CONCLUSION

This paper introduces a novel approach that can be used
for a variety of control applications involving non-convex
constraints. Many powerful analysis results involving a
Lyapunov matrixP have been developed over recent years,
and the possibility of turning them into synthesis algorithms

for controllers with a fixed structure is of considerable
practical value. The flexibility of genetic algorithms allows
its use for a wide range of applications. Here we are
proposing a way of integrating this non-convex optimization
tool with a convex one to form a much more efficient
combined tool. The idea is to split the problem into two
parts: a convex part solved via efficient Riccati solvers, and
a non-convex part solved by GA. This simple idea can be
extended to other design techniques such asµ-synthesis,
and can help in bridging the gap between the rich theory of
robust control and practical applications that require fixed
structure controllers.
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