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Abstract
An information-theoretic input selection method for 
dynamical system modeling is presented that qualifies the 
rejection of irrelevant inputs from a candidate input set with 
an estimate of a measure of confidence given only finite 
data.   To this end, we introduce a method of determining 
the spatial interval of dependency in the context of the 
modeling problem for bootstrap mutual information 
estimates on dependent time-series.  Additionally, details 
are presented for determining an optimal binning interval 
for histogram-based mutual information estimates.  
 

Introduction 
It is apparent that continued improvement in practical 
nonlinear control theory relies on the ability to formulate 
accurate models of system dynamics.  As we strive to 
control the dynamics of increasingly complex and varied 
systems, we are confronted with the choice of whether to be 
satisfied with a controller that performs reliably but not 
optimally or to attempt to construct a model that is 
characteristic of the essential system dynamics and accurate 
so that our controller design problem is not so constrained.  
Ultimately, we are forced to consider how to deal with 
uncertainties in the modeling process.  Our purpose here is 
to provide a method for determining the appropriate input 
space in which empirically derived models of dynamical 
systems should be constructed given a quantifiable degree 
of confidence for considering an input dimension relevant. 

Whether the system is to be described by a map or a 
dynamical manifold, the input space is chosen from a set of 
measurable, related variables so that the trajectory of the 
variable or variables of interest lies in a coherent subspace 
of small enough dimensionality as to provide good 
estimates with limited data.  Locally, the dynamical 
manifold is a coordinate map in Euclidean space that 
defines a functional relationship between inputs and an 
output as in the prototypical system identification problem.  
Globally, however, the manifold defines a multi-valued 
relation between variables so a measure of central tendency 
is inappropriate as a criterion of merit for the global input 
selection problem; a more suitable measure of dependence 

is mutual information (MI).  The determination of the 
optimal input set of finite dimension is a problem in 
combinatorial optimization.  The most effective means of 
decreasing the computational challenge of this problem is to 
cull the candidate set of inputs that have no potential of 
membership in the final optimal set.  To do this with a 
measure of confidence for arbitrary distributions, we rely 
on the bootstrap estimate of the criterion of merit.  
However, since data describing a deterministic dynamical 
system is obviously not independent and identically 
distributed (i.i.d.), we must first determine the spatial 
interval of dependence in order to perform the bootstrap.   

After presenting pertinent background information 
regarding the estimation of MI using multi-dimensional, 
histograms based on uniform bin widths, we show how an 
optimal binning may be selected given one weighting 
parameter between histogram smoothness and estimated 
mutual information.   This result is used to determine a 
spatial stratification interval of local dependence so that a 
bootstrap estimate of mutual information can be calculated.  
Finally, we demonstrate how individual candidate input 
dimensions can be systematically eliminated from the 
candidate pool based on the MI measure of deterministic 
relevance to an empirical dynamical manifold model of the 
system generating the single observed output.  Results of 
this method of input selection are demonstrated on a data 
set derived from measurements of diesel engine operation 
with net engine torque as the output signal. 

Input Selection by Mutual Information 
This section provides a method of estimation of mutual 
information as a measure of joint nonlinear dependence.  
Histograms based on uniformly binning the system 
observations over the range of values are chosen rather than 
kernels to approximate the nonparametric probability 
density function due to their computational efficiency and 
the insignificance of relative accuracy of the resultant 
probability density function (pdf) estimates in sparsely 
populated spaces.  Therefore, we will first present a method 
to systematically arrive at an optimal uniform binning 
interval for the estimation of joint mutual information. 



Mutual Information 

When restricted to finite probability spaces, normalized 
measures of mutual information satisfy all of the Rényi 
postulates for measures of dependence (Bell C.B., 1962).  
Given this property and the result that mutual information 
may be estimated to an arbitrary degree of resolution 
uniformly in a measurement continuum, we will consider 
mutual information to be an optimal measure of 
dependence.  In a measurement continuum it is possible to 
take an unlimited number of measurements with infinite 
precision. 

It is not necessary to normalize the measure for the purpose 
of feature subset selection.  Mutual information quantifies 
the uncertainty in the system output, Y, that is conditioned 
on the system input, X.  Specifically, average mutual 
information between two signals is the Kullback-Leibler 
distance, ( ; )I YX  between the conditional probability 
distribution, (Y | )p X , and the individual output probability 
distribution, (Y)p , and is given by the formula 
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where X is the input vector and Y is the output and the 
summation is over the discrete values x and y of the random 
variables X and Y, respectively.  If the natural logarithm is 
used, the average mutual information is in natural units 
(nats).  This formulation represents a difference in entropy 
of the data distributions,  

I(X;Y) =  H(Y) −H(Y | X), 

where entropy, ( )H ⋅ , is defined by the relation: 
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Entropy represents the uncertainty in each signal.  Thus, 
average mutual information represents the decrease in 
uncertainty of the output, y, which may be achieved through 
the knowledge of the input, x, alone.  The average mutual 
information is zero if the output data distribution is 
invariant to the occurrence of the particular input vector, 
i.e., (Y | ) (Y)H H=X  (Cover and Thomas, 1991). 

Average mutual information may be more easily calculated 
by applying the Bayes’ Rule to the conditional probability, 
i.e., 
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When performing the estimates for a fixed record size, N 
with the binning frequencies given by n, the equation is 
calculated as 
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which may be a root-n consistent estimator of self-
information (Y in place of X) for some binwidth under a 
mild assumption of bounded tail behavior (Hall and 
Morton, 1993).  Note that the measure can be easily 
aggregated for multiple scopes when probability estimates 
are calculated by uniformly binning the data.  Uniform 
binning over the span of the data values also yields 
estimates that are invariant to affine transformations, such 
as those caused by improperly calibrated linear sensors.   

The entropy, H(Y), determines the maximum information 
content of the output signal.  This quantity provides an 
upper limit on the achievable mutual information content of 
any input signal set given the structure of the output data 
and the binning used to estimate the joint and individual 
probabilities. 

Uniform Binning for MI Estimation 

The choice of binning interval for mutual information 
estimation is a compromise between resolution and 
computing resources within limits established by the 
underlying probability distribution and the practical 
availability of data.  The interval should be chosen so that 
relevant structure of the joint distributions is resolved while 
allowing joint mutual information estimates to be computed 
up to the dimensionality of the feature set.  Because we are 
ultimately interested in the relative rather than absolute 
contribution of the various inputs to the accuracy of the 
mapping, the binning interval of the base distribution is 
held fixed while comparing the incremental increase of 
estimated joint mutual information with each additional 
candidate input.  For pairwise mutual information 
comparisons, this means that the binning interval of the 
output signal is held fixed at the optimal binning interval of 
the output entropy.  

The goal of binning is to reveal structure in a probability 
distribution while minimizing the unavoidable effect of 
quantization of a signal that is essentially continuous into a 
number of bins, the heights of which are integer multiples 
of  1/ N , where N is the number of data records.  Mutual 
information is a convex functional of continuous 
probability density functions. When estimated by relative 
frequency, mutual information is nondecreasing with 
number of binning partitions.  In the limit for infinite data, 
the rate of estimated MI increase is inverse log-linear in the 
absence of any informational structure in the data. This is a 
fundamental property of the estimate as used in this 
analysis. We present this formally in the following lemma: 



Lemma 1: With probabilities estimated by relative 
frequencies, the mutual information functional, ( ; )I YX , is 
nondecreasing with the number of partitions for random 
variables X and Y and constant with partition number if and 
only if the events are uniformly distributed. 

Proof   

Let n be the number of occurrences of an event. Estimating 
the pdf consistently by relative frequency with one bin, the 
estimated mutual information is 
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Subdividing this bin into n1 and n2 events, we have that 
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It follows immediately from Jensen’s discrete inequality, 
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for strictly convex functions, f  (such as logx x  for 
0≥x ) that  
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with equality if  and only if 1 2n n= . The generalization of 
this relation for any countable number of partitions follows 
inductively by repeated application of the inequality. Now, 
if the division of bins is such that all bins are nonempty and 
occurrences equally distributed, then for a k-partition the 
total MI of all bins is estimated as 
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So, in the absence of probabilistic structure, the estimated 
MI increases asymptotically inversely log-linear as a 
function of number of bins. ▄ 

Note that the controlling assumption of Lemma 1 in the 
bins/MI relation is that the measurements are sufficiently 
dense so that on average the occurrences are nearly equally 
distributed.  Naturally, this assumption is not valid in the 
case of finite data sets or coarsely quantized measurements 
beyond a certain binning interval.  This limitation is shown 
quantitatively in the estimation of self-information of 
engine torque from a data set describing the operation of a 
diesel engine over a 20 minute test cycle (Figure 1) and 
qualitatively from histograms (Figures 2a-c).   
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Figure 1. Exponential of torque self-information linearly 
detrended by first 1500 bins showing binning saturation 

effect for the data set of 6009 records. 
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Figure 2a-c. Torque measurement distribution estimation by 
uniform binning a) 30 bins  b) 300 bins  c) 3000 bins  
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Figure 3.  exp(I) v. bins trend per data set size of uniformly 

randomly decimated time-series torque records.  
 



Probabilistic structure is revealed by the variability of the 
graph of MI over lower binning ranges. Unless the data is 
pathological, quantization noise will increase incrementally 
with higher binning resolutions yielding an asymptotically 
linear trend of the exponential of mutual information with 
number of bins.  Figure 1 shows a structure region between 
5 to 600 bins followed by a region where quantization noise 
due to the sampling resolution dominates and finally a 
region above 1400 bins where the dominant trend is 
attributable to the fact that the data record length is fixed.  
The estimates of MI are nondecreasing with number of 
bins; however the rate of increase will be less than that 
predicted by Lemma 1, giving a negative skew to the graph.   

Since the MI estimate is generated from relative frequencies 
of measurement values, we expect the qualitative and 
quantitative properties of the estimate to be robust to 
random measurement variation. Figure 3 confirms this 
while also demonstrating the consistency of the saturation 
effect and the well-known bias in estimates due to data set 
size. Mutual information estimates are proportional to the 
average number of occurrences per binning interval.  
Furthermore, the nature of the trend is not significantly a 
function of binning interval in this example where the data 
is randomly decimated from 6009 records to 2009.  It is 
interesting to note that the bias is downward rather than the 
upward bias predicted by the first order term of some 
expansions of the estimate (Treves and Panzeri, 1995). 

We would like to choose a binning interval that is in some 
sense optimal for MI estimates.  One strategy for 
determining an optimal bin width would be to search from a 
small number of bins upward while the skewness of the 
trend remains within a certain tolerance. This method is not 
generally practical as the smoothness—equivalently 
roughness—of the distribution is uncertain and probabilistic 
structure will potentially confuse the determination of the 
range. Rather than constructing a complicated set of 
statistical rules, it seems preferable to determine the 
feasible binning range by a more direct evaluation of the 
estimated MI per bins graph. 

Here we are concerned with data derived from a regularly 
sampled time series of a continuous process so that there is 
a regularity condition that can be combined with a 
computational constraint in the penalty function, R, of the 
penalized objective function, 

( )ˆarg maxoptbin I Rλ= −  

where λ is the penalty factor.  Following Scott (1992), we 
chose R to be a bias corrected estimator derived from a 
finite difference approximation of a composition of the 
sampling and continuous process functions, 
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Figure 4.  Roughness measure of torque distribution 

This objective function brings together measures of per 
record data coherence in the form of the mutual information 
estimate as well as the coherence of the measured data by 
value through the roughness factor.  Note that while the 
optimization function might be applied to categorical data 
with R serving as simply a computational constraint, the 
optimal bin width is more likely to be predetermined by the 
number of categories.  Naturally, the search for the optimal 
binning interval should be limited to a binning range that 
exhibits probabilistic structure and is below that range 
where binning saturation is dominant.  

Given a limited search interval determined by the user, our 
cost function is a more direct measure than that of Hall and 
Morton (1993) where the penalty factor is given as the data 
record length normalization of number of nonempty bins as 
it accounts for quantization noise due to sampling 
resolution as well.  As a function of bins, the trend in the 
roughness measure corresponds with the qualitative 
observations of the torque distribution (Figures 2,4).  The 
feasible range for the optimal bin search appears to be 5 to 
600 bins. Above this, the trend departs radically.   
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Figure 5.  Optimal penalized self-information and binnning 

for the torque distribution 



The self-information estimate of a record set is maximal 
when all occurrences are individually binned.  Note that the 
mutual and self-information estimates are invariant to the 
spatial ordering of the bins.  The weighting of the penalized 
MI estimate by roughness not only imposes a spatial 
ordering constraint on the distribution, it effectively 
transforms the binwidth variable into a sensitivity measure 
of average entropy per unit length.  Thus, the optimal 
binwidth can be considered to be a measure of local 
dependence in one variable or, alternatively, as a 
quantization of self-information over that dimension.  If in 
respect to this variable and binwidth there is a measurable 
dependence with a second variable, then within the region 
of the product space determined by the optimal binwidth of 
each dimension, the measurement pairs are dependent by 
the very same metric that is used to define dependence 
between variables.  Generically, for the event pair (ω1, ω2), 

( ) ( ) ( )1 2 1 2,P P Pω ω ω ω≠  
Conservatively, the measurement pairs must be on average 
separated by at least one optimal binwidth in each 
respective dimension to be considered independent. 

There is a substantial difference in the optimal binning over 
a small range of λ (0.0001-0.001) between which values the 
optimal binning is {485, 24} (see Figure 5).  We would like 
to choose the binning corresponding to a λ value that yields 
the greatest estimated MI provided the distribution is as 
smooth as should be expected.  Since binning above 400 is 
still rather suspect due to quantization noise (Figure 4), an 
optimal binning of 24 is chosen.  Additional smoothing 
comes at the expense of useful MI.  Our choice of 
weighting factor here is from a small set of feasible values; 
this is not expected to be the case in general.  Ultimately, 
the choice is also a function of other factors such as a priori 
knowledge of the data source and characteristics, capacity 
of computational resources, the problem to be addressed by 
the analysis, and other factors that may be difficult to 
quantify as a cost function.  The simplification of the only 
two competing terms is one way to easily incorporate these 
considerations in the input selection problem. 

Model Input Selection Algorithm 

It is not generally possible to find “root-n” consistent 
estimates of mutual information using histograms (Hall and 
Morton, 1993).  However, this is beside the point as our 
purpose here is to determine relatively which inputs are 
optimal to a certain acceptable numerical resolution.  The 
input selection problem is followed by a mapping problem 
which carries with it a degree of imprecision dependent on 
the model structure and independent of the particular inputs 
chosen.  Therefore, the problem of input selection should be 
cast in terms of what is computationally discernible rather 
than what is theoretically possible.  It is sufficient for our 
purposes that the manner in which we chose binning 
intervals for the various prospective inputs does not 
generate a bias in the evaluation procedure of making 
subsequent selections. 

The input selection process for model formulation begins 
with the determination of the optimal binning of the output 
self-information.  This interval is then fixed and the optimal 
binning interval of estimated mutual information is likewise 
determined for all input-output pairs and held constant in all 
joint MI comparisons.  The greatest estimated joint MI 
input set is selected as the space in which to cast the model 
construction problem of a fixed dimension.  Since joint 
estimates of MI are nondecreasing with dimensionality, the 
combinatorial input selection optimization process is 
amenable to branch and bounding algorithms which 
eliminates irrelevant inputs from the candidate input set 
systematically.  However, to reject inputs as irrelevant 
normally requires the knowledge of a level of confidence at 
which a certain candidate input is irrelevant.  Note that the 
dependency between input-output pairs is not the same as 
the dependency between samples.   

Bootstrapping Dependent Data for Model Formulation 

The bootstrap method of estimating confidence intervals, 
which is applicable to functionals of general probability 
distribution functions relies on i.i.d. resampling (Efron, 
1979).  By hypothesis, the data is generated from a 
deterministic process of unknown dimensionality, but with 
spatially local dependencies invariant with time.  As a result 
of the model input selection algorithm, the binning intervals 
relative to a maximally informational output interval have 
been determined. The interval of spatial dependency of the 
output may be taken as twice the binning interval of the 
output entropy.  Likewise, the input interval of spatial 
dependency is taken as twice that of the optimal binning 
interval of the mutual information estimate of that input.  
The upper bound of joint MI of a branch of the 
combinatorial search of inputs may be estimated as a 
summation of pairwise estimates with correction (Deignan, 
et al., 2003).  The confidence measure of rejection is 
obtained through a composition of distributions of pairwise 
MI bootstrap estimates.  
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Figure 6.  Histogram of bootstrap estimate of 

I(throttle,torque)  at Bins: (27, 24), 2000 estimates 
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Figure 7.  Statistical trends of bootstrap estimate of 

I(throttle,torque) by width of throttle stratification interval. 

The uncertainty in the estimate of MI relevant to input 
rejection is that which is a function of the uncertainty 
inherent in the data alone and not a function of the 
determinism of the underlying system.  Sampling to 
generate the analog of the distribution is typically done by a 
Monte Carlo scheme with replacement (Shao and Tu, 
1995).  Overlaying this we adopt a stratified sampling 
scheme without replacement based on the local spatial 
input-output dependency to produce the final sample on 
which the bootstrap estimate is calculated. Strata are thus 
defined as a rectangular region twice the width of the 
respective optimal bin width in that dimension.  In the case 
of our data, this resampling scheme produces an 
approximately Gaussian distribution of bootstrap estimates 
of I(throttle,torque) (Figure 6).  The choice of strata is 
verified for the throttle dimension by sweeping the 
bootstrap estimates as a function of stratification interval 
which shows that the standard deviation is approximately 
constant over twice the optimal bin width of 27 thereby 
indicating independence of the sampled data (Figure 7).   

The straightforward estimate of the confidence interval is 
taken as the percentile of bootstrap estimates beyond a 
certain threshold (Efron and Tibshirani, 1986).  This 
method is appropriate if the standard deviation of the 
bootstrap estimates is approximately constant with the 
mean and the distribution is roughly Gaussian after a 
monotonic transformation.  Conveniently, it is not 
necessary to compute this transformation—the confidence 
interval can be inferred directly by counting occurrences.  
As mentioned before, there may be a bias associated with 
the number of records used in the estimate.  Since the 
stratification process significantly reduces the data record 
length, we suggest normalizing the bootstrap estimates by 
the difference between the mean of the bootstrap estimates 
and the value of the full record length estimate.   

 

Conclusions 
In support of a systematic method of model input selection 
for finite data and irrelevant input rejection, we introduce a 
method for determining the optimal binning of histogram- 
based estimates of mutual information.  This optimal 
binning is adapted to a stratification interval from which 
independent and identically distributed samples are drawn 
for bootstrapped estimates of MI which in turn are used to 
develop confidence intervals for the MI estimate.  The 
methods yield consistent results with actual data from a 
diesel engine test.  
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