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Abstract— This paper presents a procedure for verifying
asymptotic bounds on the behaviors of a class of discrete-time
hybrid systems with disturbance inputs. First, an invariant
set satisfying the given asymptotic bounds is computed. Then,
conservative approximations of the reachable sets starting
from the set of initial states are computed until the target
invariant set is reached. Both steps in the procedure use LMI-
based algorithms for computing minimal-volume ellipsoidal
approximations to the actual reachable sets. The methods are
particularly useful for analyzing the asymptotic behaviors of
discrete-time sliding mode systems. The approach is illustrated
for two examples.

I. INTRODUCTION

This paper presents an approach to verifying properties of
discrete-time sliding-mode systems (DTSMSs) using LMI-
based methods for computing reachable sets and invariants
for hybrid dynamic systems. The objective is to demonstrate
that all trajectories of a DTSMS eventually satisfy specified
bounds for given sets of initial states and disturbance inputs.

Sliding-mode controllers are usually designed as
continuous-time sliding-mode systems (CTSMSs), but they
are implemented using computers, which are inherently
discrete-time [1], [2]. The problem with this approach is
that it is not easy to guarantee properties of a DTSMS that
results from the sample-data implementation of a CTSMS.
Indeed, sampled-data implementations of CTSMSs can even
be unstable [3], [4]. Consequently, the performance of
the discrete-time implementation of a CTSMS is typically
evaluated using simulation. Simulation studies cannot, how-
ever, verify the performance of the system for all possible
disturbance inputs and a continuous range of initial states.

Many papers deal with various aspects of DTSMSs [5],
[6]. We present a review of a representative subset of the
literature on the subject. Koshkouei and Zinober discuss
design of a DTSMS with disturbance inputs where the
system reaches and remains on the sliding surface [7].
Their work, however, considers only known disturbances.
Methods exist for designing DTSMSs that possess invariant
regions, which the system is guaranteed to enter [8], [9], but
these techniques do not apply to systems with disturbances.
Tang and Misawa present a method to construct a discrete-
time sliding mode controller that guarantees bounds on an
invariant the boundary layer [10]. The size of the boundary
layer depends on the constraints on the disturbance inputs.
This latter work is most closely related to the problem
considered in this paper, with the difference being that

we are interested in verifying asymptotic convergence to
a computed invariant set for a given DTSMS, rather than
synthesizing a controller to achieve a particular bounded
behavior.

In quasi-sliding-mode systems the state is guaranteed
to continually cross the switching surface but is not con-
strained to reach and remain on the switching surface [6].
Our work addresses quasi-sliding-mode systems, strictly
sliding-mode systems, and systems that do not satisfy
the conditions for either of these classes of DTSMSs,
such as systems that are discrete-time implementations of
continuous-time sliding mode designs.

Systems with sliding modes can be modelled as hybrid
systems. Here we consider the application of techniques
for computing reachable sets for hybrid systems to the
problem of verification of DTSMSs. Branicky shows that in
some cases Lyapunov techniques can be used to show that
switched systems are stable [11]. Hybrid system verification
techniques can be used to show that switching systems
satisfy safety properties [12], [13], [14], [15], but these
techniques do not perform well for systems that exhibit
Zeno-like behavior, such as sliding mode systems. Never-
theless, the reachable sets can be computed to find bounds
on the behavior over a finite time horizon. For example,
Villa et. al used the tool HyTech to verify a finite-time-
horizon specification for a sliding mode control system for
an automotive engine system [16].

In this paper, we propose a method to compute bounds on
the asymptotic behavior of LTI DTSMSs with disturbance
inputs by combining the computation of an invariant for
the system with an efficient method for computing a con-
servative approximation of the transient system behavior.
Ellipsoidal representations of the reachable sets and LMI
computations [17] are used in both parts of the procedure.
Our approach extends the methods developed by Kurzhan-
ski and Vályi [18] for computing reachable sets using
ellipsoids.

II. PROBLEM FORMULATION

The following class of systems includes DTSMSs.
Definition 2.1: A discrete-time switched-mode system

(DSS) is a tuple S = (I,X ,V,D, X0), where:
- I is the finite set of modes;
- X = {Xi}i∈I is a partition of the state space Rn (i.e.,

⋃

i∈I Xi = Rn and Xi

⋂

Xj = ∅ for i 6= j);



- V = {Vj}i∈I , is the collection of input disturbance
sets for each mode, where for each i ∈ I , Vi =
⋃

i∈{1,...,Ji}
V

j
i , with V

j
i ⊆ Rm for j = 1, . . . , Ji;

- D = {fi}i∈I is the set of dynamics associated with
each mode, where fi : Rn × Rm → Rn; and

- X0 ⊆ Rn is the set of initial conditions.
In this paper, we assume the continuous dynamics of the

DSSs are linear; that is, for each i ∈ I , there are matrices
Ai, Bi such that fi(x, v) = Aix + Biv.

Definition 2.2: A sequence of states (x0, x1, . . .) is a run
of a DSS S if x0 ∈ X0 and for all k ≥ 0, if xk ∈ Xi, then
xk+1 = fi(xk, vk) for some vk ∈ Vi. RS denotes the set
of all runs of S.

Given a DSS S, Reach(k) denotes the set of states
reached at time k along some run of S; that is,

Reach(k) = {x|x = xk for some (x0, x1, . . .) ∈ RS}.
We are interested in verifying that all runs for a given

DSS eventually satisfy given bounds specified by a target
set F ⊂ Rn. The following definition characterizes this
objective.

Definition 2.3: Given a DSS S and a set of states F ⊂
Rn, S us said to be uniformly asymptotically F-bounded if
there exists some k′ such that for all k ≥ k′, Reach(k) ⊆
F .

Remark 2.1: We note that a weaker form of asymptotic
boundedness (that is not “uniform”) would simply require
that all runs eventually enter and remain in F . Our compu-
tational procedure will terminate, however, only when all
runs enter the target set within some time k′. Therefore,
we consider the problem of verifying uniform asymptotic
boundedness.

We address the following problem in this work.
Problem 2.1: Given a DSS S and a region F ⊂ Rn,

determine if S is uniformly asymptotically F-bounded.
In applications, the set F represents bounds the system

must eventually satisfy after some transient period, even
when there are disturbance inputs. For DTSMSs, F will
typically be some a boundary layer around the switching
surface containing the equilibrium of the system without
disturbance inputs. In the remainder of the paper, we assume
a particular DSS S and a target set F are given. If S is
uniformly asymptotically F-bounded, we call it a-safe.

We use the following notation in our procedure to com-
pute the reachable states. For X ′ ⊆ Rn, V ′ ⊆ Rm, and
i ∈ I ,

Posti(X
′, V ′) , {x|x = fi(x

′, v′) for some
x′ ∈ X ′ and v′ ∈ V ′}.

Note that the Posti operator applies the dynamics for mode
i to all states in X ′ and inputs in V ′, even if these sets
include states and inputs that are not defined for mode i.
This freedom will be used to compute over approximations
to the reachable sets for the DSS.

To verify that a system is a-safe, we use the concept of
an invariant set.

Definition 2.4: [19] A set of states W ⊆ Rn is a
(positively) invariant set if

⋃

i∈I

⋃

j∈1,...,Ji

Posti(W ∩ Xi, V
j
i ) ⊆ W.

An ellipsoid E(xc, Q) ⊂ Rn is defined as

E(xc, Q) = {x : lT x ≤ lT xc +
√

lT Ql, ∀l ∈ Rn},
where xc ∈ Rn and Q ∈ Rn ×Rn is a symmetric, positive
semidefinite matrix.

The support function of a set X ⊆ Rn is defined as

ρ(l|X) = sup
x∈X

lT x,

where l ∈ Rn. The support function identifies a supporting
hyperplane of the set X for each direction vector l. The
the set of points x ∈ Rn for which lT x = ρ(l|X) is a
supporting hyperplane of X . Note that

ρ(l|E(xc, Q)) = lT xc +
√

lT Ql.

III. VERIFYING A DSS IS A-SAFE

In this section we propose a procedure for proving that
an DSS is a-safe. The technique we propose consists of
first computing an invariant set for the system and then
performing reachset computations. If the conservatively
estimated reachset at any time increment is contained within
the invariant set, the system is a-safe and the estimate of
the computed reachset contains all of the behaviors of the
system for all time.

A. Computing an Invariant

The following proposition allows us to construct an
invariant ellipsoid for DSS’s.

Proposition 3.1: Consider a DSS with ellipsoidal input
sets, V

j
i = E(vj

i , Q
j
i ) ⊆ Rm. If there exists a P such that

AT
i PAi − P < 0 for all i, then for all xc ∈ Rn, Inv =

E(xc, α
∗(xc)Q) is an invariant for system S, where

α∗(xc) = max{α(xc, i, V
j
i )|i ∈ {1, . . . , I},
j ∈ {1, . . . , Ji}} (1)

α(xc, i, V
j
i ) =

(‖Aixc + Biv
j
i − xc‖ + λmax

BiQ
j

i
BT

i

)2

ε2i
(2)

εi = min
lT l=1

√

lT Ql −
√

lT AiQAT
i l, (3)

where Q = P−1, and λmax

BiQ
j

i
BT

i

is the maximum eigenvalue

of BiQ
j
iB

T
i .

The proof of Prop. 3.1 uses the following lemma.
Lemma 3.1: For a DSS S, if Q is a solution to

AT
i PAi − P < 0, where P = Q−1, α̂ >

α, and Posti(E(xc, αQ), V j
i ) ⊆ E(xc, αQ), then

Posti(E(xc, α̂Q), V j
i ) ⊆ E(xc, α̂Q).

Proof: We prove by contradiction. Let
Posti(E(xc, αQ), V j

i ) ⊆ E(xc, αQ), α̂ > α, and assume



Posti(E(xc, α̂Q), V j
i ) * E(xc, α̂Q). Then there exists an l

such that ρ(l|Posti(E(xc, α̂Q), V j
i ))−ρ(l|E(xc, α̂Q)) > 0.

For this l,

lT (Aixc + Biv
j
i − xc) +

√
α̂

√

lT AiQAT
i l +

√

lT BiQuBT
i l −

√
α̂
√

lT Ql > 0. (4)

Since Posti(E(xc, αQ), V j
i ) ⊆ E(xc, αQ),

ρ(l|Posti(E(xc, αQ), V j
i )) − ρ(l|E(xc, αQ)) ≤ 0

lT (Aixc + Biv
j
i − xc) +

√
α

√

lT AiQAT
i l +

√

lT BiQuBT
i l −√

α
√

lT Ql ≤ 0. (5)

Multiplying (5) by −1 and adding it to (4),

(
√

α̂ −√
α)

√

lT AiQAT
i l −

(
√

α̂ −√
α)

√

lT Ql > 0,

(
√

α̂ −√
α)(

√

lT AiQAT
i l −

√

lT Ql) > 0,

(
√

α̂ −√
α)(ρ(l|E(0, AiQAT

i )) −
ρ(l|E(0, Q)) > 0. (6)

Because α̂ > α,

(
√

α̂ −√
α) > 0. (7)

It can be shown that since Q is a solution to AT
i PAi−P <

0, where P = Q−1, then E(0, AiQAT
i ) ⊆ E(0, Q), which

implies

ρ(l|E(0, AiQAT
i )) − ρ(l|E(0, Q)) ≤ 0. (8)

Relations (7) and (8) contradict (6), and so the assumption
is invalid.

�

Proof of Prop. 3.1: Let Q̂ = AiQAT
i and α = α(xc, i, V

j
i ).

E(0, αQ̂) ⊆ E(0, αQ) since αQ satisfies the Lyapunov
equation AT

i PAi − P < 0. The minimum distance of a
point in E(0, αQ̂) to a point on the perimeter of E(0, αQ)
is given by

ε̂i = min
lT l=1

ρ(l|E(0, αQ)) − ρ(l|E(0, αQ̂))

= min
lT l=1

√
α
√

lT Ql −√
α

√

lT Q̂l. (9)

It can be shown that ε̂i is given by

ε̂i = ‖Aixc + Biv
j
i − xc‖ + λmax

BiQ
j

i
BT

i

,

which is nonnegative since BiQ
j
iB

T
i is positive semidefi-

nite. Now consider

ε̃i = min
lT l=1

ρ(l|E(xc, αQ)) − ρ(l|Posti(E(xc, αQ), V j
i ))

= min
lT l=1

ρ(l|E(xc, αQ)) − ρ(l|E(Aixc, αQ̂)) −

ρ(l|E(Biv
j
i , BiQ

j
iB

T
i )) (10)

= min
lT l=1

lT (xc − Aixc − Biv
j
i ) +

√
α
√

lT Ql −
√

α

√

lT Q̂l −
√

lT BiQ
j
iBil. (11)

If ε̃i ≥ 0, then Post(E(xc, αQ), V j
i )) ⊆ E(xc, αQ). A

lower bound on
√

α
√

lT Ql − √
α

√

lT Q̂l is given by ε̂i.
It can be shown that a lower bound on the remaining
two terms is given by −ε̂i, which leads to ε̃i ≥ 0. Since
α∗(xc) ≥ α(xc, i, V

j
i ) for all i and V

j
i , by Lemma 3.1,

Post(E(xc, α
∗(xc)Q), V j

i )) ⊆ E(xc, α
∗(xc)Q) for all i and

V
j
i , which means that E(xc, α

∗(xc)Q) is an invariant of
system S.

�

Remark 3.1: LMI techniques can be used to compute a P

that satisfies the simultaneous Lyapunov stability equations
AT

i PAi − P < 0 [17]. Also, optimization (3) is a convex,
nonlinear program. Therefore, the invariant Inv, defined in
Prop. 3.1 can be found numerically for a given DSS.

To verify that a DSS S is a-safe using our procedure, two
conditions must be satisfied: an invariant set of S, Inv, must
be found that is contained in F , and the reachset estimate at
some time increment must be contained in Inv. To make it
easier to satisfy the latter condition, Inv should be as large
as possible while still being contained in F .

If the invariant provided by Prop. 3.1 is not contained
within F , the shrinking procedure shown in Fig. 1 is per-
formed to reduce the size of Inv. The shrinking procedure
requires a description of an DSS S and an invariant set for
S, Inv. Two operations are also required to perform the
shrinking procedure: ˆPost, which is defined in Sect. III-
B, and Wrap. Wrap( ˆPost, Inv) is the minimum volume
ellipsoid such that ˆPost ⊆ Wrap( ˆPost, Inv) ⊆ Inv,
which can be computed by solving an LMI. If such an
ellipsoid does not exist, Wrap( ˆPost, Inv) = Inv. Succes-
sive iterations of the outer loop are guaranteed to produce
invariant ellipsoids of monotonically decreasing volume. If
the shrinking procedure halts, a new invariant set Inv is
produced such that Inv ⊆ F .

If the invariant set Inv provided by Prop. 3.1 is strictly
contained in F , the size of Inv can be increased by
multiplying the configuration matrix by a number γ > 1.
By Lemma 3.1, if E(xc, Q) is an invariant for LSMS S,
then E(xc, γQ) is also an invariant for S. If F is given by
a set of linear constraints, then the maximum value that γ

can take is given by

γ = min

{

(d1 − C1xc)
2

C1QCT
1

, . . . ,
(dW − CW xc)

2

CW QCT
W

}

,



/* Invariant Inv of DSS system S is known */
While Inv * F

P̂ost := ∅
For each i ∈ {i, . . . , I}

For each V
j
i ∈ V̂i

P̂ ost := P̂ ost ∪ ˆPosti(Inv, V
j
i )

Compute E∗ := Wrap(P̂ ost, Inv)
/* E∗ is a new invariant of DSS system S */
Inv := E∗

Fig. 1. Invariant shrinking procedure: reduces the size of the invariant
given by Prop. 3.1.

where Inv = E(xc, Q), and for each w ∈ {1, . . . ,W},
Cw ∈ R1×n and dw ∈ R, with R = {x|Cwx ≤ dw,∀w ∈
{1, . . . ,W}}.

B. Reachset Computations

The procedure for determining if a DSS system S is a-
safe is shown in Fig. 2. The procedure uses an efficient
method for estimating the set of reachable states, which
involves merging sets of points together that are close to
each other, in some sense. This technique is related to the
systematic simulation scheme described in [20].

At the beginning of the kth iteration of the outer loop
of the DSS verification procedure, the union of the sets in
queuenew contains a conservative estimate of Reach(k). If,
at the beginning of the kth iteration, queuenew is empty,
the estimate of Reach(k − 1) is contained in Inv. In this
case, the system is a-safe, and the procedure halts.

The verification procedure requires three functions: ˆPost,
Dist, and Merge. The ˆPost function is an estimate
of Post, which is performed using ellipsoidal calculus
techniques developed by Kurzhanski and Vályi [18]. If
EX = E(xc, QX) ⊂ Rn and EV = E(vc, QV ) ⊂ Rm,

ˆPosti(EX , EV ) is given by

ˆPosti(EX , EV ) = E(Aixc + Bivc, Q̃),

and

Q̃ = (1 +

√

tr(BiQV BT
i )

tr(AiQXAT
i )

)AiQXAT
i +

(1 +

√

tr(AiQXAT
i )

tr(BiQV BT
i )

)BiQV BT
i ,

with tr(Q) being the trace of Q. ˆPosti(EX , EV ) is the
ellipsoid with the minimum sum of squares of semiaxes
that contains Post(EX , EV ).

The Dist function is some metric on ellipsoidal
sets. Intuitively, the metric should represent the dis-
tance between two sets. For our examples, we use
Dist(E(xc, Q), E(x′

c, Q
′)) = ‖xc − x′

c‖2. The constant c

must be selected as the merging criterion, such that if two

ellipsoids E and E ′ satisfy Dist(E , E ′) ≤ c, then sets E and
E ′ will be merged into one region.

Merge(E , E ′) computes the minimum volume ellipsoid
that contains the ellipsoids E and E ′ using an LMI based
optimization technique (see [17], page 43).

/* Invariant Inv of DSS system S is known */
queuenew := Inv

While queuenew 6= ∅
queue := queuenew

queuenew := ∅
/* Estimate Posti(E , V

j
i ) for each element

of queue and each relevant i and V
j
i */

For each E ∈ queue

For each i 3 E ∩ Xi 6= ∅
For each V

j
i ∈ V̂i

Compute Ê := ˆPosti(E , V
j
i )

/* If Ê is close to some element of
queuenew, merge the two sets */
If ∃Ẽ ∈ queuenew 3 Dist(Ẽ , Ê) ≤ c

Replace Ẽ in queuenew with Merge(Ẽ , Ê)

/* If Ê is not contained within Inv,
add Ê to queuenew */
Elseif Ê * Inv

Add Ê to queuenew

Fig. 2. DSS verification procedure: used to show that the reachset of a
DSS enters an invariant region.

IV. EXAMPLES

Consider the following example, DSS S1, from [3].

Ai =

[

1 .05
−.056 − .055k1i

1.2 − .055k2i

]

Bi =

[

0
.05

]

k11
· · · k14

= 138

k21
= k23

= 36

k22
= k24

= 14

X0 = E([3 0]T , I2×2)

Vi = {v|0 < v < 1},
where I2×2 is the two-by-two identity matrix. The partition
elements, shown in Fig. 3, are defined by x2 = 0 and the
zeros of the switching function s(x) = Cx, where C =
[20 1]. Fig. 3 shows a run of length 30, with x0 = (1, 1),
for system S1.

The target set is given by F = {x|Cx ≤
√

CCT ,−Cx ≤√
CCT }. Our verification procedure was performed on S1

in order to show that S1 is uniformly asymptotically F-
bounded.

The merging operation used in the verification procedure
(Fig. 2) addresses the problem of searching several reach-
set paths. Fig. 4 illustrates this issue for the S1 system.



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−15

−10

−5

0

5

10

15

x
1

x 2

X
1
 

X
2
 X

3
 

X
4
 

x
0
 

s(x)=0 

Fig. 3. DSS S1, with regions X1 · · ·X4, and a representative run of
length 30 with a particular disturbance input.

The Fig. shows the initial condition set X0 and the first
two estimations of the Post operator. The Post1(X0, Vi)
and Post2(X0, Vi) estimations are performed because X0

intersects regions 1 and 2. The two ellipsoidal regions are
merged together by computing an ellipsoid that contains
them. In doing so, only one region must be propagated
forward on the next iteration instead of two.
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Fig. 4. First two reachset computations and first merging operation for
system S1

An invariant for system S1 was found using Prop. 3.1.
The invariant was scaled up so as to be supported by the
error bounds for the system. The reachset computations then
proceeded from X0. After 8 iterations (.84 seconds)1 the
reachset was found to be contained within the invariant.
The estimated reachset contains the behaviors of the system
over an infinite time horizon. Fig. 5 illustrates the results.

1Computation times are given for a Pentium 4, 2.8 GHz processor
machine with 512 MB of RAM, running Windows XP.
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Fig. 5. Verification of system S1. Reachset estimation enters the invariant
region, and so S1 is uniformly asymptotically F-bounded.

As a second example, we consider a linearization of
the automotive engine air/fuel ratio (AFR) control system
described in [21]. The system is a DSS, S2, with

A1 = A2 =











0.945 0.0 0.0 0.0 0.0
0.0 0.990 0.004 0.0 0.0
0.0 −0.004 0.990 0.0 0.0
0.0 0.0 0.0 0.990 0.0
0.0 0.0 0.0 0.0 0.988











,

B1 = B2 =











0.0
0.027
0.012
−0.027

0.0











,

V1 = 1.0, V2 = −1.0,

X0 = E(x0, Q0),

where

x0 =













7.0
7.0
7.0
7.0
7.0













, Q0 = I5×5.

X1 = {x|CT x ≤ d}, and X2 = {x|CT x > d}, where
d = 0.044 and

C =













−3.070 × 10−4

0.0
0.0

−4.994 × 10−2

1.300 × 10−2













.

In this case, the switching function, s(x) = CT x − d, is
the deviation of the AFR from it’s nominal value of 14.681.
The target region is given by F = {x| |s(x)| ≤ 0.367}.
This corresponds to a 2.5% deviation of the AFR from
the nominal value. Our procedure was used to construct an
invariant that is contained in F . Then, the reachset from X0

was computed and was found to enter the invariant set. The



procedure terminated in 36.89 seconds after the 114th time
increment. Fig. 6 shows several projections of the reachset
estimates and the invariant ellipsoid.
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Fig. 6. Various projections of the verification of system S2

V. CONCLUSIONS

This paper presents a method for verifying asymptotic
bounds on the behaviors of discrete-time sliding mode
systems. The procedure is a based on a new method for
computing invariant sets for linear switched mode systems
with ellipsoidal inputs. New methods for making reachable
set computations more efficient are also introduced. The
invariant sets are used as the termination condition for the
reachable set computations to characterize the behaviors of
systems over an infinite time horizon.

The invariant construction presented in this work is not
guaranteed to find a satisfactory invariant. The invariants
produced using our procedure may be too large to be
useful, and the invariant shrinking procedure presented in
Sect. III-A may not terminate. One issue we are pursing
is identifying proper halting conditions for the invariant
shrinking procedure.

In order to successfully verify a system, the estimations
of the reachset must enter an invariant region. This may not
occur either because the system allows behaviors that never
enter the invariant region or because the conservativeness
of the reachset estimation introduces behaviors that are not
realizable by the system and do not converge to the invariant
set. To address the latter problem, an efficient method of
refining the reachset computations, to make the reachset
estimations less conservative, must be developed.

Currently, our merging conditions are based on heuris-
tics. We are investigating intelligent methods of selecting
merging conditions.
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