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Abstract— Although traditional measuring instruments can 

provide excellent solutions for the measurement of length, 
height, inside and outside diameters, etc., a coordinate 
measurement machine (CMM), at least in principle, can 
combine all these requirements in a single versatile 
instrument. As they can also be fully automated, linked to a 
CAD system and/or built into the flexible manufacturing cell, 
CMMs are widely used in today’s industry. The aim of this 
paper is to design a stable controller for a 3D coordinate 
measuring machine in the presence of uncertainties and 
unknown disturbances. To achieve this task, first a simplified 
model of the CMM will be obtained. After this modeling step, 
different types of adaptive control techniques are applied to 
get a suitable and efficient control system. The results are 
discussed in detail in order to give insight to some common 
problems in controlling CMMs. 

I. INTRODUCTION 

T HE main goal of this paper is to design a stable 
controller for a 3D coordinate measuring machine 

(CMM) in the presence of uncertainties and unknown 
disturbances [9, 11, 13]. The design of the CMM is similar 
to some of the machine tools like CNC’s with the 
difference being the presence of extra control inputs [1, 2, 
3]. The presence of these extra controls simplifies the 
problem and we could formulate it into a multi-input 
robotic control problem as discussed in [14]. The controller 
used is an adaptive one with the nonlinearities and the 
disturbances being lumped into just a single bounded term. 
In [14], problems of these types have been considered in a 
systematic way quite extensively when all the states are 
available for feedback. The structure of this controller has 
the advantage that, apart from giving good performance in 
tracking in spite of the presence of unknown disturbances 
and uncertainties, it also gives a robustly stable algorithm. 

As opposed to the CNC machines, the CMM problem is 
different in the sense that there are lesser number of control 
inputs. Thus, a full-state feedback adaptive controller is 
used to a linearized model of the CMM. 

If all the states are not available for feedback, then in 
general it is quite complicated to build an observer for a 

nonlinear system. However, in our case the system 
equations are linearized (except for the disturbance term) 
and we can therefore have an adaptive observer to estimate 
the unknown states (using an MRAC formulation). Using 
these estimates, one can then use essentially a similar 
controller structure as done when all the states are available 
for feedback. This constitutes some of the future work that 
needs to be accomplished.  

In the following sections, first the modeling of a CMM is 
performed. Then the control methodologies discussed 
above will be illustrated. The simulation results indicate 
that the controllers perform very well.  

II. MODELING OF THE COORDINATE MEASURING MACHINE 
The schematic diagram of the coordinate measuring 

machine is shown in Figure 1. Writing the mathematical 
model of the 3D model shown will be too cumbersome 
with very little benefit, if only we could get a simpler 
model that describes the essential features fairly accurately 
[1, 4, 8]. Since the arms of the CMM are supported on air 
bearings, the damping is reduced considerably. From the 
diagram and from the actual machine one observes that the 
dynamics in the y and z directions are negligible compared 
to that of x direction at least as a reasonable first 
approximation (this can be verified by getting the bode 
magnitude plot from the input of the motor on the y-axis to 
the measurement on the linear encoder on the x-axis which 
would be much below the 0 dB line). 
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Fig. 1.  Schematic diagram of CMM. 
 



 
 

 

The transmission of the torque from the motor to the 
machine is through a belt drive, which can be approximated 
as a spring with a damper. This is a good approximation at 
low frequencies while at high frequencies the above-
approximated stiffness of the belt in the longitudinal 
direction is less compared to the one that is perpendicular 
to this direction. This stiffness in the perpendicular 
direction is nonlinear and is not easy to model. 

 

On the other hand, the bandwidth of the machine is 
reasonably small (≈15 Hz) that this unmodeled nonlinear 
stiffness can be approximated as a bounded disturbance. 
Notice further that because of the large gear reduction, the 
nonlinearities and other unmodeled effects are largely 
diminished on the motor side.  

With all the above-mentioned realistic assumptions the 
coordinate measuring machine can be modeled as a two-
dimensional model. For this system, the main objective is 
to design a stable control algorithm to control the position 
of the tip of the coordinate measuring machine (CMM) and 
to track a specified trajectory despite the presence of 
unknown but bounded disturbances and parameter 
uncertainties. The approach taken for the solution of this 
problem is that of a robust adaptive sliding control 
technique [14]. 

Fig. 2.  Two-dimensional model of a CMM with the force F acting at Q. 

 
The case in which the spring constants k1 and k2 are not 

necessarily equal is considered. The number of degrees of 
freedom for this system is three and the generalized 
coordinates can be taken as x, θ  and x3 (or equivalently x1, 
x2 and x3).  III. DESCRIPTION OF THE MODEL The equations of motion for the system shown in    
Figure 2 can be written from the Lagrangian (or from 
Newton’s laws) as  

As mentioned in the previous section, the coordinate 
measuring machine is modeled as a simplified two-
dimensional model as shown in the Figure 2. In this model 
the z-axis is completely eliminated and it is represented on 
the x-y plane as masses M and m. The distance la of the 
mass m is a parameter of the problem and there is no 
dynamics involved along the y direction due to this mass m. 
However, note that both the inertia and the location of the 
center of mass of the combined system (including M and 
m) changes if la is changed. Therefore, it is concluded that 
la has significant effect on the dynamics of the system.  
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333 )( xcxmMxma −+−= τ                             (1)  
The unknown parameters for this system are the 

coefficients of the states and their derivatives. The 
following are the parameters defined in the present 
situation:  

The springs k1 and k2 represent the belts of the CMM. 
The mass m is attached to the rigid body M that is free to 
translate and rotate about its center of mass. 

 The force F at Q as shown in the figure represents the 
actuator. The linear encoders are present at A and at B. 
There is also a rotary encoder on the motor, which when 
translated into this model’s representation gives the 
measurement x3. This encoder is a collocated sensor while 
the linear encoder at either A or B is a noncollocated 
sensor. 

In formulating the equations of the model, the following 
assumptions are made:  
• The angle of rotation θ of the mass about the center of 

mass is small so that θθ ≈sin  and 1cos ≈θ . 
• The actuator moves horizontally and does not rotate. 

The input to the system is the force F applied on the 
actuator.  

 

   (2) 
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One can also represent (1) in the standard form as  
τKCH =++ qqq                   (3) 

where 

    [ ]( )aCM mImM += diagH  

         (4) 
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Now let’s choose the control law as 
 where Ĥ, Ĉ, and sqqq dr KKCHτ −++= ˆˆˆ K̂  

correspond to the estimates of the true values of H, C and 
K respectively, which constitute the parameters of our 
system, and Kd is a positive definite matrix. In addition to 
the control law if one defines a Y according to 

and  
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Here the position vector q is defined as . [ ]Txxq 3θ=
aqqq YKCH =++                    (9) The nonlinear stiffness and the disturbances are lumped 

into a single term and are represented as a bounded 
function  and the corresponding equation of 
motion is modified as  

),,( tqqd
one then obtains 

aqqq ˆˆˆˆ YKCH =++                   (10) 
As a result, 

),,( tqqqqq dτKCH +=++               (6) 
⇒       V aasas T

d
T ~ˆ)~( 1−+−= ΓKY                   (11) 

where Dtqq ≤2),,(d . 
If the adaptation law is chosen as , this implies 
that 

sa TΓY−=ˆ
In this paper, the goal, as mentioned earlier, is to design a 
stable controller that tracks a desired trajectory qd for the 
system represented by (3) and (6) for both the multi-input 
and single-input cases. These issues are discussed in the 
following sections in detail. 

0≤−= ssV d
T K                         (12) 

Now 
ssV d

T K2−=                        (13) 
is bounded because s and ã are bounded. Note that 

( )sas dKYH −= − ~1

0→

 (compare (8) and (11)) is also 

bounded. Therefore, V ,  and V  is bounded 
implies that V  as 

0≥ 0≤V
∞→t  from Barbalat’s lemma.  

IV. CONTROL PROBLEM 
First a stable adaptive controller (see [14] for example) 

that does perfect tracking for the system given by (3) when 
all the three control inputs are present and there is no 
disturbance will be designed. Then, the adaptive law will 
be modified to control the system given by (6), which will 
include disturbance terms. However, in this case it will be 
seen that perfect tracking is not achieved and there will be a 
dead zone due to the bounded disturbance. The above two 
methods are also useful in the case of CNC machines 
where there are typically many inputs. On the other hand, 
for the coordinate measuring machine there is only one 
input at x3 as shown in Figure 2. For these types of systems 
a sliding adaptive control technique is generally used. In 
the following subsections each of these approaches will be 
discussed in greater detail. 

Therefore  since K0→s
0

d is positive definite, which 
implies that ~ →x  as ∞→t , i.e., perfect tracking is 
achieved. In other words, in the absence of any 
disturbances, perfect tracking is achieved with the above 
choice of control and adaptive laws.  

The simulation results that illustrate the above 
theoretical results are described next.  

The values of the various parameters of the model are 
tabulated in Table 1. 

TABLE I  
PARAMETER VALUES FOR SIMULATION 

la 0.4 m c 50 N⋅s/m 

L 1.5 m c1 50 N⋅s/m 

M 200 kg c2  45 N⋅s/m 

m 100 kg k1  2000 N/m 

ma 50 kg k2 1500 N/m 

A. Full State Feedback Multi-Input Control in the Absence 
of Disturbances 

Let qd be the desired trajectory that we wish to track 
and qr be the reference signal vector. Then the error is 
given by q dqq −=~ . By letting λ  as an positive constant, 

a surface s=s(t) can be defined as . 
Here 

rqqqqs −=+= ~~ λ
qqdqr
~λ−=  is taken. Then . Now, let’s 

choose a Lyapunov function candidate V as 
rqq −=s

 
The controller is without the bounded disturbance. 

Therefore, the control and the adaptive laws mentioned 
earlier are used in the simulations. The results are shown in 
Figures 3 through 5. The desired trajectory chosen was 

( )T
d ttq 3sin04sin= , and the other parameters used in 

the simulations were ,       
λ = 50, and 

[ ]( )11,10,7,9,2,5,5,4,2,10diag=Γ
[ ]( )20,20,20diag=dK . Notice that there is 

very good tracking by the above choice of control and 
adaptive laws in all states. And the control input required to 
achieve good tracking is quite high. The parameters do not 
converge to their true values as expected because the input 
is not sufficiently rich or persistently exciting. 

aassV TT ~~
2
1

2
1 1−+= ΓH               (7) 

where aaa −= ˆ~  is the parameter error,  is the estimate 
of the true parameter a, and  is a positive definite matrix. 
Then 

â
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The control and the adaptation laws are chosen as 
sa dKYτ −= ˆ  and a , respectively where Y is 

defined as before in (9). 
∆−= sTΓYˆ

Then, 
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φ ssssV d
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d
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If one chooses IK dd k=  and define sgn(s) as a vector of 
the signs of the individual components, he/she obtains,  

 

Here the following are used: (i) the 1-norm of a vector is 
the sum of the absolute values of its components, and (ii) 
the 2-norm is the standard Euclidean norm. 

0≤−≤ ∆∆ sksV d
T               (18) 

Fig. 3.  Comparison of states (no disturbance). As in the previous section, one can observe that 

 

sksV d∆−≤ 2                      (19) 

is bounded since  and ã are bounded. Note that ∆s
( )d+KYH −= − sas d

~1

0≥V 0≤V

 is also bounded. Therefore, 

,  and V  is bounded implies that V  as 0→
∞→t  from Barbalat’s lemma. 

 

Fig. 4.  Error in tracking (no disturbance). 

 
In the following subsection, a stable controller is designed 
for the case with bounded disturbances. 

B. Full State Feedback Multi-Input Control in the Presence 
of Disturbance Fig. 5.  Control inputs (no disturbance). 

 The approach taken is similar to the previous case 
except that the Lyapunov function candidate is chosen as  

 

Since Kd is positive definite, one sees that from s∆, |s| ≤ 
φ. This implies that 1~ −≤ nx λφ  as ∞→t , i.e., a dead 
zone in adaptation and hence in tracking is present.  

aassV TT ~~
2
1

2
1 1−

∆∆ += ΓH         (14) 

where The simulation results with bounded disturbance are as 
shown in Figures 6 through 8. The parameters used in these 
simulations are the same as before except that the bound on 
the disturbance is chosen as D = 10. Furthermore, φ is 
chosen such that kdφ = D. Notice the increase in errors 
compared to the case with no disturbance. 
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with saturation function sat(·) defined component wise. 
Here φ is a positive scalar. Then 



 
 

 

 
 Fig. 6.  Comparison of states (with disturbance). 

Fig. 7.  Error in tracking (with disturbance). 
 C. Full State Feedback Single-Input Adaptive Control 

Define e = x−xd and 
Now let’s turn to the question of controlling the CMM 

when there is only one input F as shown in Figure 2. The 
equations of motion are essentially the same as (1) except 
that τ1 and τ2 are zero and τ3=F. 

rxxeees −=++= 22 λλ       (21) 

where . Now, eexx dr
22 λλ −−=

r
i

iir xhfauxhxhsh −−=−= ∑
=

5

1

    (22) As before, it is assumed that full state is available for 
feedback. The output of interest is x in this case. The 
additional assumption that simplifies the control structure 
design is when the transfer function from the input F to the 
output x is minimum phase. It is observed that with the 
nominal values chosen as given in Table 1, this minimum 
phase assumption is satisfied. 

 

The relative order of the transfer function from F to x is 
three (six poles and three zeros). Thus an approach similar 
to input-output feedback linearization can be used to 
express the states as the output and its derivatives. Since 
the relative order is three, it is seen that the output x needs 
to be differentiated three times to see the control input in 
the state equation. 

The task then is to design a stable adaptive controller for 
this third order system with the states x ,  and  and the 
minimum phaseness will guarantee global asymptotic 
stability of the internal dynamics which consists of the 
other three states.  

x x

The approach taken is again the one described in [14]. 
The state equations are given in the companion form as Fig. 8.  Control inputs (with disturbance). 

ufaxh
i

ii =+ ∑
=

5

1

          (20) 
 

Differentiating the first equation (having ) in (1) and 
substituting for  and  from the remaining two 
equations, one observes that the control input appears in 
this equation and can therefore be expressed in the form 
given in (20) for suitable values of h, a

x
θ 3x

i’s and fi. Here,      
u = F, is the control input. 

 If all the parameters are known, then one can choose a 
control law that gives a guaranteed convergence of s by 
defining u as 

ksxhfau r
i

ii −+= ∑
=

5

1

       (23) 

   This choice of control leads to the tracking error dynamics 
to 0=+ kssh

u =

. For the adaptive control, the control law is 

chosen as  where âksxhfa ri ii −+∑ =
ˆˆ5

1 i and  are the ĥ



 
 

 

estimates of the true parameters. The tracking error then 
becomes 
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Now by using Lemma 8.1 of [14], the adaptation law is:  
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This is obtained by taking the Lyapunov function candidate 
as 
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This then gives 2sk−=V . This choice of control and 
adaptive laws give global tracking convergence.  

The simulation results are shown in Figures 9 and 10. 
The gains for very good tracking are very high compared to 
the multi-input case and therefore the control inputs are 
also high. The desired trajectory chosen is xd = sin2(t).  

 
Fig. 9.  States and their errors. 

 
Fig. 10.  Control inputs. 

V. CONCLUSIONS 
In this paper, first the modeling of a coordinate 

measuring machine is considered and it is assumed that all 
the states are available for feedback. With this assumption 
an adaptive controller based on sliding control architecture 

is designed for the multi-input case as described in [14]. 
After this step, a robust controller in the presence of 
disturbances is designed. It is observed that the 
performance slightly diminishes in the second case. 
However, the controller assures robust stability.  

The simulations also indicate that when there is only one 
single input in the control structure, the performance is 
good only at the expense of very large control input 
signals.  
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