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Abstract— In integrated process networks, the presence of
large flowrates induces a time-scale separation of the dynamics
where the individual units evolve in a fast time scale while the
overall process evolves in a slow time scale. The slow dynamics
of such networks are modeled by a high index differential
algebraic equation system which, in the case of cascaded
control configurations, has a control dependent state-space.
We propose a minimal-order dynamic extension to obtain a
modified DAE system of index two with a control invariant
state-space that can be subsequently used as the basis for
controller design. We illustrate this method for a distillation
column with large recycle where the top and the bottom
compositions are the key outputs to control.
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I. I NTRODUCTION

Integrated process networks, i.e. process networks inter-
connected with large recycle of material and/or energy, are
the rule rather than the exception in chemical plants. The
behavior of such networks is typically highly non-linear due
to the feedback interactions induced by recycle. Effective
control of the network behavior is critical in the current
industrial environment which dictates frequent changes in
operating conditions and targets.

This work focuses on process networks with large ma-
terial recycle compared to throughput. Owing to the co-
existence of large and small flowrates, such networks typ-
ically exhibit dynamics in two distinct time scales. The
dynamics of the individual units evolve in a fast time scale
while the dynamics of the overall network or process evolve
in a slow time scale. The natural approach for the control of
such two time scale systems consists of deriving separate
controllers that address the control objectives for the fast
and slow time scales [4] and, very often, involves cascaded
structures where set points are used as manipulated inputs
in the slow time scale. In such cases, the underlying models
of the slow dynamics are high index differential algebraic
equation (DAE) systems for which the constrained state-
space depends explicitly on these manipulated inputs. Due
to this dependency, such DAE systems do not possess
a control-invariant state space, which precludes a direct
derivation of the underlying ODE representation. In [5], a

dynamic state feedback precompensator was proposed to
modify a general class of such DAE systems such that the
state-space of the resulting system is independent of the new
manipulated inputs. Such an approach relies, of course, on
the availability of state measurements, which clearly limits
its applicability.

In this paper, we show that structural rank properties of
these DAE systems allow the derivation of a minimal order
dynamic extension leading to a DAE with control invariant
state-space. The approach is applied to a high-purity distil-
lation column with large recycle flowrate. Control of high-
purity distillation column is a challenging problem owing
to highly non-linear behavior, ill-conditioning and a strong
coupling between the top and the bottom of the column
[3]. We focus in particular on a two-point control problem
in such a column, i.e. control of both the bottom and the
top compositions (known to be especially challenging), and
illustrate the appropriateness of the proposed method.

II. I NTEGRATED PROCESS NETWORKS

We consider the generic network shown in Fig.1, consist-
ing of N processes (e.g. reactors, separation systems) and a
material recycle stream for which the flowrateFR is much
larger than the feed flowrateF0.

Fig. 1. Process network

Defining the singular perturbation parameterε =
F0s/FRs, where the subscripts denotes steady state values,
the mathematical model describing the overall and compo-
nent material balances has the form [2]:

ẋ = f(x) + gs(x)us +
1
ε

b(x)gl(x)ul (1)

wherex is the vector of state variables (x ∈ X ⊂ IRn), us ∈
IRms is a vector of scaled input variables corresponding to
the small flowrates (F0 andFN ), ul ∈ IRml is a vector of



scaled input variables corresponding to the large flowrates
(FR andFj for j = 1, ..., N−1), b(x) is an×p full column
rank matrix andgl(x) is a p×ml matrix.

The system in Eq.1 exhibits dynamics in two time-scales,
albeit it is not in a standard singularly perturbed form.

In the fast time scale (τ = t/ε), in the limit ε → 0, the
dynamics of Eq. 1 take the form:

dx

dτ
= b(x)gl(x)ul (2)

Note that only the variablesul associated with the large
flowrates are available for control in this fast time scale.

In the slow time scale t, multiplying Eq. 1 byε and
considering the limitε → 0, since the matrixb(x) has full
column rank, the quasi steady state constraintsgl(x)ul =

0 are obtained. Definingz = limε→0
gl(x)ul

ε
, the slow

dynamics of the network take the form:

ẋ = f(x) + b(x)z + gs(x)us

0 = gl(x)ul (3)

The slow dynamics are thus modeled by a high index DAE,
since the solution for the algebraic variablesz cannot be
obtained directly from the algebraic equations.

For control purposes, letyl denote the output variables
that are associated with control objectives in the fast time
scale (e.g. holdups that need to be stabilized) andys

associated to control objectives in the slow time scale (e.g.
product quality). For simplicity, we consider a static state
feedback law,ul = αl(x) + βlyl

sp, whereyl
sp denotes the

set point for the outputsyl, to stabilize the fast dynamics
and induce a desired output response in the fast time scale.
Then, the DAE model of the slow dynamics of the network
takes the form:

ẋ = f(x) + b(x)z + gs(x)us

0 = gl(x)
[
αl(x) + βlyl

sp

]
ys = Hsx

(4)

where it is assumed that the outputsys are linear combina-
tions of the state variables. Note that, in the slow-time scale,
the small flowratesus are available as manipulated inputs.
Typically, some of the set points of the fast output variables,
yl

sp, are also used as additional manipulated inputs. Such
a cascaded control configuration becomes necessary when
the number of controlled outputsys in the slow time scale
exceeds the number of available variables inus. In the
case of such configurations, the algebraic constraints in the
DAE description of the slow dynamics explicitly involve the
manipulated input variables, which leads to a DAE model
with control-dependent state-space.

Without loss of generality, it can be assumed that the
ns first components of the vectoryl

sp correspond to the set
points used as additional manipulated inputs. After splitting
the matrixgl(x)βl in a similar way, the constraints of the
DAE model of Eq. 4 yield:

0 = gl(x)αl(x) +
(
gl(x)βl

)
2
yl

sp2
+

[ (
gl(x)βl

)
1

0
]
u

where u = [yl
sp1

T usT ] is the (ns + ms) vector of
manipulated inputs, so that the DAE model of the slow
dynamics takes the form:

ẋ = f(x) + b(x)z +
[

0 gs(x)
]
u

0 = gl(x)αl(x) +
(
gl(x)βl

)
2
yl

sp2
+

[ (
gl(x)βl

)
1

0
]
u

ys = Hsx
(5)

In typical examples of such networks (e.g. [2]) modeled by
Eq. 5, the following key rank properties can be verified:

• a) then× p matrix b(x) is full column rank,
• b) the (p × ns) matrix

[ (
gl(x)βl

)
1

]
is full column

rank,
• c) the jacobian of the vectorgl(x)αl(x) +(

gl(x)βl
)
2
yl

sp2
has full row rank.

Given the rank propertyb), the constraints can be multiplied
by a constant invertible matrix such that the DAE model of
Eq. 5 is written

ẋ = f(x) + b(x)z + g(x)u

0 =
[

k̄(x)
k(x)

]
+

[
Ĉ(x) 0

0 0

]
u

y = Hx

(6)

where the following rank properties are fulfilled:

• i) the n× p matrix b(x) is full column rank,
• ii) Ĉ(x) is an invertiblens×ns (with ns < p) matrix

that accounts for the use ofns of the set pointsyl
sp as

additional manipulated inputs,
• iii) the jacobian of the vector

[
k̄(x)T k(x)T

]T
is full

row rank.

We consider DAE systems in the form of Eq. 6. The
dependence of the state-space on the manipulated inputs
precludes a direct derivation of an expression for the
algebraic variables by differentiation of the constraints.
However, the rank conditions mentioned earlier allow us to
modify the DAE system into a new DAE system of index
two with a control-invariant state-space.

III. PRECOMPENSATOR DESIGN

For DAE systems of the form in Eq. 6, a natural approach
consists of designing a precompensator with the goal of
modifying the constraints that involve thens set points
used as additional manipulated inputs in order to obtain
a modified DAE system with a control-independent state-
space. The following proposition gives the general form of
such a precompensator:
Proposition: Consider a DAE system of the form in Eq. 6
where the rank conditionsi), ii), iii) are satisfied. Then the
following dynamic extension:

ẇ = v1

u =
[

Ins

0

]
w +

[
0 0
0 Im−ns

]
v

(7)

wherew is thens vector of the precompensator states yields
the desired index-two DAE system.
Proof:



The direct substitution of the dynamic extension of Eq. 7
into the DAE system of Eq. 6 yields the following DAE
system:

[
ẋ
ẇ

]
=

[
f(x)

0

]
+

[
b(x)
0

]
z +

[
g1(x)

0

]
w

+
[

0 g2(x)
Ins

0

]
v

0 =
[

k̄(x)
k(x)

]
+

[
Ĉ(x)

0

]
w

(8)
where the matrixg(x) is partitioned in then × ns and
n × (m − ns) matricesg1(x) and g2(x), respectively, as
g(x) = [ g1(x) g2(x) ]. The state-space of this modified
DAE system is clearly independent of the new manipulated
inputsv.

Upon one differentiation of the new constraints, the
matrix coefficient for the algebraic variables takes the
following form:

K =







∂k̄

∂x

∂k

∂x


 b(x)


 (9)

Given the propertiesi) andiii), it is clear that the matrixK
as the product of a full row rank matrix and a full column
rank matrix is invertible, which completes the proof.

The constraints obtained after one differentiation are now
solvable inz:

z = −
[
L

b(x)
k(x)

]−1 [
L

f(x)
k(x) + L

g1(x)
k(x) w

+L
g2(x)

k(x) v2 + C̄(x)v1

= R(x,w) + S1(x) v1 + S2(x) v2

where,

k(x) =
[

k̄(x)
k(x)

]
, C̄(x) =

[
Ĉ(x)

0

]

L
b(x)

k(x) =







∂k̄

∂x

∂k

∂x


 b(x)




(10)

A direct substitution of the solution forz in the differential
equation forx yields a state-space realization of the original
system. This is given in the following proposition:
Proposition: Consider a DAE system of the form in Eq. 6
for which the rank conditionsi), ii), iii) are satisfied,
subject to the dynamic precompensator of Eq. 7. Then the
dynamic system:

˙̄x = f̄(x̄) + ḡ(x̄)v
y = H̄x̄

(11)

is a state-space realization of the modified DAE system,
where x̄ = [xT wT ]T , the extended state vector, is con-
strained to evolve on the manifold defined by the constraints
in the DAE system in Eq. 8,v is the new manipulated input
vector, and

f̄(x̄) =
[

f(x) + b(x)R(x, w) + g1(x)w
0

]

ḡ(x̄) =
[

b(x)S1(x) b(x)S2(x) + g2(x)
Ins

0

] (12)

whereg(x) = [g1(x) g2(x)].

Note that the integrators were added only to the ma-
nipulated input channels associated with the matrixĈ that
accounts for the use ofns set points as manipulated inputs.
Moreover, the matrix coefficient forz takes the form in
Eq. 9 which does not involveu or any of its time derivatives,
so that we require only that the DAE system has a finite
index for some smoothu(t).

On the basis of this state-space realization, an output
feedback controller can be designed using existing tech-
niques for non-linear ODE systems.

IV. CASE STUDY

We consider a distillation column with N trays (numbered
from top to bottom), to which a saturated liquid containing
a mixture of three components with mole fractionsx1f , x2f

of components1 and 2 respectively, is fed at (molar)
flowrate F0 on tray Nf . The heavy component3 which
is the desired product is removed at the bottom from the
reboiler at a flowrateB, while the lighter components1 and
2 are removed at the top from the condenser at a flowrateD.
In this column, a large vapor boilupVB and liquid recycleR
are used compared to the feed, distillate and bottom product
flowrates, to attain a high purity of the desired component3
in the bottom product. The key outputs to be controlled are
the bottom purityx3,B , the top compositionx1,D, and the
two liquid holdupsMC andMR that behave like integrators.
Under the above assumptions, a standard dynamic model
of the column is obtained, which is given by the following



ODE system [6]:

Condenser




ṀC = VB −R−D

ẋ1,D =
VB

MC
(y1,1 − x1,D)

ẋ3,D =
VB

MC
(y3,1 − x3,D)

Tray i < Nf





ẋ1,i =
1

Mi
[VB(y1,i+1 − y1,i) + R(x1,i−1 − x1,i)]

ẋ3,i =
1

Mi
[VB(y3,i+1 − y3,i) + R(x3,i−1 − x3,i)]

Feed trayi = Nf





ẋ1,i =
1

Mi
[VB(y1,i+1 − y1,i) + R(x1,i−1 − x1,i)

+F (x1f − x1,i)]

ẋ3,i =
1

Mi
[VB(y3,i+1 − y3,i) + R(x3,i−1 − x3,i)

+F (x3f − x3,i)]

Tray i > Nf





ẋ1,i =
1

Mi
[VB(y1,i+1 − y1,i) + R(x1,i−1 − x1,i)

+F (x1,i−1 − x1,i)]

ẋ3,i =
1

Mi
[VB(y3,i+1 − y3,i) + R(x3,i−1 − x3,i)

+F (x3,i−1 − x3,i)]

Reboiler




ṀR = R− VB + F −B

ẋ1,B =
1

MR
[R(x1,N − x1,B)− VB(y1,B − x1,B)

+F (x1,N − x1,B)]

ẋ3,B =
1

MR
[R(x3,N − x3,B)− VB(y3,B − x3,B)

+F (x3,N − x3,B)]

whereMC , x1,D andx3,D are the molar liquid holdup and
mole fractions of components1 and 3 in the condenser,
Mi, x1,i and x3,i are the molar liquid holdup and mole
fractions of components1 and 3 in tray i, and MR, x1,B

andx3,B are the corresponding holdup and mole fractions
in the reboiler.

The presence of large vapor boilupVB and liquid recycle
R, and hence, large internal liquid and vapor flowrates in

the column, compared to the inlet and outlet flowrates from
the column, induces a time-scale separation in the column
dynamics with the dynamics of individual stages evolving
in a fast time scale, and the dynamics of the overall column
in a slow time scale [6]. Defining the singular perturbation
parameterε = Dnom/Rnom, and κ1 = VBnom/Rnom =
O(1), where the subscriptnom refers to nominal steady
state values andO(.) is the standard order of magnitude
notation, the process model, under standard modeling as-
sumptions, takes the general form of Eq. 1 [6], wherex
is the vector of state variables (compositions and holdups
in each stage),us = [D B]T ∈ IR2 is the vector of
manipulated inputs corresponding to small flowrates and
ul = [R̄ V̄B ]T ∈ IR2 is the vector of manipulated inputs
corresponding to large flowrates wherēR = R/Rnom and
V̄B = VB/VBnom.

In the fast time scale (τ = t/ε), in the limit ε → 0,
only the outputsul are available for control purposes. In
particular, the control of the liquid holdups in the condenser
and the reboiler (MC andMR) is easily achieved by using
simple proportional controllers:

R̄ = 1− K̄c1(MCnom −MC)
V̄B = 1− K̄c2(MRnom −MR)

In the slow time scale t, the dynamics take the general
form of Eq. 4. Only the small flowratesD and B affect
the slow dynamics. At this time scale, the outputs to be
controlled consist of the total liquid holdup that needs to
be stabilized as it is not affected by the large flowrates [6],
the top and the bottom compositions. Hence, we need an
additional manipulated input. A natural approach to this end
is a cascaded control configuration where one of the set
points for the condenser/reboiler holdups used in the fast
proportional control is treated as an additional manipulated
input variable. ConsideringMCnom as an additional manip-
ulated input, andMC + MR, x3,B , x3,D as the controlled
outputs, the DAE system for the slow dynamics can be
expressed in the form of Eq. 6:

ẋ = f(x) + b(x)z + g(x)u

0 =
[

k̄(x)
k(x)

]
+

[
Ĉ(x) 0

0 0

]
u

y1 = MC + MR = x1 + x2N+4

y2 = x3,B = x2N+6

y3 = x1,D = x2

whereu =
[

MCnom D B
]T

is the vector of manip-
ulated inputs,

Ĉ(x) =
[

K̄c1

]

k̄(x) =
[−1− K̄c1MC − κ1K̄c2MRnom + κ1(1 + K̄c2MR)

]

and the2N +2 linearly independent constraints that do not



involve the inputs are:

k(x) =




κ1V̄B(y3,1 − x3,D)
κ1V̄B(y1,1 − x1,D)

κ1V̄B(y1,i+1 − y1,i + x1,i−1 − x1,i)
κ1V̄B(y3,i+1 − y3,i + x3,i−1 − x3,i)

...




where1 ≤ i ≤ N , x1,i, x3,i are the liquid mole fractions of
1 and3 in tray i, andy1,i, y3,i are the vapor mole fractions
in tray i. It can easily be verified that the rank conditions
necessary for the application of the proposition are fulfilled,
so that the following precompensator of the form in Eq. 7
is obtained:

ẇ = v1

u =




w
0
0


 +




0 0 0
0 1 0
0 0 1


 v

The dynamic extension corresponds to adding an integrator
to the channel of the manipulated inputMCnom.

The resulting DAE system is used to derive a state-
space realization on the basis of which an output feedback
controller with integral action is designed. The relative
orders of the three outputs arer1 = r2 = r3 = 1
with respect to the new manipulated inputsv, so that the
controller is designed to enforce the response:

yi + γi
dyi

dt
= yi,sp , i = 1, 2, 3 (13)

wherey1,sp, y2,sp and y3,sp denote the set points for the
respective outputs. The controller consists of an input/output
linearizing state feedback controller coupled with an ’open-
loop’ observer and an external linear controller [1]. The
controller was tuned with the parametersγ1 = γ2 = γ3 =
20 min. The following table gives the nominal values of
the process variables at steady state.

Variable Description Value
B bottom product flowrate (mol/min) 50.0
D distillate flowrate (mol/min) 50.0
F feed flowrate (mol/min) 100.0

Kc1 proportional controller gain (min−1) 20.0
Kc2 proportional controller gain (min−1) 20.0
MC condenser liquid holdup (mol) 180.0
Mi liquid holdup on trayi (mol) 175.0
MR reboiler liquid holdup (mol) 200.0
N total number of trays 15
Nf feed tray 8
R liquid recycle flowrate (mol/min) 1000.0
VB vapor boilup flowrate (mol/min) 1050.0
α1 relative volatility of component1 1.5
α2 relative volatility of component2 1.3

Figures2, 3, 4, 5, 6 show the performance of this nonlin-
ear output feedback controller for the slow dynamics of the
column. We consider a2.7% increase in the bottom purity
x3,B , and a27% decrease in the top compositionx1,D in

the presence of2% error in α1, −3% and7% unmeasured
step disturbances in the feed compositionx1f and x2f , at
t = 15 min. Note that the increase in the bottom purity
and the decrease in the top composition have to lead to a
consistent steady-state. Clearly, the controller eliminates the
effect of disturbances and induces the desired input/output
behavior.
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