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Abstract— Given a complex first principles model of a pro-
cess, a strategy for model complexity reduction is developed,
such that the model obtained is suitable for process control.
The system is assumed to have a Volterra representation that
can be parametrized in terms of basis functions with fixed
poles. The approach taken consists on iteratively using system
identification techniques on the complex system model, while
at the same time optimizing the inputs used. The results are
tested on a copolymerization reactor example.
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I. INTRODUCTION

Detailed models for simulation purposes are often re-
quired in the process sector. They are usually based on
first principles from physical and/or chemical considerations
[1]. Once reliable parameters have been obtained, they have
good prediction capabilities. However, they tend to be too
complex for advanced process controller design, mainly
because they are not explicitly developed for this purpose.
On the other hand, simple models adequate for this may be
developed, but they tend to be too simplistic, not capturing
the complex process behavior correctly enough.

Given a simulation model for the process, this paper
proposes a procedure for reducing its complexity to obtain
a model that is simple enough to be used in process
controller design, yet still captures the complex behavior
of the system. The procedure combines several black-box
empirical modeling techniques [2], [3], [4] with a certain
knowledge of the plant. This allows to iteratively obtain
a model using dedicated and optimized “experiments” to
extract as much information as possible, based on the
gained knowledge of the plant at each step. This might
be unthinkable in the usual identification setting, where the
number of experiments is a main limitation and furthermore
signals are usually corrupted by noise.

The study is limited to systems admitting a Volterra
representation [5], which is a rather general system class
that fits the input/output behavior of many system processes.
Furthermore, model based controllers can easily be designed
based on this representation [6].

The procedure for complexity reduction combines fre-
quency domain identification in the presence of nonlin-
earities [4], the use of generalized orthonormal bases for
system representation [7], and forward selection orthogonal
least squares methods [8], [9]. Additionally, the procedure

is iterative, selecting both a set of candidate poles for the
bases as in [10] and optimizing the input for invalidation
of the current model during each iteration.

The next section reviews the discrete Volterra represen-
tation and its parametrization with respect to orthonormal
basis functions. Section III gives an overview of the linear
and nonlinear identification tools used, namely frequency
domain identification and orthogonal least squares tech-
niques. The complexity reduction procedure, together with
some of its practical aspects is presented in Section IV. It is
illustrated on the model of an exothermic copolymerization
reactor in Section V. Finally, some conclusions are given.
Throughout the text, R and C denote the real and complex
sets, respectively, 〈·, ·〉 denotes scalar product, ξ denotes the
complex conjugate of ξ, sets are denoted with “blackboard
bold” font, e.g. X or Z, while vectors and matrices are
denoted using boldface, e.g. y or Φ.

II. PROCESS ASSUMPTIONS

The aim is to obtain a (possibly nonlinear) model M that
is useful for process control design and satisfies

ŷ(t) = M[u(t)] ≈ S[u(t)] = y(t). (1)

This paper considers that M is discrete and, without loss
of generality, t ∈ N is taken as normalized discrete time,
i.e. t = τ/Ts, where Ts is the sampling period and τ is
physical time.

The input/output behavior of most control systems can
be sufficiently well approximated by a Volterra series [11].
For SISO systems the finite memory Volterra system repre-
sentation is given by [6]

ŷ(t) = y0 +
n∑

j=1

vj
M (t), (2)

with vj
M (t) = vj

k (u(t− 1), . . . , u(t−M)) the j-th order
terms with memory length M , i.e.

vj
M (t) =

M∑

i1=0

· · ·
M∑

ij=0

h(i1, . . . , ij)

j∏

s=1

u(t− is). (3)

It is a well known fact that fading memory systems [12]
may be approximated uniformly on bounded input sets by a
finite Volterra system with n and M sufficiently large. Finite
Volterra models are BIBO stable, have periodic responses



to periodic inputs without subharmonic generation, and can
exhibit input multiplicities, but no output multiplicities.
They also preserve asymptotic constancy, i.e. if u(t) → us

as t→ ∞, then y(t) also approaches a constant limit ys.
If the memory M is allowed to be infinite, then more

complex nonlinear behaviors may be achieved. Furthermore,
a very convenient parametrization in terms of generalized
orthonormal basis functions (GOBFs) [13] may be possible.
Given a set of poles {ξ1, ξ2, . . . , } satisfying

∞∑

k=0

(1 − |ξk|) = ∞, |ξk| < 1,

ξk ∈ C =⇒ ξk+1 = ξk,

(4)

the k-th GOBF is given by

Bk(z) =

√
1 − |ξk|2

z − ξk

k−1∏

i=1

1 − ξiz

z − ξi
. (5)

The basis {B1(z), B2(z), . . .} is complete in the Hardy
space of functions analytic outside, and square integrable
inside the unit circle, and the GOBFs are orthonormal, i.e.
〈Bi, Bi〉 = 1 and

〈Bi, Bj〉 =
1

2π

∫ π

−π

Bi(e
jω)Bj(ejω)dω = 0, i 6= j. (6)

These basis functions generalize the Laguerre basis (ξk = α
for all k), the Kautz basis (ξk = γ exp(jφ) for k = 1, 3, . . .)
and the finite impulse response basis (ξk = 0).

If the Volterra kernels h(·) vary regularly with respect
to (i1, . . . , ij), they can be expanded using a generalized
orthonormal basis as

h(i1, . . . , ij) =

∞∑

r1=1

· · ·
∞∑

rj=1

γ(r1, . . . , rj)

j∏

k=1

brk
(ik).

(7)
where br(t) is the inverse z-transform of Br(z), i.e.

br(t) = Z−1 {Br(z)} . (8)

This expansion is exact if the kernels h(·) are stably sepa-
rable and strictly proper [14], which basically means that
high order kernels can be expressed as linear combinations
of products of first order kernels and h(i1, . . . , ij) = 0 for
i1 · · · ij = 0. Substituting (7) in (3) and regrouping leads to

vj
∞(t) =

∞∑

r1=1

· · ·
∞∑

rj=1

γ(r1, . . . , rj)

j∏

k=1

ψrk
(t) (9)

where

ψrk
(t) =

∞∑

i=0

brk
(i)uk(t− i). (10)

Notice that (10) corresponds to the output of the GOBF
Brk

(z) to the input u(t). To get a finite dimensional model
the infinite sums in (9) must be truncated and only the first
q basis functions kept. Furthermore, since the products are

commutative, several terms can be combined to obtain the
more compact representation

ŷ(t) = y0 +

n∑

j=1

q∑

i1=1

· · ·

q∑

ij=ij−1

θi1,...,ij

j∏

k=1

ψik
(t), (11)

with the θ coefficients being linear combinations of γ
terms. Knowing the GOBF’s it is easy to identify the
parameters, since they enter linearly, while the signals ψi(t)
are the responses of linear filters and therefore can be easily
constructed. Note that (11) is nothing but a polynomial
function π : R

q → R whose argument is the vector of
filter outputs ψ(t), i.e.

ŷ(t) = π(ψ(t)), ψ(t) =
[
ψ1(t), . . . , ψq(t)

]T
. (12)

Compared to the finite Volterra series (2), this
parametrization usually requires only q � M basis func-
tions for comparable accuracy. For linear systems choosing
poles close to the dominating frequencies permits a more
compact representation [15]. A special emphasis is therefore
put in the procedure for adequately selecting these poles.

III. TOOLS FROM SYSTEM IDENTIFICATION

Two identification techniques are used in the iterative
procedure presented in Section IV: identification of a best
linear system in the frequency domain (see Step 1) and
forward selection using orthogonal least squares methods
(see Step 3). The former is used to select a set of candidate
poles to later build the GOBFs, while the latter is used for
structure selection and parameter estimation.

Consider as excitation signal a random multisine, i.e. a
periodic signal with fixed amplitude spectrum, but random
phase spectrum. Let U(k) and Y (k) be, respectively, the
measured input and output spectra with k the index for the
excited frequency line. Under the Volterra representation
assumption considered, the measured frequency response
function (FRF) Y (k)/U(k) will have the following decom-
position under ideal measurements [16]:

G(jωk) = G0(jωk) +GB(jωk) +GS(jωk). (13)

G0(jωk) corresponds to the underlying linear system and is
independent of the input signal spectrum and GB(jωk) is
the systematic nonlinear contribution, which depends on the
(deterministic) amplitude spectrum but not on the random
phases. The stochastic nonlinear contributions GS(jωk) are
such that YS(k) = GS(jωk)U(k) behaves like noise, un-
correlated with the input and with zero mean. Therefore, the
response of the nonlinear system (2) to a random multisine
can be regarded as the response through a related linear
dynamical system GR(jωk) = G0(jωk) + GB(jωk) plus
some nonlinear noise due to the stochastic contributions.

From the many available techniques for system identi-
fication in the frequency domain (see [4] and the refer-
ences therein), subspace algorithms [17] seem to be more
adequate for the proposed approach. They produce a state
space realization (Â, B̂, Ĉ, D̂) for the fit Ĝ(z) to the FRF



G(jωk). A consistent estimate of GR(jωk) with respect
to the nonlinear noise is guaranteed as the number of
realizations of the same random multisine tends to infinity,
while the dynamic order must not be fixed a priori. This is
important in the case studied, because the eigenvalues of Â
constitute the significant candidate poles that will be tested
later in the procedure.

Although (11) is linear in parameters, it is clear that even
for a relatively small q, the number P of parameters can
become quite large, namely P =

(
n+q

q

)
, so a structure

selection is desirable. Note that (12) can be written as

y(t) = ϕT (t)θ + e(t) (14)

where θ ∈ R
P is the parameter vector, ϕ ∈ R

P is the
regressor vector, and e(t) stands for the modeling error.
Note that regressors ϕj(t) are actually products of the
outputs ψi(t) from the GOBF filters (see (10) and (11)).
The aim of structure selection is to keep only a reduced
number of significant regressors. Forward selection schemes
using orthogonal least squares techniques may be suitable
to accomplish this task [9].

Given N time domain samples of the output

y =
[
y(1), y(2), . . . , y(N)

]T
, (15)

equation (14) can be written as

y = Φθ + e = Wg + e (16)

where the t-th row of the N × P matrix Φ corresponds to
the regressor ϕT (t). Furthermore it has been assumed that
the matrix Φ is decomposed as

Φ = WR, g = Rθ (17)

where R ∈ R
P×P is an upper triangular matrix and

W = [w1, . . . ,wP ] is a matrix with orthogonal columns.
It is quite easy to see that the least squares solution ĝ

to (16) satisfies ĝi = wT
i y/w

T
i wi and furthermore each

orthogonal regressor contributes independently to reducing
the quadratic cost function eTe/yTy with e = y − ŷ, i.e.

J =
eTe

yTy
= 1 −

P∑

i=1

wT
i wi

yTy
ĝ2

i . (18)

By assuming that originally the columns of Φ had been
permuted such that the first ρ columns correspond to the
most significant regressors in this sense, a reduced model
is given by

ŷ = W̃ ϑ̃ and ϑ̃ = R̃θ̃ (19)

where W̃ comprises the first ρ columns of W and R̃

is defined accordingly. Orthogonal least squares forward
selection is accomplished by performing the orthogonaliza-
tion and the implicit column permutations of Φ step by
step. There are different techniques and selection criteria
available [8]. For example, the D-LROLS algorithm [9]
combines the modified Gram-Schmidt procedure with local
regularization and a D-optimality design.

IV. PROCEDURE FOR COMPLEXITY REDUCTION

The proposed methodology consists of two nested iter-
ation loops. The outer loop proposes a set of candidate
poles for a generalized orthonormal basis function (GOBF)
parametrization of the Volterra representation, while the
inner loop is used to select amongst the candidate poles
only those which contribute significantly to improving the
model, while at the same time selecting a sparse model
structure.

Let the model at iteration κ be represented by M(κ). The
outer loop starts with κ = 1, a nonlinear model M(0) = 0,
an empty set of GOBF poles X

(0) = ∅, and an infinite cost
J (0) = ∞ (iterations are denoted by parenthesized indices).
Consider the error system to be E = S −M(κ−1).

Step 1. Fit a linear system ĜE(z) to the measured
frequency response function GE(jωk) of the error system
E . Collect its poles in the set Z

(κ) = {ζ1, . . . , ζr}.
Step 2. Design an optimized control relevant input

u(κ)(t), which tries to invalidate the current model M(κ−1)

with respect to S and obtain the output signal y(κ)(t) =
S[u(κ)(t)]. Up to here there also exists a set of selected
GOBF poles X

(κ−1) = {ξ1, . . . , ξq}.
Step 3. Sequentially modify the set X by adding one

of the candidate poles ζj ∈ Z at a time and building new
models M until no significant increase in performance is
noticed. After this step the set X

(κ) has been redefined, a
new model M(κ) has been obtained, and there is a cost
J (κ) associated with it.

Step 4. If the new model has J (κ) ≥ J (κ−1) or M(κ) ≡
M(κ−1), then stop. Otherwise, either repeat Step 3 with
other design criteria, e.g. a higher nonlinear degree, or
repeat from Step 1, i.e. try to add more basis functions.

The inner loop concerns Step 3 of the outer loop and
starts defining Z = Z

(κ), Xk = X
(κ−1)
k , and Jmin = J (κ−1),

and generating ψ(t) as in (12) for the given input u(t). The
basic idea at each iteration is to build r candidate models
Mj , j = 1, . . . , r by considering that X = {ξ1, . . . , ξq} is
augmented with the candidate pole ζj and then selecting
one of these models. It consists of the following steps.

Step 3a (data generation). For each pole ζj ∈ Z, j =
1, . . . , r, build

Bj(z) =

√
1 − |ζj |2

z − ζj

q∏

k=1

1 − ξkz

z − ξk
. (20)

Then generate outputs ηj(t) as responses of Bj(z) to the

input uk(t) (see (10)), and build ψj(t) =
[
ψT (t), ηj(t)

]T
.

Step 3b (structure selection) Use each data pair(
ψj(t), y(t)

)
to select a sparse model Mj , e.g. using the

D-LROLS algorithm [9], together with a corresponding
performance index Jj .

Step 3c (pole selection). If Jj∗ < Jmin with j∗ =
arg min Jj then redefine X and ψ(t) as X ∪ {ζj∗} and
ψj∗(t) respectively. Furthermore define Jmin = Jj∗ , and
M∗ = Mj∗ and return to Step 3a to test whether another
candidate pole should be included. On the other hand, if



Jj∗ ≥ Jmin then end this loop by defining X
(κ) = X,

M(κ) = M∗, and J (κ) = Jmin.
In the following, the previous steps will be explained

with more detail. Given a model M(κ−1) and the complex
simulation model S an error system E (κ) can be defined,
such that its output e(κ)(t) for some input function ū(κ)(t)
is given by

e(κ)(t) = E(κ)[ū(κ)(t)] = S[ū(κ)(t)] −M(κ−1)[ū(κ)(t)].
(21)

Since the system S is assumed to have a Volterra rep-
resentation, then so does the error system E (κ) because
M(κ−1) is a Volterra model. Therefore the result (13) can be
applied to find the best linear approximation during Step 1.
The input ū(κ)(t) is thus designed as a random multisine
with odd frequency components in order to minimize the
effect of even nonlinearities when measuring the FRF [16].
The effect of the “nonlinear noise” can be attenuated by
averaging over several realizations of ū(κ)(t). The subspace
algorithm [17] uses this FRF frequency domain data to
generate a state space realization, from which the candidate
poles in Z

(κ) are obtained as the eigenvalues of the dynamic
matrix Â.

Once a set of candidate poles has been determined,
an important feature of the procedure is designing the
input u(κ)(t) to be used in the next structure identification
and pole selection procedure. Assume that the previous
model M(κ−1) is the best possible sparse model for a
GOBF-Volterra structure using a certain set X

(κ−1) of basis
functions. If the complex system S can truly be represented
by a GOBF-Volterra structure (2) with (9), then the error
system E(κ) would comprise the remaining terms that are
not explicitly considered in M(κ−1). This error system
is precisely what is identified during Step 3, so an input
signal that is adequate for this purpose is needed. This is
done by invalidating the current model to uncover as much
unmodeled dynamics as possible. The input is therefore
chosen as that which maximizes the output of such an
error system. Multisines are again considered, given their
reported success for nonlinear Volterra system identification
[18].

Assume a frequency grid with F lines has been chosen.
Then the input signal u(t) can be parametrized by its
(complex) input spectrum U(k). The optimization problem
to solve is

U∗(k) = arg sup
U(k)∈U

∥∥∥
(
S −M(κ−1)

)
[u(t)]

∥∥∥
2

(22)

whereby U refers to the set where the input spectrum is
to be constrained and ‖ · ‖ is some norm. To solve this
constrained optimization problem only a finite number of
elements in the set U is considered and the sup-operator is
replaced by a max-operator. Note, however, that this may
not be an easy task and may prove to be time consuming.

Given some X and the input function u(κ)(t), it is not
difficult to obtain the filter outputs ψ(t) by simulation. The

same happens for obtaining ηj(t) for each candidate GOBF
filter Bj(z) for each pole in Z. For N samples the output
vector y and r regressor matrices Φj are built as in (15).

There are many reported techniques for structure selec-
tion [19]. Some stem from regression analysis, while others
are based on more practical aspects. When the number of
candidate regressors is large, as will be usual in this case,
forward selection schemes appear to be more adequate. The
orthogonal least squares techniques can be combined with
an information criterion to stop adding regressors to the
structure, e.g. Akaike’s well known criterion (AIC) [20].

Least squares methods deliver unbiased model estimates
if the considered structure corresponds to the true system
structure up to some normally distributed error with certain
statistical properties. However, this is often not the case
when identifying nonlinear models, so in the end the
obtained model might indeed conform very well to the
particular data set with which it was obtained, but not
to other distinct data. Given the possibility of simulation,
the structure selection and parameter estimation carried on
during Step 3b of the procedure can be reinforced with
cross-validation with other data sets.

It has been observed that forward selection techniques
tend to include spurious regressors [21]. It is likely that if
instead of just one data set (Φ,y), several data sets are
available, say (Φ`,y`) for ` = 1, . . . , L, then the structure
selection procedure can be made more efficient. A simplistic
way of doing this is to keep only those regressors that repeat
themselves on the identified structures corresponding to
each data set. Another way is to test whether two regression
equations are statistically equal by testing the hypothesis
that some of the corresponding regressor coefficients are
the same for both data sets.

V. EXAMPLE

The procedure is illustrated on the model of a continuous
copolymerization reactor with exothermic kinetics. The
model has 15 states, 6 inputs u, and 7 outputs y [22]. The
inputs are the feed rates of the two monomers vinyl acetate
(u1) and methyl-methacrylate (MMA) (u2), the transfer
agent acetaldehyde (u3), and the inhibitor m-dinitrobenzene
(u4), plus the coolant (u5) and feed (u6) temperatures. The
outputs are the effluent compositions of the two monomers
and the solvent (benzene) in the separator (y1-y3), the
reactor temperature (y4), the polymer production rate (y5)
the copolymer composition (y6), and its intrinsic viscosity
(y7). The main nonlinearity of the system is due to the
temperature dependent kinetics of Arrhenius type.

Although the system is MIMO, to consider it as a SISO
system, it was initially set to the operating conditions

us =
[
3, 0.3, 0.25, 0.01, 373, 353

]T
,

ys =
[
0.1455, 7.786, 1.8219, 380, 0.412, 0.543, 27.1

]T
.

and then only one input/output pair was considered. That
is, only one input was made time-varying, while the others



were kept at their operating condition values us. Just one
output was observed. The rates u1-u4 and y5 are given
in [kg/min], temperatures u5,u6 and y4 are given in [K],
effluent compositions y1-y3 in [kmol/m3], intrinsic viscosity
in [l/kg] and the copolymer composition is dimensionless.

For illustration purposes the input/output pairs (u2, y7)
and (u4, y5) were considered because previous testing de-
tected the most sensitivity with these pairs. In both cases
structure selection was enhanced by considering several data
sets.

For the pair (u2, u7) the sampling time was set to
Ts = 10 [min] and input deviations of ±50% from u2,s =
0.3 [kg/min] were used. Prior to Step 1 a maximal frequency
fmax = 256f0 for the multisines was first experimentally
determined to avoid aliasing due to harmonic generation and
afterwards F = 256 frequency lines were always used. The
procedure was tested several times and consistently after
only two iterations a model with only 4 real poles was
obtained. These were, for example:

X = {0.9598, 0.8483, 0.8613, 0.9641}. (23)

The resulting model had the quadratic structure

ŷ(t) = ψT (t)θ =




ψ1(t)
ψ2(t)

ψ1(t)ψ3(t)
ψ2

2(t)
ψ2(t)ψ4(t)
ψ2

3(t)
ψ2

4(t)




T 


5.8209
2.7152

−2.2462
1.1000

−1.4406
2.2384
0.6363




(24)

with ψi(t) the output of the corresponding GOBF. After
identification, the model was tested on a completely dif-
ferent validation input, namely a random step input [23].
The output of both the complex simulation model and the
model (24) is shown in Fig. 1, together with the percentage
deviation error and the input used.

For the input/output pair (u4, y5) the sampling time was
set to Ts = 1 [min] and input deviations of ±15 [K] from
u4,s = 373 [K] were used. Again the procedure was tested
several times and again two iterations were enough to obtain
a satisfactory model. The following 3 GOBF poles were
obtained:

X = {0.9152 ± j0.0271, 0.8832}, (25)

and the model resulted with the following cubic structure:

ŷ(t) =




ψ1(t)
ψ2(t)
ψ3(t)
ψ2

1(t)
ψ1(t)ψ2(t)
ψ2

2(t)
ψ2(t)ψ3(t)
ψ2

3(t)
ψ3

2(t)
ψ2(t)ψ

2
3(t)




T 


2.5679 × 10−3

0.2685 × 10−3

0.0567 × 10−3

4.5304 × 10−6

−13.636 × 10−6

−5.3173 × 10−6

10.462 × 10−6

2.3806 × 10−6

0.0681 × 10−6

−0.0166 × 10−6




(26)
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Fig. 1. I/O pair (u2, y7). Top: modeling error. Middle: outputs of
complex simulation model (dashed) and reduced complexity model (solid).
Bottom: random step input.

with ψi(t) the output of the corresponding GOBF. This
model was tested on a random step input and the results
are shown in Fig. 2,
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Fig. 2. I/O pair (u4, y5). Top: modeling error. Middle: outputs of
complex simulation model (dashed) and reduced complexity model (solid).
Bottom: random step input.

VI. CONCLUSIONS

A procedure for complexity reduction combining fre-
quency domain linear identification, constrained input op-
timization techniques, and substructure selection and pa-
rameter estimation methods has been proposed. Testing the
procedure on a realistic example shows promising results



and further investigations are under way to refine it and
extend it to MIMO systems, as well as testing it on more
complex nonlinear systems.
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