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Abstract— This paper presents a nonlinear control system
that is applicable to stable and unstable processes, whether
non-minimum- or minimum-phase. The closed-loop stability
is ensured by forcing every process state variable to follow a
desired linear response. This approach results in a nonlinear
state feedback that induces approximately linear responses to
the state variables. The control system includes the nonlinear
state feedback and a reduced-order nonlinear state observer.
The application and performance of the control system are
shown by implementing it on a chemical reactor with multiple
steady states. The control system is used to operate the
reactor at one of the steady states, which is unstable and
non-minimum-phase. The simulation results show that the
closed-loop system is asymptotically stable for all physically-
meaningful initial conditions.

I. INTRODUCTION

During the past 20 years, many advances have been made
in nonlinear model-based control, mainly in the frame-
works of model-predictive control, differential-geometric
control, and Lyapunov-based control. In model-predictive
control, the controller action is the solution to a constrained
optimization problem that is solved on-line. In contrast,
differential-geometric control is a direct synthesis approach
in which the controller is derived by requesting a desired
closed-loop response in the absence of input constraints.
In other words, model-predictive control involves numer-
ical model inversion, while differential-geometric control
involves analytical model inversion. In model-predictive
control, non-minimum-phase behavior is handled simply by
increasing prediction horizons, but in differential geometric
control, special treatment is needed. In Lyapunov-based
control, the asymptotic decay of a norm of the state vari-
ables is ensured by the use of a proper Lyapunov function
in the controller design.

Differential-geometric controllers were initially devel-
oped for unconstrained, minimum-phase (MP) processes.
During the past two decades, these controllers were ex-
tended to unconstrained, non-minimum-phase (NMP), non-
linear processes. A detailed review of these methods can be
found in Kanter et al. (2002); for brevity these methods are
not reviewed here.
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This work essentially uses the same concept of shortest-
prediction-horizon continuous-time model predictive con-
trol that was employed in (Soroush and Soroush, 1997)
and (Kanter et al., 2002). However, it is different in several
aspects. In (Soroush and Soroush, 1997), a nonlinear state
feedback was derived by minimizing a function norm of
the deviations of controlled outputs from linear reference
trajectories with orders equal to the (output) relative orders.
The function norm was defined over very short time hori-
zons. The resulting state feedback can be used for operating
processes at minimum-phase steady states and is input-
output linearizing in the absence of constraints. In (Kanter
et al., 2001), a nonlinear state feedback that could be
used for operating processes at stable non-minimum-phase
and minimum-phase steady states, was developed. It was
derived by minimizing a function norm of the deviations
of controlled outputs from linear reference trajectories with
orders higher than the (output) relative orders. The function
norm was again defined over very short time horizons.
The resulting state feedback is approximately, input-output
linearizing in the absence of constraints when the desired
steady state is non-minimum-phase.

The state feedback presented in this paper can be used
to operate processes at stable and unstable steady states,
whether minimum- or non-minimum-phase. It is derived
by minimizing the sum of the squared deviations of the
state variables from their desired linear responses that have
orders higher than the state-variable relative orders. The
resulting state feedback approximately induces linear re-
sponses to the state variables, in the absence of constraints.
The control system includes the nonlinear state feedback
and a reduced-order nonlinear state observer.

This paper is organized as follows. The scope of the study
and some mathematical preliminaries are given in Section 2.
Section 3 presents the nonlinear feedback control method.
The application and performance of the control method are
illustrated by numerical simulation of a chemical reactor
with multiple steady states in Section 4.

II. SCOPE AND MATHEMATICAL PRELIMINARIES

Consider general class of multivariable processes with a
mathematical model in the form:

dx

dt
= f(x, u), x(0) = x0

y = h(x)

}
(1)

where x = [x1 · · ·xn]T ∈ �n is the vector of state
variables, u = [u1 · · ·um]T ∈ �m is the vector of ma-
nipulated inputs, y = [y1 · · · ym]T ∈ �m is the vector



of controlled outputs, f(x, u) = [f1(x, u) · · · fn(x, u)]T

and h(x) = [h1(x) · · · hm(x)]T are smooth. The relative
order (degree) of a state xi, is denoted by ri, where ri

is the smallest integer for which ∂[drixi/dtri ]/∂u �= 0.
The following assumptions are made: (a) the relative orders
r1, · · · , rn are finite and (b) the process is controllable and
observable locally (around the nominal steady state).

For a given setpoint value, ysp, the corresponing steady
state values of the state variables and manipulated inputs
satisfy:

0 = f(xss, uss)
ysp = h(xss)

These relations are used to describe the dependence of a
nominal steady state, xssN , on the setpoint: xssN = F (ysp).

Let H(x) = x, and define the following notation:

H1
i (x) =

dxi

dt
...

Hri−1
i (x) =

dri−1xi

dtri−1

Hri

i (x, u) =
drixi

dtri

Hri+1
i (x, u(0), u(1)) =

dri+1xi

dtri+1

...

Hj
i (x, u(0), u(1), . . . , u(j−ri)) =

djxi

dtj

(2)

where j ≥ ri and u(�) = d�u/dt�.

III. NONLINEAR CONTROL METHOD

A state feedback that induces approximately linear re-
sponses to the state variables, is first derived. A reduced-
order state observer is then designed to reconstruct unmea-
sured state variables from output measurements. To add
intgeral action to the state feedback-state observer system,
a dynamic system is finally added.

A. State Feedback Design

Let us request a linear response of the following form
for each of the state variables:

(ε1D + 1)p1x1 = xssN1
...

(εnD + 1)pnxn = xssNn

(3)

where D = d/dt, and ε1, · · · , εn are positive constants that
set the speed of the state responses. The state responses in
(3) can be achieved only when m ≥ n. However, since in
many processes m < n (there are more state variables than
manipulated inputs), the state responses in (3) can rarely be
achieved. To relax the requirement of achieving the linear
state responses, let us request state responses that are as
close as possible to the the linear ones described by (3). To
derive a state feedback that can achieve the relaxed state

response requirement, we solve the following constrained
optimization problem at each time instant:

min
u

n∑
i=1

wi

[
(εiD + 1)pixi − xssNi

]2
(4)

subject to:
u(�) = 0, � ≥ 1,

where w1, · · · , wn are adjustable positive scalar weights
whose values are set according to the relative importance of
the state variables: the higher the value of wi, the smaller
the xi response from the desired linear reaponse for x i.

For a process in the from of (1), the optimization problem
in (4) takes the form:

min
u

n∑
i=1

wi

[
xi +

ri−1∑
�=1

ε�
i

(
pi

�

)
H�

i (x)

+
pi∑

�=ri

ε�
i

(
pi

�

)
H�

i (x, u, 0, · · · , 0) − xssNi

]2
(5)

In the case that m ≥ n, the minimum of the performance
index in (4) can be zero; in this case, the linear closed-loop
state responses of (3) can be achieved. The preceding state
feedback is represented in a compact form by:

u = Ψ(x, xssN ) (6)

Example.

dx1

dt
= x2

dx2

dt
= 10x1 + 9x2 + u

y = x2 − 2x1

This process has a zero at 2 and poles at −1 and 10. Also,
r1 = 2 and r2 = 1. For ε1 = 0.8 nad ε2 = 0.01, the
closed-loop eigenvalues of the example process under the
state feedback are given in Table 1.

B. Reduced-Order State Observer

In general, measurements of all state variables are not
available. In such cases, estimates of the unmeasured state
variables can be obtained from the output measurements.
Here, we use a reduced-order nonlinear state observer to
reconstruct the unmeasured state variables. The details and
properties of this estimator can be found in (Soroush, 1997).

For a nonlinear process in the form of (1), the non-
redundancy of the controlled outputs ensures the existence
of a locally invertible state transformation of the form[

η
y

]
= T (x) =

[
Px
h(x)

]

where η = [η1, · · · , ηn−q]T , and P is a constant (n−q)×n
matrix which for the sake of simplicity, is chosen such that



TABLE I

CLOSED-LOOP EIGENVALUES OF FOR SEVERAL p1 AND p2 VALUES.

p1 p2 λ1 λ2

1 1 -100.00 0.000
1 2 -47.89 0.000
1 3 -30.59 0.000
1 4 -21.99 0.000
1 5 -16.86 0.000
2 1 -1.44 -1.090
2 2 -1.52 -1.020
2 3 -1.60 -0.970
2 4 -1.67 -0.930
2 5 -1.73 -0.900
3 1 -1.00 -0.150
3 2 -1.00 -0.153
3 3 -1.00 -0.153
3 4 -1.00 -0.153
3 5 -1.00 -0.153
4 1 -1.00 -0.017
4 2 -1.00 -0.017
4 3 -1.00 -0.017
4 4 -1.00 -0.017
4 5 -1.00 -0.017

(i) each row of P has only one nonzero term equal to one,
and (ii) locally

rank

{
∂

∂x

[
Px
h(x)

]}
= n

The new variables η1, · · · , ηn−q are simply (n − q) state
variables of the original model of (1), which satisfy the
preceding rank condition, and thus the state transformation
[η y]T = T (x) is at least locally invertible. In many cases
such as the process example considered in this article,
the measurable outputs are some of the state variables. In
such cases, the state transformation is linear and globally
invertible.

The system of (1), in terms of the new state variables
η1, · · · , ηn−q, y, takes the form

{
η̇ = Fη(η, y, u)
ẏ = Fy(η, y, u) (7)

where

Fη(η, y, u) = Pf
[
T −1(η, y), u

]
;

Fy(η, y, u) =
∂h(x)

∂x

∣∣∣∣
x=T −1(η,y)

f
[
T −1(η, y), u

]

One can then design a closed-loop, reduced-order observer
of the form:

ż = Fη(z + Ly, y, u)− LFy(z + Ly, y, u)
x̂ = T−1(z + Ly, y) (8)

where the constant [(n − q) × q] matrix L is the observer
gain. The observer gain should be set such that the observer
error dynamics are asymptotically stable (Soroush, 1997).

C. Integral Action

To ensure offset-free response of the closed-loop system
in the presence of constant disturbances and model errors,
the final control system should have integral action. The
integral action can be added by using the dynamic system:

(ε1D + 1)p1ξ1 = φ1(x, u)
...

(εnD + 1)pnξn = φn(x, u)
(9)

where

φi(x, u) =

ri−1∑
�=0

ε�
i

(
pi

�

)
H�

i (x) +
pi∑

�=ri

ε�
i

(
pi

�

)
H�

i (x, u(0), 0, · · · , 0),

i = 1, · · · , m

D. Control System

Combing the equations in (6), (8) and (9) leads to the
following control system that has intgeral action:

ż = Fη(z + Ly, y, u)− LFy(z + Ly, y, u)
x̂ = T−1(z + Ly, y)

(ε1D + 1)p1ξ1 = φ1(x̂, u)
...

(εnD + 1)pnξn = φn(x̂, u)
v = F (ysp) − x̂ + ξ
u = Ψ(x̂, v)

(10)
The control system parameters ε1, · · · , εn set the speed of
the closed-loop state responses; the smaller the value ε i, the
faster the xi response. The parameters p1, · · · , pn should be
chosen such that p1 = r1, · · · , pn = rn when the process
is minimum-phase, and p1 > r1, · · · , pn > rn when the
process is non-minimum-phase.

IV. APPLICATION TO A CHEMICAL REACTOR

Consider a constant-volume, non-isothermal, continuous-
stirred-tank reactor, in which the reaction A → B takes
place in liquid phase. The reactor dynamics are represented
by the following model:

ĊA = −kCA + (CAi − CA)u/V

Ṫ = γkCA + (Ti − T )u/V + q

y = T

(11)

where k = 5.0 × 108 exp(−8100/T ) s−1, γ =
3.9 m3 K kmol−1, q = −2.519 × 10−2 K.s−1, CAi =
12 kmol m−3, Ti = 300 K , and V = 0.1 m3.

The control system of (10) is applied to the reac-
tor, and the resulting controller is used to operate the
reactor at the unstable, non-minimum-phase steady state
(6.319 kmol.m−3, 302.0 K). The following controller
parameter values are used: ε1 = 360 s, ε2 = 360 s, p1 = 2,
p2 = 2, w1 = 1, w2 = 1, and L = 0.5



For the two sets of initial conditions, [CA(0), T (0)]=
[3.0, 320] and [10.0, 290], the peformance of the controller
is shown in Figures 1–3. Responses such as those in Figures
1 and 2 showed that the controller is capable of operating
the process at the desired steady state, regardless of the
initial conditions of the process.

NOTATION

A= Reactant
B = Product

CAi = Inlet concentration of the reactant, kmol m−3.
CA = Outlet concentration of the reactant, kmol m−3.
D = Differential operator, D = d/dt.
k = Reaction rate constant, s−1.
m= Number of manipulated inputs and controlled

outputs.
n = Process order.
ri = Relative order of state variable xi.
t = Time, s.

T = Reactor outlet temperature, K .
Ti = Reactor inlet temperature, K .
u = Process input vector.
V = Reactor volume, m3.
x = Vector of state variables.
y = Vector of controlled outputs.

ysp = Vector of set-points.

Greek
ε1, · · · , εn = adjustable parameters of controller.
ξ1, · · · , ξn= State variables of the controller.

γ = Reactor model parameter, K m3 kmol−1.
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Fig. 1. Closed-loop response of the reactant outlet concentration for
different initial conditions.
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Fig. 2. Closed-loop response of the outlet stream temperature correspond-
ing to Figure 1.
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Fig. 3. Manipulated input profiles corresponding to Figures 2 and 3.
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