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Abstract— In this work, we propose a two-level,
optimization-based method for deriving tuning guidelines for
proportional-integral-derivative (PID) controllers that take
explicitly into account the presence of nonlinear behavior. The
central idea behind the proposed method is the selection of
the PID controller tuning parameters so as to best “emulate”
the control action and closed–loop response under a given
nonlinear controller for a broad set of initial conditions
and set-point changes. The first level involves using classical
tuning guidelines (typically derived on the basis of linear
approximations, running open or closed–loop tests) to obtain
reasonable bounds on the tuning parameters in order to
satisfy various design criteria such as stability, performance
and robustness. These bounds are in turn incorporated as
constraints on the optimization problem solved at the higher
level to yield tuning parameter values that improve upon
the values obtained from the first level to better emulate
the closed–loop behavior under the nonlinear controller.
The efficacy of the proposed tuning method is demonstrated
through application to a nonlinear chemical reactor example.
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I. INTRODUCTION

The majority (over 90%) of the regulatory loops in the
process industries use conventional proportional-integral-
derivative (PID) controllers. Owing to the abundance of PID
controllers in practice and the varied nature of processes that
the PID controllers regulate, extensive research studies have
been dedicated to the analysis of closed–loop properties of
PID controllers and to devising new and improved tuning
guidelines for the PID controllers, focusing on closed–loop
stability, performance and robustness (see, for example, [1],
[2], [3], [4], [5], [6], [7], the survey papers [8], [9] and
books [10], [11], [12]). Most of the tuning rules are based on
obtaining linear models of the system, either through run-
ning step tests or by linearizing a nonlinear model around
the operating steady-state, and then computing values of the
controller parameters that incorporate stability, performance
and robustness objectives in the closed–loop system.

While the use of linear models for the PID controller
tuning makes the tuning process easy, the underlying dy-
namics of many processes are often highly complex, due,
for example, to the inherent nonlinearity of the underlying
chemical reaction, or due to operating issues such as actua-
tor constraints, time–delays and disturbances. Ignoring the
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inherent nonlinearity of the process when setting the values
of the controller parameters may result in the controller’s
inability to stabilize the closed–loop system and may call
for extensive re-tuning of the controller parameters.

The shortcomings of classical controllers in dealing with
complex process dynamics, together with the abundance of
such complexities in modern–day processes, have motivated
a significant and growing body of research work within
the area of nonlinear process control over the past two
decades, leading to the development of several practically–
implementable nonlinear control strategies that can deal
effectively with a wide range of process control problems
such as nonlinearities, constraints, uncertainties, and time–
delays (see, for example, [13], [14], [15], [16], [17] and the
books [18], [19], [20], [21]). While process control practice
has the potential to gain from these advances through
the direct implementation of the developed nonlinear con-
trollers, an equally important direction in which process
control practice stands to gain from these developments lies
in investigating how nonlinear control techniques can be
utilized for the improved tuning of classical PID controllers.
This is an appealing goal because it allows control engi-
neers to potentially take advantage of the superior stability
and performance properties provided by nonlinear control
without actually forsaking the ubiquitous conventional PID
controllers or re-designing the control system hardware.

There has been some research effort towards incorporat-
ing nonlinear control tools in the design of PID controllers
including, for example, [22], where it is shown that con-
trollers resulting from nonlinear model-based control theory
can be put in a form that looks like the PI or PID controllers
for first and second-order systems. Other examples include
[23], where adaptive PID controllers are designed using
a backstepping procedure and [24], where a self-tuning
PID controller is derived using Lyapunov techniques. In
these works, even though the resulting controller has the
same structure as that of a PID controller, the controller
parameters (gain: Kc, integral time–constant: τI , and the
derivative time–constant: τD) are not constant but functions
of the error or process states. While such analysis provides
useful analogies between nonlinear control tools and PID
controllers, implementation of these control designs would
require changing the control hardware in a way that values
of the tuning parameters can continuously change while the
process is in operation.

Motivated by the above considerations, we propose in this



work a two-level, optimization-based method for deriving
tuning guidelines for PID controllers that take explicitly
into account the presence of nonlinear behavior. The central
idea behind the proposed approach is the selection of the
PID controller tuning parameters so as to best “emulate”
the control action and closed–loop response prescribed
by a given nonlinear controller for a broad set of initial
conditions and set-point changes. The first level involves
using classical tuning guidelines (typically derived on the
basis of linear approximations, running open or closed–
loop tests) to obtain reasonable bounds on the tuning
parameters to satisfy various design criteria such as stability,
performance and robustness. These bounds are in turn
incorporated as constraints on the optimization problem
solved at the higher level to yield tuning parameter values
that improve upon the values obtained from the first level to
better emulate the closed–loop behavior under the nonlinear
controller. The efficacy of the proposed tuning method is
demonstrated through application to a nonlinear chemical
reactor example.

II. TWO-LEVEL PID TUNING METHOD
In this work, we consider continuous–time single–input

single–output (SISO) nonlinear systems, with the following
state-space description

ẋ(t) = f(x(t)) + g(x(t))u(t)
y = h(x)

(1)

where x = [x1 · · ·xn]
′ ∈ IRn denotes the vector of state

variables and x′ denotes the transpose of x, y ∈ IR is the
process output, u ∈ IR is the manipulated input, f(·) is a
sufficiently smooth nonlinear vector function with f(0) = 0,
g(·) is a sufficiently smooth nonlinear vector function and
h(·) is a sufficiently smooth nonlinear function with h(0) =
0. Throughout the paper, the notation Lfh denotes the
standard Lie derivative of a scalar function h(·) with respect
to the vector function f(·), i.e., Lf (x) = (∂h/∂x)f(x).

The basic idea behind the proposed approach is the design
(but not implementation) of a nonlinear controller that
achieves the desired process response, and then, the tuning
of the PID controller parameters so as to best “emulate”
the control action and closed–loop process response under
the nonlinear controller, subject to constraints derived from
classical PID tuning rules. First, we use classical PID
tuning guidelines to come up with reasonable ranges for the
PID tuning parameters. Then we compute off-line, through
simulation, the control action of the nonlinear controller
over the time that it takes to practically achieve the set-point
change, and the corresponding process response. The PID
controller tuning parameters are then computed by solving
(off-line) an optimization problem that minimizes some
measure of the difference between the control action and
closed–loop process response under the nonlinear controller
on one hand, and those obtained under the PID controller on
the other, for a given initial condition and set-point change.
The optimization is carried out subject to constraints that
ensure that the PID tuning parameters are within acceptable

ranges of the values derived from the classical tuning rules.
This idea is described algorithmically below:

1) Construct a nonlinear process model and derive a
linear model around the operating steady-state (either
through linearization or by running step tests).

2) On the basis of the linear model, use classical tuning
guidelines to determine bounds on the values of Kc,
τI and τD.

3) Using the nonlinear process model and desired pro-
cess response, design a nonlinear controller.

4) For a set-point change, compute off-line, through
simulations, the input trajectory (unl(t)) ‘prescribed’
by the nonlinear controller over the time (tfinal)
that it takes to achieve the set-point change and the
corresponding ynl(t).

5) Compute PID tuning parameters (Kc, τI and τD) as
the solution to the following optimization problem

J =

∫ tfinal

0

(ynl(t)− yPID(t))2 + (unl(t)− uPID(t))2dt

(2)

s.t. uPID(t) = Kc

(

e+
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0
edt′

τI

+ τD

de

dt

)

e(t) = ysp − yPID

ẋ(t) = f(x(t)) + g(x(t))uPID(t)
yPID = h(x)
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(3)
where ysp is the desired set-point, ynl, unl are the
closed–loop process response and control action un-
der the nonlinear controller respectively, and 0 ≤

αi < 1, i = 1, 2, 3 and 1 < αi < ∞, i = 4, 5, 6
are design parameters.
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Fig. 1. Schematic representation of the implementation of the proposed
two-level, optimization-based tuning method.

Remark 1: The optimization problem above computes
values for Kc, τI , τD such that the closed–loop control
action and process response under the PID controller is
similar to that under the nonlinear controller. Note that



the above optimization is carried out off-line and is part
of the design procedure to compute values for the tuning
parameters. Also, the above optimization problem can be
carried out over a range of representative initial conditions
and set-point changes to obtain PID tuning parameters that
allow the PID controller to approximate, in an average (with
respect to initial conditions and set-point changes) sense, the
closed–loop response under the nonlinear controller.
Remark 2: The tuning methodology is not proposed as an
alternative to existing tuning guidelines, but one that serves
to improve upon existing tuning guidelines by imbuing them
with desirable features provided by nonlinear control tools.
If a given methodology is satisfactory, and it is desired that
the tuning parameters not be changed appreciably, this can
be enforced by using values of the design parameters, αi,
close to 1. The tuning parameters resulting from the solution
to the optimization problem, while changed to mimic the
nonlinear control action, will be close to the ones obtained
from the classical tuning methods.
Remark 3: The proposed PID controller tuning method
can be used to implement control for processes with un-
certainties, time–delays, and manipulated input constraints.
The main idea, once again, is the design of a nonlinear
controller that accounts for process uncertainties, time–
delay and manipulated input constraints. The PID tuning
guidelines can serve to “carry over” the robustness and
constraint handling properties of the nonlinear controllers in
two ways: (1) through the objective function, by requiring
the control action and closed–loop process response under
PID control to mimic that under the nonlinear controller,
and (2) manipulated input constraints can be incorporated
directly as constraints in the optimization problem.
Remark 4: Note that the proposed tuning method is dif-
ferent from other methods that propose a nonlinear PID
controller (see, for example, [22], [23]), which require
changing the hardware of the PID controller because, in
these designs, Kc, τI and τD are not constant but are
functions of the error or process states, and therefore need to
be continuously changed while the process is in operation.
The tuning framework proposed in this work, while using
nonlinear control techniques, provides tuning guidelines
for existing PID controllers, by providing values for the
controller parameters that stay fixed during implementation,
and does not require redesigning or replacing the PID
controller hardware.
Remark 5: Note that the derivative part of the PID con-
troller is often implemented using a filter. This feature
can be easily incorporated in the optimization problem by
explicitly accounting for the filter dynamics. Constraints on
the filter time-constant, τf , obtained empirically through
knowledge of the nature of noise in the process, can be
imposed to ensure that the filtering action restricts the
process noise from being transferred over to the control
action.
Remark 6: To allow for simple computations, approxima-
tions can be introduced in solving the optimization problem

of Eqs.2-3. For instance, in the computation of the control
action, the error, e(t), may be approximated by simply
taking the difference between the set-point, ysp, and the pro-
cess output under the nonlinear controller, ynl(t), leading
to a simpler optimization problem, that can be solved easily
using numerical solvers such as Microsoft Excel (for a given
choice of the decision variables, the objective function can
be computed algebraically and does not involve integrating
the process dynamics). The justification behind this being
that if the resulting value of uPID(t) is “close enough” to
unl(t), then this approximation holds (see Section III for a
demonstration). If the solution of the optimization problem
does not yield a sufficiently small value for the objective
function (indicating that uPID, and therefore, yPID is
significantly different from unl, and ynl), this approximation
may not be valid anymore. In this case, one could revert to
using e(t) = ysp − yPID(t) in the optimization problem,
where yPID is the closed–loop process response under the
PID controller.
Remark 7: Finally, we note that the proposed method does
not turn the PID controller into a nonlinear controller. The
tuning method can only serve to improve upon the process
response of the PID controller for operating conditions
for which PID control action can be used to stabilize the
process. If the process is highly nonlinear, or a complex
process response is desired, it may be possible that the PID
controller structure is not adequate, and in this case, the ap-
propriate nonlinear controller should be implemented in the
closed–loop to achieve the desired closed–loop properties.

III. APPLICATION TO A CHEMICAL REACTOR EXAMPLE
We consider a continuous stirred tank reactor where an

irreversible, first-order reaction of the form A
k
→ B takes

place. The inlet stream consists of pure species A at flow
rate F , concentration CA0 and temperature TA0. Under
standard modeling assumptions, the mathematical model for
the process takes the form

ĊA =
F

V
(CA0 − CA)− k0e

−E

RTR CA

ṪR =
F

V
(TA0 − TR) +

(−∆H)

ρcp

k0e

−E

RTR CA

+
UA

ρcpV
(Tj − T )

(4)

where CA denotes the concentration of the species A, TR

denotes the temperature of the reactor, Tj is the temperature
of the fluid in the surrounding jacket, U is the heat–
transfer coefficient, A is the jacket area, V is the volume of
the reactor, k0, E, ∆H are the pre-exponential constant,
the activation energy, and the enthalpy of the reaction
respectively, and cp and ρ, are the heat capacity and fluid
density in the reactor respectively. The values of all process
parameters are given in Table I. At the nominal operating
condition of Tnom

j = 493.87 K, the reactor is operating at
the unique, stable steady-state (Cs

A, T s
R) = (0.52, 398.97).

The control objective is to implement set-point changes in



the reactor temperature using the jacket fluid temperature,
Tj , as the manipulated input, using a PID controller.

TABLE I
PROCESS PARAMETERS AND STEADY–STATE VALUES.

V = 100.0 L
E/R = 8000 K
CA0 = 1.0 mol/L
TA0 = 400.0 K
∆H = 2.0× 105 J/mol
k0 = 4.71× 108 min−1

cp = 1.0 J/g.K
ρ = 1000.0 g/L
UA = 1.0× 105 J/min.K
F = 100.0 L/min
Cs

A
= 0.52 mol/L

T s
R

= 398.97 K
Tnom

j = 493.87 K

To proceed with our PID controller tuning method, we
initially design an input/output linearizing nonlinear con-
troller. Note that the linearizing controller design is used in
the simulation example only for the purpose of illustration,
and any other nonlinear controller design deemed fit for
the problem at hand can be used as part of the proposed
controller tuning method.

Defining x = [CA−Cs
A, TR−T s

R]
′ and u = Tj−Tnom

j ,
the process of Eq.4 can be recast in the form of Eq.1 where
the explicit form of f(·) and g(·) are omitted for brevity.
Consider the control law given by:

u =
ν − y(t)− γLfh(x)

γLgh(x)
(5)

where Lfh(x) and Lgh(x) are the Lie derivatives of the
function h(x) with respect to the vector functions f(x) and
g(x), respectively, γ, a positive real number, is a design
parameter and ν is the set-point. Taking the derivative of
the output in Eq.1 with respect to time, we get

ẏ = Lfh(x) + Lgh(x)u (6)

Substituting the linearizing control law of Eq.5, we get

ẏ =
ν − y

γ (7)

Under the control law of Eq.5, the controlled output
y evolves linearly, to achieve the prescribed value of ν,
with the design parameter γ being the time–constant of the
closed–loop response.

It is well known that when a first–order closed–loop
response, with a given time–constant, is requested for a
linear first-order process, the method of direct synthesis
yields a PI controller. Note that the relative order of the
controller output, TR, with respect to the manipulated input,
Tj , in the example of Eq.4 is also one. This motivates
using a PI controller and tuning the controller parameters
to achieve the prescribed first-order response.

For the purpose of tuning the PI controller, the nonlinear
process response generated under the nonlinear controller,
using a value of γ = 0.25, was used in the optimization
problem. Based on the parameter ranges for Kc and τI

suggested by the IMC-based and Ziegler-Nichols tuning
methods, the following constraints were derived and incor-
porated in the optimization problem: 0.1 ≤ Kc ≤ 15 and
0.05 ≤ τI ≤ 3. The values of the parameters, computed
using the IMC method, Ziegler-Nichols and the two-level
PI tuning method are reported in Table II.

TABLE II
TUNING PARAMETERS

Tuning method Kc τI

IMC 1.81 0.403
Ziegler-Nichols 15.0 0.1667
Proposed method 5.38 2.1

The solid lines in Figs.2-3 show the closed–loop response
of the output and the manipulated input under the nonlinear
control of Eq.5. Note that the value of γ was chosen as
0.25 to yield a smooth, fast transition to the desired set-
point. The optimization problem was solved approximately,
using the closed–loop process response under the nonlinear
controller to compute e(t), and the objective function only
included penalties on the difference between the control
actions under the PI controller and the nonlinear controller
(see Remark 6). The dashed–line shows the response of
the PI controller tuned using the proposed optimization-
based method. The result shows that the response under the
PI controller is close to that under the nonlinear controller
and demonstrates the feasibility of using a PI controller to
generate a closed–loop response that mimics the response
of the nonlinear controller.
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Fig. 2. Closed–loop output profile under a linearizing controller (solid
line) and a PI controller tuned using the proposed method (dashed line).
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Fig. 3. Closed–loop manipulated input profile under a linearizing
controller (solid line) and a PI controller tuned using the proposed method
(dashed line).



In Fig.4, we present the closed–loop responses when the
controller parameters computed using the IMC-based tuning
rules and Ziegler-Nichols tuning rules are implemented. As
can be seen, the transition to the new set-point under the
PID controller tuned using the proposed method (dashed
lines in Fig.4) is smoother when compared to a classical
PI controller tuned using IMC tuning rules (solid line)
and Ziegler-Nichols tuning rules (dotted line) that exhibit
noticeable overshoot before settling at the desired set-point.
The corresponding manipulated input profiles are shown in
Fig.5.
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Fig. 4. Closed–loop output profile using IMC tuning rules for PI
controller (solid line), using Ziegler-Nichols tuning rules (dotted line) and
the proposed method (dashed line).
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Fig. 5. Closed–loop manipulated input profile using IMC tuning rules
(solid line), using Ziegler-Nichols tuning rules (dotted line) and the
proposed method (dashed line).

We now demonstrate the application of the proposed
method to the same system, but with CA as the controlled
variable and Tj as the manipulated variable. As in the
previous case, we initially design an input/output linearizing
nonlinear controller to yield a second-order linear input-
output response in the closed–loop system of the form:

τ2

clÿ +
2ξ

τcl

ẏ + y = ν (8)
where τcl and ξ are design parameters and were chosen
as τcl = 0.2 and ξ = 1.05 (implying that the closed–loop
system is a slightly over-damped second-order system).

The following tuning methods were used for the first
level: (1) IMC-based tuning rule, where a step test is run
to approximate the system by a first-order + time–delay
process, (2) IMC-based tuning rule, where the process is
linearized around the operating steady-state to obtain a

second-order linear model, and (3) Ziegler-Nichols tuning
rules, where the parameters Kcu = −20000 and Pu = 0.4
are obtained using the method of relay auto tuning [25]
(the tuning parameter values are reported in Table III).
Based on the parameter ranges suggested by the first level
tuning methods, the following constraints were used in the
optimization problem set up to compute Kc, τI and τD:
−2000.0 ≤ Kc ≤ −1000, 0.1 ≤ τI ≤ 2 and 0.02 ≤ τD ≤

0.15. The derivative part of the controller was implemented
using a first order filter with time–constant τf = 0.1. The

TABLE III
TUNING PARAMETERS

Tuning method Kc τI τD

IMC-I -1342.7 0.95 0.0524
IMC-II -1813.4 1.00 0.114
Ziegler-Nichols -11753.0 0.2 0.05
Proposed method -1229.0 1.38 0.13

solid lines in Figs.6-7 show the closed–loop response of
the output and the manipulated input under the linearizing
control design. The dashed–line shows the response of the
PID controller tuned using the proposed method, which is
close to the response of the nonlinear controller. As is clear
from Fig.6, the resulting PID controller yields a response
that is close enough to that of the nonlinear controller.
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Fig. 6. Closed–loop output profile under a linearizing controller (solid
line) and a PID controller tuned using the proposed method (dashed line).
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Fig. 7. Closed–loop manipulated input profile under a linearizing
controller (solid line) and a PID controller tuned using the proposed
method (dashed line).

In Fig.8, we present the closed–loop responses when
the controller parameters computed using the classical
tuning rules are implemented. The values suggested by



Ziegler-Nichols tuning lead to closed–loop instability. In
the simulation, a smaller value for Kc and a larger τI

were used. As can be seen, the transition to the new set-
point using the proposed tuning method (solid lines in
Fig.8) compares favorably to that obtained when using the
IMC-based tuning rules-I and II (dash-dotted and dotted
line) and the Ziegler-Nichols tuning rules (dashed line).
The corresponding manipulated input profiles are shown in
Fig.9.

In summary, we proposed a two-level tuning method
where the first level involved using classical tuning guide-
lines to obtain reasonable bounds on the tuning parameters.
These bounds were in turn incorporated as constraints on
the optimization problem solved at the higher level to
yield tuning parameter values that improve upon the values
obtained from the first level to better emulate the closed–
loop behavior under the nonlinear controller. For the cases
studied, it was found that the proposed tuning method
achieved a response that was closer to the one obtained
under the nonlinear controller.
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Fig. 8. Closed–loop output profile using IMC tuning rules I (dotted
line), IMC tuning rules II (dash-dotted line), Ziegler-Nichols tuning rules
(dashed line) and the proposed method (solid line).
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Fig. 9. Closed–loop manipulated input profile using IMC tuning rules I
(dotted line), IMC tuning rules II (dash-dotted line), Ziegler-Nichols tuning
rules (dashed line) and the proposed method (solid line).
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