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Abstract— We apply a dynamic feedback control algorithm,
namely washout filter-aided control, to stabilize TCP-RED
system that can suffer from instabilities caused by both smooth
and non-smooth bifurcations. We demonstrate that a linear
feedback control scheme can be used to considerably increase
the stable operating regime of the system, and that a nonlinear
feedback control can be adopted to further enhance the
stability of bifurcations.

I. INTRODUCTION

It has been shown that the interaction of nonlinearity and
delay in a network can lead to undesirable behavior that
can degrade network performance [13]. For robust operation
of the network, it is important to understand its dynamical
behavior beyond the linear stability regime. In our earlier
work [13], [14] we have shown that for a class of seemingly
diverse looking models like that of Firoiu and Borden [4]
and for Kelly’s rate control framework [9] the natural mode
of transition from fixed point operation to oscillations is
through a period doubling bifurcation in naturally arising
discrete-time maps.

Nonlinear instability and its control is a well studied
area in the control system literature [1], [3]. In this paper,
we utilize the theory of bifurcation control using washout
filters and other feedback based chaos control techniques
to extend the stable parameter range of TCP-RED. A
washout filter is a simple high-pass filter and has been
shown to be very effective for robust control of nonlinear
instabilities [1]. In this control scheme, the stability of the
original equilibrium point is enhanced by feedback-based,
small parametric modulations introduced in RED control
parameters. The structure of washout filter aided control
ensures that the control does not result in any movement of
the nominal (open-loop) fixed points of the system, even in
the presence of model unertainty. The control cancels the
instability effect introduced by variation in other system
parameters such as the number of connections and round
trip propagation delay that are beyond the control of the
network manager.

In this paper, using our analytical model we characterize
the linear stability conditions given a washout filter param-
eter and linear control gain pair. Moreover, we analytically
show that there exists a washout control parameter and
linear control gain pair that can stabilize the system for all
RED exponential averaging weights. This is in contrast with
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a previous result [8] that Proportional-Integral (PI) control
is only stabilizing for a limited range of averaging weight
values. We provide numerical examples to demonstrate that
washout filter based control can significantly improve the
stability of TCP-RED.

The paper is organized as follows. In Section II, we
summarize the first-order model for TCP-RED in a con-
gested network from [13] and review its linear analysis.
In Section III, we outline the theory behind washout filter-
based control. In Section IV, we describe the application of
washout filters to TCP-RED and give a characterization of
the stability region in parameter space. Section V contains
the simulation results showing the bifurcation delay in
parameter space along with an NS-2 implementation of the
washout filter based control scheme. Finally, in Section VI
we collect and discuss the results.

II. MODEL AND PREVIOUS WORK

In [13], we have proposed a first-order discrete-time
dynamic model for studying the interaction of TCP connec-
tions with a RED gateway. Let I, I = {1, · · · ,N }, denote
the set of connections. Each connection is assumed to be
a TCP connection. Throughout this paper we assume that
all connections are long-lived TCP Reno connections that
are Explicit Congestion Notification (ECN) capable. The
capacity of the shared link and the packet size of connec-
tions are denoted by C and M , respectively. We assume
that the connections are homogeneous, i.e., they have the
same round-trip propagation delay (denoted by R0) and
have the same rate or throughput. Rather than interpreting
this assumption as a requirement that the connections must
have the same propagation delay, one should consider the
delay R0 as the effective delay that represents the overall
propagation delay of the connections. This allows us to
reduce the problem with N connections to a single con-
nection system that represents the set of connections, and
then study the behavior of this simpler system. We assume
that the Random Early Detection (RED) queue management
mechanism with ECN capability is implemented at each
node in order to control the average queue size at the router.
A RED gateway marks a packet with a probability p, which
is a function of the average queue size qave as follows [6]:1

p(qave) =







0 if qave < qmin

1 if qave > qmax

qave−qmin

qmax−qmin
pmax otherwise

, (1)

1In practice a RED gateway marks a packet with a modified probability
in order to lead to a more uniform marking pattern [6].



where qmin and qmax are the lower and higher threshold
values, and pmax is the selected marking probability when
qave = qmax. The average queue size is updated at the time
of packet arrival through exponential averaging:

qave
new = (1 − w)qave

old + w · qcur , (2)

where qcur is the queue size at the time of arrival, and
w is the exponential averaging weight, which determines
the time constant of the averaging mechanism. There-
fore, the control parameters of the RED mechanism are
w, qmin, qmax, and pmax.

We use a first-order discrete-time nonlinear dynamic
model to analyze the interaction of the RED gateway
with TCP connections, which was first proposed by Firoiu
and Borden [4]. We define the control system as follows.
The packet marking probability pk at period k, k ≥ 1,
determines the throughput of the connections and the queue
size qk+1 at period k + 1, based on the system constraints.
The queue size at period k + 1 is used to compute the
average queue size qave

k+1 at period k + 1 according to the
exponential averaging rule in (2). Then, the average queue
size qave

k+1 is used to calculate the packet marking probability
pk+1 at period k + 1, which is the control variable of the
AQM mechanism. This can be written mathematically as
follows:

qk+1 = G(pk) (3)

qave
k+1 = A(qave

k , qk+1) (4)

pk+1 = H(qave
k+1) , (5)

Here, A(qave
k , qk+1) = (1 − w)qave

k + w · qk+1 as given in
(2), and the control function H(qave

k+1) = p(qave
k+1) from (1).

The exact form of the plant function G(·) depends on
system parameters such as the number of connections,
nature of connections, round-trip delays, etc. The plant
function is derived in [13] and is given by

G(pk) =







0 , if pk > pu

B , if pk < pl
NK√

pk
− R0C

M
, otherwise

(6)

where B is the buffer size, pu is the smallest probability
such that the queue size at the next period is zero, and pl is
the largest probability such that the next period queue size
equals B. ¿From (3) - (6), the average queue size at period
k + 1 is given by

qe,k+1 =























(1 − w)qe,k if qe,k > qave
u

(1 − w)qe,k + wB if qe,k < qave
l

(1 − w)qe,k+

+w( NK
√

(qe,k−qmin)pmax

(qmax−qmin)

− R0c
M

) otherwise

=: f(qe,k, ρ) (7)

where qave
l = pl(qmax−qmin)

pmax
+ qmin, and

qave
u =

{

pu(qmax−qmin)
pmax

+ qmin if pmax ≥ pu

qmax otherwise
.

III. FEEDBACK CONTROL OF INSTABILITIES

In this section, we summarize a simple delayed feedback
control algorithm to control instabilities [1].

A. Washout filter-based control

The washout filter mechanism has been successfully
utilized to control a number of bifurcations in nonlinear
models with uncertainty [1]. This approach for TCP-RED
systems differs considerably from other schemes where the
control scheme tries to keep the operating point invariant
under significant parametric variations [2], [5]. For example,
the adaptive RED (ARED) scheme also modulates a control
parameter, namely pmax, to adapt to dynamically changing
operating conditions, using an additive increase and multi-
plicative decrease algorithm [5]. However, the adaptation is
done based on the difference between the current average
queue size and fixed target queue size, and hence keeps
system operation independent of other parameter variations.
An inherent problem with such an approach is that the range
over which it is effective may be severely limited in the
parameter space [10].

A simple discrete time high-pass filter can be used as an
analogue of washout filter in continuous time. Consider the
following high-pass filter discussed in [1].

G(z) =
1 − z−1

1 − dz−1
(8)

This can have the following time domain implementation:

zk+1 = xk + (1 − d)zk, yk = xk − dzk (9)

where {xk} is the input sequence to the washout filter, {yk}
is the output sequence, and the washout filter constant d
should satisfy 0 < d < 2. At steady state, zk+1 = zk and
xeq −d · zeq = 0. Hence, from (9), we have yk ≡ 0 and the
output of the washout filter vanishes at the steady state.

Now, we can consider a scalar nonlinear dynamical
system with washout filter control:

xk+1 = f(xk, uk) (10)

where uk is a scalar control input. If washout filter is put
in the feedback loop with feedback function h(·), we have
following modified system:

xk+1 = f(xk, uk), zk+1 = xk + (1 − d)zk (11)

yk = xk − dzk, uk = h(yk) (12)

where h : R → R is any smooth function such that
h(0) = 0. It can be shown that this type of feedback control
does not modify the equilibrium point of the original system
under no control, i.e., uk = 0 [1]. However, with a proper
choice of feedback function h(·) and washout filter constant,
it can enhance the stability of the original equilibrium point
without the need for accurate knowledge of the system
model or equilibrium value.



IV. APPLICATION TO TCP-RED

In this section we look at the stabilization of map in
(7) with linear control terms in the neighborhood of fixed
point q∗, i.e., q∗ = f(q∗, ρ). For this we need to compute
the linearization of the map (xn+1 = Axn + bun) around
the intended fixed point of the system. We have

∂f(qe,k+1, ρ)

∂qe,k+1

∣

∣

∣

∣

qe,k+1=q∗

= 1 − w −
0.5wNK

(q∗ − qmin)
3
2

:= λ0(ρ) (13)

Also, depending on the RED parameter to be modulated,
b(pmax) = ∂f

∂pmax
or b(qmax) = ∂f

∂qmax
can be computed:

b(pmax) = −
0.5wNK

√

(qe,k−qmin)

(qmax−qmin)p
1.5
max

(14)

b(qmax) =
0.5wNK

√

(qe,k − qmin)(qmax − qmin)pmax

(15)

It is clear from the above that b(·) 6= 0 for a nominal range
of parameters. For one dimensional system with nonzero
eigenvalue, both left (l) and right (r) eigenvectors are 1.

From the two observations above we conclude that l ·
b(·) 6= 0. This has consequences for linear stabilizability
due to the Popov-Belevitch-Hautus (PBH) eigenvector test
for controllability of modes of linear time invariant systems,
and tells us that linear stabilizing feedback exists in this
case. This also implies that cubic stabilizing feedback exists,
which we study in Section IV-E.

In the view of PBH test for controllability and the
washout filter described above, we can view the averaged
queue size of RED as an input to the state estimation filter
that provides the estimate yk. This estimate can be used to
construct the control depending on the functional form of
h. In this section we consider only the linear control law,
i.e., uk = kl ·yk, because in linear analysis all the nonlinear
terms vanish when the system is linearized at the fixed point.
Throughout this section we assume that we modulate qmax

unless stated otherwise. In this framework, the TCP-RED
system given by (7), when augmented by a washout filter,
can be rewritten as follows:

zk+1 = qe,k + (1 − d)zk (16)

uk = h(qe,k − dzk) (17)

qe,k+1 =























(1 − w)qe,k if qe,k > qave
u

(1 − w)qe,k + wB if qe,k < qave
l

(1 − w)qe,k+ w( NK
√

(qe,k−qmin)pmax

(qwo
max−qmin)

−R0c
M

) otherwise

(18)

Here, qwo
max = min{B

2 ,max{α · qmin, qmax + uk}}. We
upper limit qmax to 0.5 B due to the consideration of
GENTLE mode of RED and lower limit it to α · qmin,
where 1 < α < 2.

A. Stability analysis with washout filter

In this section we analyze the stability of washout enabled
TCP-RED given by (18). Clearly, [q∗/d, q∗] is the fixed
point of the new system given by (16) - (18) for d 6= 0.
The Jacobian matrix evaluated at the fixed point [q∗/d, q∗]
is given by

A =

(

1 − d 1

b
∂h(qe,k−dzk)

∂zk

∂f(qe,k,ρ)

∂qe,k
+ b

∂h(qe,k−dzk)

∂qe,k

)

(19)
where b = b(qmax) given in (15).

If we evaluate (19) at the fixed point [q∗/d, q∗] with linear
control, i.e., uk = kl(qe,k − d · zk), (19) simplifies to

A =

(

1 − d 1
−dbkl λ0 + bkl

)

(20)

where λ0 =
∂f(qe,k,ρ)

∂qe,k

∣

∣

∣

qe,k=q∗

from (13).

Next we recall Jury’s stability test for second order
discrete-time systems:

Lemma 1: (Jury’s stability test for second order sys-
tems [11]) A necessary and sufficient condition for the zeros
of the polynomial

p(λ) = a2λ
2 + a1λ + a0

(a2 > 0) to lie within unit circle is

p(1) > 0, p(−1) > 0 and |a0| < a2

The characteristic equation for matrix in (20) is given by

λ2 − λ((1 − d)) + λ0 + bkl) + (1 − d)λ0 + bkl = 0

Using Jury’s test for stability, the conditions for linear
asymptotic stability are given as follows.

d(1 − λ0) > 0 (21)

2 + 2bkl + 2λ0 − d(1 + λ0) > 0

⇒ kl > (d−2)(1+λ0)
2b

for b > 0 (22)

|λ0(1 − d) + bkl| < 1

⇒ −1−λ0(1−d)
b

< kl < 1−λ0(1−d)
b

for b > 0 (23)

Similar inequalities can be formulated for linear stability
in the case of b < 0, e.g., pmax is modulated. As we see
here the stability region for pair (d, kl) is made up of three
straight lines in (d, k) plane, which are described below:

(l1) : k =
(1 + λ0)d

2b
−

1 + λ0

b
(24)

(l2) : k =
λ0d

b
−

(1 + λ0)

b
(25)

(l3) : k =
λ0d

b
+

(1 − λ0)

b
(26)

Under the generic assumption of λ0 < −1 and b > 0,
we can see that lines (l2) and (l3) are parallel as they have
the same slope. Lines (l1) and (l3) intersect each other at
(d0, k0) = ( 4

1−λ0
, (1+λ0)

2

(1−λ0)b
). Similarly, lines (l1) and (l2)

intersect each other at (d1, k1) = (0, (1+λ0)
b

).



Proposition 1: For a (d, k) pair to be stabilizing,
it must lie within the triangle with the vertices
(

0, (1+λ0)
b

)

,
(

0, (1−λ0)
b

)

, and
(

4
1−λ0

, (1+λ0)
2

(1−λ0)b

)

Proof of this proposition and other results in this paper
can found in [15].

The parameter that will be modulated for control will
determine the value of b, e.g., b < 0 for pmax and b > 0 for
qmax. Gain kl needs to be chosen accordingly. Parameter
d is chosen such that 0 < d < 2, and λ0 < −1 in the
regime after period doubling bifurcation. This shows that,
theoretically, it is possible to control the average queue
size of RED locally near critical parameter value, although
allowable range for parameters such as pmax or qmax is
limited by physical constraints in the real system. Also,
these control gains need to be limited so as to not cross
the basin of attraction for the fixed point. Hence, though
local stabilization near the critical value of a parameter is
possible, it may not be possible to stabilize in an arbitrarily
large parameter range. Next, using Jury’s test we compute
the parameter range where stabilization is possible for a
fixed value of kl as different parameters such as exponential
averaging weight w, round-trip propagation delay R0, and
the number of active connections N , are varied.

B. Stabilization with respect to exponential averaging
weight

Stabilization with respect to exponential averaging weight
w is simpler to analyze since the fixed point is independent
of w and the eigenvalue λ0 decreases linearly with w from
(13). Hence, due to linear stabilizability of the original
system, i.e., l · b 6= 0, it is possible to stabilize the RED
averaged queue by picking appropriate kl and d that obey
the conditions given by (21) - (23). Here we are interested in
investigating the possibility of local linear stabilizing over
all values of 0 < w < 1. It turns out that due to some
interesting properties of λ0 and b = b(qmax) as given by
(15) it is possible to pick a (d, kl) pair to stabilize the system
for all possible values of w > wcrit, where wcrit is the value
of w at which first period doubling bifurcation happens in
the uncontrolled system and is given by [13]

wcrit =
2

1 + NK

2(q∗−qmin)
3
2

√

qmax−qmin

pmax

. (27)

From (13) and (15) one can show that (1−λ0)
b(qmax) is inde-

pendent of w. This provides important insight into the locus
of triangular stability region as given by Proposition 1. It
shows that one of the vertices (0, (1−λ0)

b
) is invariant of w.

We now need to understand the behavior of λ0 and b(qmax)
and that of λ0

b(qmax) as w is varied in unit interval. It is clear
from (13) that λ0 decreases linearly as a function of w.
Similarly, b(qmax) as given by (15) increases linearly with
w, and λ0

b(qmax) is strictly decreasing with w, which can be
seen directly by differentiating the expression. This means
that all three constraint lines given by (24) - (26) become
steeper with increasing w. This leads to decreasing area of

stability triangle shown in Fig. 1. Finally, we use the fact
that w is bounded by one from above and evaluate the worst
case stability region. Clearly, the eigenvalue remains finite
for w=1. Evaluating the vertices for w = 1 will provide
the smallest triangle. Hence, if the stabilizing pair (d, kl)
lies within this triangle, then it does for all other values of
w > wcrit.

Theorem 1: TCP-RED system along with washout filter
for a given washout control parameter and linear con-
trol gain pair (d, kl) and all other parameters held fixed,
will be stable for wcrit < w < 1 where wcrit is the
value of w corresponding to the first period doubling
bifurcation, if (d, kl) lies within the triangle with vertices
(

0, (1+λ0(w=1))
b

)

,
(

0, (1−λ0(w=1))
b

)

,
(

4
1−λ0(w=1) ,

(1+λ0(w=1))2

(1−λ0(w=1))b

)

with b = b(qmax).

C. Stabilization with respect to round-trip time of connec-
tions

The RTTs of connections are beyond the control of
network managers, and tend to vary widely in practice.
Moreover, the stability of TCP-RED is shown to be sensitive
to the variation in RTT R0 [13]. Thus, stabilizing the system
for a larger range of R0 is an important issue from the
practical perspective. The networking research community
has spent considerable amount of effort in understanding the
effects of RTTs of connections and are trying to design more
robust algorithms against the variations in R. In washout
filter control scheme we achieve this goal by linear feedback
modulation in a RED parameter and thereby increasing the
stable operation domain. Based on the Jury’s criteria we can
state the following result:

Theorem 2: TCP-RED system along with washout filter
for a given (d, kl), b(·) > 0 and all other parameters held
fixed, will be linearly asymptotically stable for R0 < R∗

0

where R∗
0 is given as a solution of the following equation:

(d − 2)(1 + λ(R0))

2b
= kl for b > 0 and 0 < d < 2 (28)

where λ(R0) is the eigenvalue evaluated at the fixed point
given in (13) as a function of R0.
Solution to (28) exists due to the fact that the fixed point of
map in (7) decreases with increasing R0, and so does the
eigenvalue λ0(R0) in the parameter regime of interest.

D. Stabilization with respect to the number of connections

The number of connections N is another parameter that
is beyond the control of network administrators. In general
N may vary widely, and stabilizing the system over a large
range of N has proven to be non-trivial. Similarly as in
the previous subsection, based on the Jury’s criteria we can
state the following result:

Theorem 3: TCP-RED system along with washout filter
for a given (d, kl), b(·) > 0 and all other parameters held
fixed, will be linearly asymptotically stable for N > N ∗



where N∗ is given as a solution to the following equation:

(d − 2)(1 + λ(N))

2b
= kl for b > 0 and 0 < d < 2 (29)

where λ(N) is the eigenvalue evaluated at the fixed point
given in (13) as a function of N .
Solution to (29) exists because the eigenvalue λ0(N) in-
creases monotonically with N in the parameter regime of
interest.

E. Nonlinear control

It is possible to use small nonlinear control terms to
further enhance the stability of a system going through a
period doubling bifurcation. We first introduce the following
hypothesis:

Hypothesis 1: Eq. (7) has a period-1 orbit at x∗(ρ∗)
where x∗(ρ∗) is the fixed point at the critical parameter
value ρ∗. Furthermore, the linearization of (7) at x∗(ρ∗)
possesses a simple eigenvalue λ1(ρ) with λ1(ρ

∗) = −1
and λ

′

1(ρ
∗) 6= 0, where λ

′

1(·) is the derivative of λ1(·) with
respect to ρ.
This hypothesis can be easily verified for TCP-RED map
given by (7). Now we recall the nonlinear control theorem
given in [1] for local control of period doubling bifurcation.

Theorem 4: Under hypothesis 1 and for l · b 6= 0,
i.e., when the critical eigenvalue is controllable for lin-
earized system, there is a feedback u(xk) with u(xk −
x∗(ρ∗) = 0) = 0, i.e., feedback control vanishes at the fixed
point, which solves the local period doubling bifurcation
control problem. Moreover, this can be accomplished with
third order terms in u(xk), leaving the critical eigenvalue
unaffected.

Above theorem suggests a cubic control by itself can
stabilize the system or a mixed control with linear terms
can be used to enhance the stability of bifurcation in an
extended parameter domain. This allows us to consider
different functional forms for the control in (18). All these
forms have been shown to enhance the stability of the fixed
point, thus delaying the system bifurcations [1]. It is also
important that only the error terms xk − x∗(ρ∗) from the
nominal operating point is used to preserve the original
operating point.

uk = kcyk
3 Cubic Control Law

uk = klyk + kcyk
3 Mixed Control Law

The stability analysis done in [1] also suggests that kl and kc

be based on the computation of l and b. Clearly, we do not
need a quadratic control due to critical eigendirection being
linearly controllable. Cubic control can be used to change
the nature of emerging period doubling orbit in the presence
of uncertainty. According to the theoretical results in [1]
it is possible to enhance the nonlinear stability terms by
using just the cubic control terms. It is shown that stability
coefficient β2, which decides the nature of bifurcation in

the absence of any control, equals

β2 = −2

(

1

2

(

∂2f

∂qn
k

2

)2

+
1

3

(

∂3f

∂qn
k

3

)

)

. (30)

This coefficient β2, when evaluated for the linearized sys-
tem, decides if the bifurcation will be super (β2 < 0) or
subcritical (β2 > 0) [7]. With the cubic control terms β2 is
changed by the following value:

∆ = −4Cu(r, r, r)lb (31)

where Cu(r, r, r) can be assigned any real value by an
appropriate choice of cubic feedback to stabilize the ensuing
bifurcation.

Along with the linear feedback term there is a sound
reason to use small cubic terms in order to stabilize. The
theorem from [1] supports this idea due to the fact that by
using cubic term it is possible to stabilize the bifurcations
with changes in parameters.
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Fig. 1. (a) Bifurcation diagram with and without control with respect
to R (with pmax modulation). Bifurcation diagrams in blue and red are
plotted without and with control, respectively. (b) Allowed (d, kl) region
lies below the red line for stability.

The effect of linear feedback control designed to stabilize
the linearized version of the original system is difficult to
determine. More precisely, when the bifurcation reappear at
a different value of the bifurcation parameter, for instance,
when the feedback control gain is small, the stability of this
new bifurcation is not easily determined. Hence, using only
a linear stabilizing feedback may be unacceptable if the goal
is to stabilize a bifurcation and not merely to stabilize an
equilibrium point for a fixed parameter value. In addition,
in some cases a linear feedback that locally stabilizes an
equilibrium point may result in globally unbounded behav-
ior, whereas nonlinear feedback exists which stabilizes the
equilibrium both locally and globally [12].

V. NUMERICAL AND NS-2 SIMULATION

In this section we study the effect of washout filter-aided
control on RED by numerical and NS-2 simulations.

A. Numerical examples

Fig. 1 plots the bifurcation diagram with respect to
R0 and the stability region of (d, kl). Here we modulate
pmax for feedback control, and only linear feedback control



is used. The values of parameters used in the numerical
example are as follows:

qmax = 747, qmin = 249, c=40 Mbps, K =
√

3/2,

B = 3, 735, w = 2−5, M = 4 kbits, N = 129,

kl = −15/b, d = 0.2, R0 = bifurcation parameter

As shown in the figure the washout filter-aided control
delays the bifurcation. However, once the bifurcation takes
place with feedback control, the system becomes even more
unstable than the system without feedback control. This
demonstrates the need for nonlinear feedback control as
explained in the previous section.
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w = 4.0 * 10−5, washout filter with first−order term
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Fig. 2. Linear controller vs. nonlinear controller. (a) RED with linear
feedback controller (w = 4.0× 10−5), (b) RED with feedback controller
with both first and third order terms (w = 4.0 × 10−5).
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w = 2.0 * 10−5, washout interval = 500 ms
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Fig. 3. Long-lived connections. (a) RED without feedback controller
(w = 2.0 × 10−5), (b) RED with feedback controller with both first and
third order terms (w = 2.0 × 10−5).

B. NS-2 simulation

In this subsection we run the simulation with only long-
lived TCP connections and compare the performance of
RED with and without the feedback controller. The pa-
rameter pmax is updated once every 500 ms. The gains
for the first and third order terms, i.e., kl and kc, of the
washout filter are set to 10−3 and 2.0× 10−8, respectively,
and d of the washout filter is set to 0.1. These parameters
are not optimized, and the selection of robust parameters is
left for future studies. We compare the performance of the
controller with only linear term and both linear and third
order terms as well.

Fig. 3 shows the evolution of the instantaneous and
average queue sizes. As one can see the RED without any
controller shows unstable behavior, while the RED with a
feedback controller shows very stable behavior. Here we
only show the performance of the controller with both first

and third order terms. However, the controller with only the
linear term shows similar improvement in the stability. This
is because the third order term does not play a significant
role in this example since the system is still stable with the
controller.

Fig. 2 shows the queue evolution with w = 4.0 × 10−5.
Unlike in the previous scenario, with a larger exponential
averaging weight the difference in the performance is more
visible. As one can see the linear controller is not able
to control the average queue size as well as the controller
with both terms, which still exhibits only small oscillations.
This is consistent with the claim that the third order term
(nonlinear term) reduces the amplitude of the oscillations
in the presence of instability.

VI. DISCUSSION

We propose a dynamically adaptive version of RED that
modulates a control parameter utilizing a washout filter
based bifurcation control algorithm. This scheme is studied
both analytically and numerically using a network simulator
ns-2. Preliminary results suggest that it is possible to extend
the stable operation region in parameter space significantly
by using this technique. Furthermore, the stabilized do-
main in averaging weight w is larger than with the PI
controller [8].
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