
Empirical Model Based Control of Nonlinear Processes
using Approximate Dynamic Programming

Jong Min Lee and Jay H. Lee*
School of Chemical and Biomolecular

Engineering
Georgia Institute of Technology

311 Ferst Dr., Atlanta, GA 30332-0100, USA
{jongmin.lee, jay.lee }@chbe.gatech.edu

Abstract— A major difficulty associated with using an
empirical nonlinear model for model-based control is that
the model can be unduly extrapolated into regions of the
state space where identification data were scarce or even
nonexistent. Optimal control solutions obtained with such
over-extrapolations can result in performances far worse than
predicted by the model. In the multi-step predictive control
setting, it is not straightforward to prevent such overuse of
the model by forcing the optimizer to find a solution within
the “trusted” regions of state space. Given the difficulty,
we propose an Approximate Dynamic Programmingbased
approach for designing a model-based controller that avoids
such abusage of an empirical model with respect to the
distribution of the identification data. The approach starts
with closed-loop test data obtained with some suboptimal
controllers, e.g., PI controllers, and attempts to derive a
new control policy that improves upon their performances.
Iterative improvement based on successive closed-loop testing
is possible. A diabatic CSTR example is provided to illustrate
the proposed approach.

I. INTRODUCTION

Model predictive control (MPC) is the most popular
advanced control technique in the process industry owing to
its ability to handle complex multivariable control problems
with constraints. In a typical MPC scheme, a dynamic
model is used to build a prediction of future output behavior,
based on which an online optimization finds a sequence of
input moves that minimize the output deviation from a set-
point trajectory. Thus, an accurate model is essential for a
successful outcome.

While dynamic behavior of most chemical processes
is nonlinear, linear models are used predominantly in
practice because of the difficulty associated with building
an accurate nonlinear model, either by first principles or
system identification. For a widespread use of nonlinear
model-based control, a model-based control method tightly
integrated with a nonlinear system identification methodol-
ogy needs to emerge. Currently, popular nonlinear model
structures studied include Volterra series models, block-
oriented models such as Hammerstein and Wiener models,
bilinear models, and NARX (Nonlinear AutoRegressive
with eXogeneous input) models [1].

To perform a nonlinear system identification, one must
first decide on the regressor structure. For example, for the

*To whom all correspondence should be addressed.

NARX model of the form

ŷ(k + 1) = f (y(k), · · · , y(k − ny), u(k), · · · , u(k − nu))
(1)

one must choose the order parametersny and nu. It has
been suggested that this be done by using methods such
as the False Nearest Neighborhood and Akaike Information
Criterion. This is followed by choosing a functional struc-
ture of f , which can be a basis function series expansion
or a neural network. Finally, the unknown parameters of
f are determined by least squares estimation. All three
steps can contribute significantly to model error. Given little
prior knowledge one typically has in the beginning, the
model order may have to be chosen high and the number
of parameters very large to avoid bias, leading to an ill-
conditioned estimation problem. This is particularly serious
given the difficulty associated with designing and imple-
menting a persistently exciting signal for a general nonlinear
model structure. For example, most industrial processes can
only be mildly perturbed around a few operating points and
this may result in insufficient information about many parts
of transient nonlinear dynamics [2]. Control actions and
performance predictions calculated from a resulting model
may not be reliable given the large variances of the model
and the MPC’s inability to account for them systematically.

Most of the studies on nonlinear-empirical-model-based
control have not addressed the accounting of uncertainty.
One exception is [3] who derived the input weighting
function for a 2nd order Volterra model with stochastic
parameters based on minimization of an expected cost
value. It is worth noting that most formulations for robust
MPC, even those for linear systems, are based onopen-loop
performance objective, which can lead to very conservative
control actions [4].

In an attempt to address several shortcomings of the cur-
rent MPC formulation, including its inability to account for
model uncertainty properly in feedback control’s context,
Lee and Lee [5] suggested an Approximate Dynamic Pro-
gramming (ADP) based strategy, which was inspired by the
approaches of Reinforcement Learning (RL) [6] and Neuro-
Dynamic Programming (NDP) [7] developed by the Arti-
ficial Intelligence (AI) community. This approach attempts
to solve the DP approximately only within limited regions

of state space by utilizing simulation and function approxi-
mation so as to combat the ‘curse-of-dimensionality’. From
the method, one gets an approximation of the cost-to-go
function, which maps the state to the cost-to-go value. The
cost-to-go map then defines an online control policy, which
involves solving a one-stage optimization problem rather
than a multi-stage one. In addition, uncertainties can be
accounted for by including them in the simulation (e.g.,
via Monte Carlo simulation). It showed promise in several
nonlinear control problems [8], [9] and a stochastic optimal
control problem [10].

In this paper, building upon our previous work on ADP,
we present a cost-to-go based control scheme that utilizes
an empirical nonlinear model and is designed to use the
empirical model only in the regions of the state space with
sufficient amounts of identification data. To this end, a
localized approximator is employed for building the cost-to-
go function approximation. A quadratic penalty term based
on the local data density is added in order to discourage
the optimizer from finding a solution in the regions without
adequate amounts of identification data. The approach is
applied on a diabatic CSTR example to highlight the per-
formance differences with the conventional MPC approach.

II. MODEL PREDICTIVE CONTROL USING A
NARX MODEL STRUCTURE

In this section, we present a model predictive control
formulation based on a NARX model structure, which is
given as

y(k + 1) = f (y(k), . . . , y(k − ny), u(k), . . . , u(k − nu))
+ e(k + 1) (2)

wheree is a white noise.f can be parameterized in many
different forms such as neural network, polynomial, etc.

A state space realization of Eq. (2) is constructed as

xT (k) = [y(k), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)]
(3)

x(k + 1) =

0 · · · 0 0
I 0

. ..
...

I 0
0 · · · 0 0
I 0

.. .
...

I 0

x(k)

+

f(x(k), u(k))
0
...
0

u(k)
0
...
0

+

I
0
...
0
0
...
0

e(k + 1) (4)

y(k) =
[

I 0 · · · 0
]
x(k) (5)

We denote Eq. (4) as

x(k + 1) = F (x(k), u(k)) (6)

In using the model for control, in order to compensate for
a possible plant/model mismatch and assure integral action,
we add to the output of the NARX model an integrated
white noiseζ(k). Hence, the overall model becomes

xaug(k) =
[

x(k)
ζ(k)

]
=

[
F (x(k − 1), u(k − 1))

ζ(k − 1)

]

+
[

G 0
0 I

] [
e1(k)
e2(k)

]
(7)

wheree1(k) and e2(k) are independent white noises with
covariance matricesR1 andR2, respectively, and

G =
[

I 0 · · · 0
]T

(8)

Eq. (7) can be recast as
{

xaug(k) = F(xaug(k − 1), u(k − 1)) + Γee(k)
y(k) = Hxaug(k) + ν(k)

(9)
where

H =
[

I 0 · · · 0 I
]

(10)

and

Γe =
[

G 0
0 I

]
(11)

Here artificial white noiseν is added in the model output
for tuning purposes. The augmented state can be estimated
using the following conventional EKF approach:

Prediction

x̂aug(k|k − 1) = F (x̂aug(k − 1|k − 1), u(k − 1))(12)

ŷ(k|k − 1) = Hx̂aug(k|k − 1) (13)

Measurement correction

x̂aug(k|k) = x̂aug(k|k − 1) + L(k) (ỹ(k)− ŷ(k|k − 1))(14)

ŷ(k|k) = Hx̂aug(k|k) (15)

EKF gain calculation

L(k) = Σ(k|k − 1)HT
(
HΣ(k|k − 1)HT + Rν

)−1
(16)

Σ(k|k−1) = Φ(k−1)Σ(k−1|k−1)Φ(k−1)T +ΓeRe(Γe)T

(17)
Σ(k|k) = (I − L(k)H)Σ(k|k − 1) (18)

where Φ(k − 1) =
[

A(k − 1) 0
0 I

]
, Re =

[
R1 0
0 R2

]
, andA(k − 1) = ∂F

∂x

∣∣
x̂(k−1|k−1),u(k−1)

.

Given the state estimate at each time, multi-step predic-
tions of y can be computed recursively for the purpose of
optimal control move calculation. A successive linearization
based scheme suggested by Lee and Ricker [11] computes

the output predictions using the nonlinear model under
the constant input assumption and then adds the effect of
additional input moves based on the linearized model in
order to obtain an affine prediction model with respect
to the input moves. This leads to a quadratic program
(QP) instead of a nonlinear program (NLP) for the optimal
control calculation. The detailed algorithm can be found in
the paper. We compare the performances of this algorithm
and full-fledged nonlinear MPC with the proposed ADP
based method in this paper.

III. APPROXIMATE DYNAMIC PROGRAMMING

In DP, one attempts to solve the following ‘Bellman
equation’ for an entire state space:

J∗∞(x) = min
u
{φ(x, u) + αJ∗∞(Fts

(x, u))} (19)

where φ(x, u) is the single-stage cost,J∗∞ is the α-
optimal cost-to-go function for the infinite horizon problem,
Fts(x, u) is the successor state ofx by applying control
action u and α is a discount factor between 0 and 1.
Stochastic version of the above equation is

J∗∞(I) = min
u

E {φ(x, u) + αJ∗∞(Fts(I, u))|I} (20)

whereI is the information vector available at each time.
For Gaussian systems, it would consist of the state estimate
and the error covariance matrix.

Traditionally, one attempted to solve the equation nu-
merically through discretization of the state space but this
caused the computation to become unwieldy, even for a very
small size problem. The approximate approach attempts
to solve the equation in a limited and approximate sense,
by performing simulations with a number of suboptimal
policies, building an approximate cost-to-go function using
some function approximator, and then improving the cost-
to-go function approximation through the iteration of the
Bellman equation (as in ‘value iteration’) or the iteration
between the Bellman equation and the policy evaluation
(as in ‘policy iteration’). The cost-to-go approximation is
made only in the regions of state space visited during
the closed-loop simulation, thereby significantly reducing
the computational load. The rationale behind this is that,
even though the state space may be huge, only a very
small portion of it will actually be relevant under optimal
control, given a small number of disturbances and setpoint
changes occurring in real operations. In this sense, the
dimension of state space should not be the main determining
factor for the DP computation; rather it should be the
number of operating points and potential disturbances. The
obstacle though is that since one does not have the optimal
controller, the working state space regions for the optimal
controller under given disturbances and setpoint changes
cannot be identified. Hence, one attempts to construct a
superset that includes the relevant regions by closed-loop
simulations with judiciously chosen suboptimal policies. If

one is not successful, the resulting control policy will be
only suboptimal, even though it may still represent a great
improvement from the starting suboptimal policies. Since
the state space for most chemical process control problems
is continuous, some function approximation scheme based
on sampled data should be employed for the cost-to-go
approximation.

In summary, the proposed scheme is characterized by
simulation, function approximation, and evolutionary im-
provement of a control policy within limited regions of state
space. The resulting converged cost-to-go function should
yield an approximately optimal (or at least improved)
control policy. The following is the basic algorithm of the
suggested approach.

1) Perform closed-loop simulations (or identification ex-
periments) with judiciously chosen suboptimal control
policies (µ0) under all representative operating con-
ditions. µ0 can be the PI controller, MPC, etc.

2) Using the simulation (identification) data, calculate
the infinite (or finite) horizon cost-to-go for each state
(Jµ0

) visited during the simulation.

Jµ0
(x(k)) =

∞∑

i=0

αiφ(x(k + i), u(k + i)) (21)

3) Construct a function approximator for the data to
approximate the cost-to-go as a function of the con-
tinuous state variables, denoted hereafter asJ̃µ0

.
4) To improve the cost-to-go approximation, perform

the value or policy iteration until convergence. In
this work, we use the value iteration algorithm. The
difference with the policy iteration algorithm can be
found in [12]. The value iteration is one step approach
where a ‘greedy’ policy is taken based on the current
cost-to-go approximation. The greedy policy chooses
an action for each state that will result in the next state
with the lowest cost-to-go value, i.e., in each iteration
loop, we calculateJ i+1 for the given sample points
of x by solving

J i+1(x) = min
u

{
φ(x, u) + αJ̃ i (Fts(x, u))

}
(22)

where i denotesith iteration step. Once the cost-to-
go values are updated for all the states, then we fit
another function approximator to thex vs. J i+1(x)
data. Note thatFts is the identified NARX model in
our case.

5) Once the cost-to-go converges, one can implement the
control policy defined by the solution to the following
optimization problem:

u(k) = arg min
u(k)

[
φ(x(k), u(k)) + αJ̃∗ (x(k + 1))

]

(23)
whereJ̃∗ is the converged cost-to-go andx(k +1) =
Fts(x(k), u(k)).

IV. PROPOSED APPROACH

One potential problem of using the cost-to-go approxima-
tion based on the simulation or identification data is that it
is only accurate within the regions of the state space where
adequate amounts of data existed. During online optimiza-
tion, however, the optimizer can easily push the solution
to other regions where little data existed thus rendering
the cost-to-go value from the approximator not trustworthy.
Thus, quantifying the accuracy of the cost-to-go estimate
and incorporating this information into the optimization
is essential for success of the suggested approach. We
found that global approximators such as neural networks
can amplify an approximation error, during the offline
value iteration, whereas a certain class of localized function
approximators including the k-nearest neighbors and kernel-
based local averager show nice convergence behavior [13].
Local averaging has another advantage that quantifying the
confidence in the cost-to-go approximation can be done very
naturally based on the local data distribution. The measure
of confidence can be used to define a ‘risk’ term, which
can be included in the objective function to discourage the
controller from venturing into the regions of state space for
which the confidence is low.

In this paper, we employ a distance-weighted k-nearest
neighbor approximation scheme defined as

J̃(x) =
∑

xi∈Nk(x)

wiJi (24)

where

wi =
1/di∑
i 1/di

(25)

,
di = ‖x− xi‖2 (26)

, andNk(x) is the k-nearest neighboring points ofx.
We can show that this local averager schemeguarantees

the convergence of the offline value iteration, but it can
still introduce significant bias where the data amount is not
adequate. Thus, it is important to use the approximated cost-
to-go values cautiously by considering the data distribution
associated with them. To estimate the local data density, a
multi-dimensional Parzen probability density function [14]
is employed. Suppose that we have a training data setΩ and
a new query pointx. Estimate of Parzen density, denoted
here by fΩ(x) is obtained as a sum of kernel functions
placed at each sample inΩ.

fΩ(x) =
1

Nσm0

N∑

i=1

1
(2πσ2)

m0
2

exp
(
−‖x− xi‖22

2σ2

)
(27)

wherex, xi ∈ Rm0 , m0 is the state dimension, andσ is a
user-given bandwidth parameter. Note thatN is the number
of neighboring data points for estimating cost-to-go.

Then, we incorporate into the cost-to-go a quadratic
penalty term based onfΩ(x):

J̃(x) ⇐ J̃(x) + Jbias(x) (28)

Jbias(x) = A ·H
(

1
fΩ(x)

− ρ

)
·
[

1
fΩ(x) − ρ

ρ

]2

(29)

where H is a heavy-side step function,A is a scaling
parameter, andρ is a threshold value. In this work,ρ is
the data density corresponding to the user-given bandwidth
parameterσ, andA is calculated so as to assign some large
cost-to-go valueJmax to Jbias at ‖x− xi‖22 = (3σ)2.

With the above, we can attempt to learn an improved con-
trol policy while utilizing the identified model cautiously.
The procedure is described as follows:

1) Perform closed-loop identification experiments in all
possible operating regions by injecting dither signals
into the control actions.

2) Identify a NARX model by fitting a parameterized
structure (e.g., neural network or polynomial, etc) to
the data.

3) Perform the value iteration with the identified model
and the initial cost-to-go data until the cost-to-go’s
converge. To bound the cost-to-go in the offline
iteration steps, the additive penalty term is set asJmax

wheneverJ̃(x) ≥ Jmax.
4) Online control action is calculated from (23).

Note that, in both the offline iteration and the online control
calculation, the modifiedJ̃ of (28) is used. The penalty
term is intended to prevent the optimizer from exploring
into sparse data regions where both the cost-to-go and the
identified state transition model are highly uncertain.

Since the approximated cost-to-go based on the local
averager is not smooth in general, manipulated variableu
is discretized into a set of values for global optimization in
order to avoid local minima in solving (22) and (23).

V. SIMULATION EXAMPLE: CSTR

An example of CSTR with a first-order exothermic
reaction is considered to highlight the key aspects of the
suggested approach.

ẋ1 = −x1 + Da(1− x1) exp
(

x2

1 + x2/ϕ

)

ẋ2 = −x2 + BDa(1− x1) exp
(

x2

1 + x2/ϕ

)
(30)

+ β(u− x2)
y = x1

where x1 and x2 are the dimensionless reactant concen-
tration and reactor temperature, respectively. The inputu
is the cooling jacket temperature.Da, ϕ, B and β are
Damk̈ohler number, dimensionless activation energy, heat
of reaction and heat-transfer coefficients, respectively. With
the following choice of the parameters:

Da = 0.072, ϕ = 20.0, B = 8.0, β = 0.3 (31)

the system shows three steady states. The control objective
is to take the system from a stable equilibrium point
(x1 = 0.144, x2 = 0.886, u = 0.0) to an unstable one
(x1 = 0.445, x2 = 2.7404, u = 0.0).

A. Identification using Closed-Loop Data

A NARX structure with a feed-forward neural net-
work was used to identifyf using data from closed-
loop operations under a PI controller. One can decide
the particular structure of the model by using a step-
wise model building algorithm discussed in [15]. With
the dimensionless sample time of 0.5, the output of
next time stepy(k + 1) was found to be a function
of [y(k), · · · , y(k − 3), u(k), · · · , u(k − 3)] [16]. Thus, the
state vectorx is defined as in (3) withny = 3 andnu = 3.

To cover pertinent operating ranges, different controller
gains were used under the setpoint of 0.4450. The selected
gain values were 9, 6.75, and 4.5 with the same integration
time of 83.3 (sample time). For each closed-loop exper-
iment, the input was dithered at each sample time with a
random noise generated from [-0.03 0.03] under the uniform
distribution. 12 set of experiments were executed and we
collected 2820 input-output data points.

The neural network has seven hidden nodes with eight
inputs,x(k), u(k), and one output,y(k+1). The parameters
were identified with the MATLAB Neural Network Toolbox
[17] with the fitting tolerance (MSE) set as 1e-5.

B. Model Predictive Control

We tested both successive linearization based MPC
(slMPC) method described in [11] and nonlinear program
based MPC (NMPC) with the EKF estimator. A prediction
horizon of 7, a control horizon of 1, an output weight of
50 and an input weight of 1 were used. The regulation
performances are shown in Fig. 2. Larger control horizon
choices were found to yield worse performances, probably
due to the optimizer settling at local minima.

Fig. 1 shows clearly that the poor regulation performance
during the transient period is due to the extrapolation to
unexplored regions. It is noteworthy that the output and

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−3

−2

−1

0

1

2

3

 x
1

 x
5

ID data
NMPC
slMPC

initial state

set−point

Fig. 1. State trajectories of MPC: plot ofx1 vs. x5.

input weights had to be detuned significantly in order to

achieve closed-loop stability. The ratio between the output
weight and the input weight had to be decreased to 5.

C. Value Iteration Scheme: J-Learning

For the 2820 data, value iteration was performed with
the k-nearest neighborhood approximator, which averages
four neighboring points (k = 4). Using a discount factor of
0.98, initial cost-to-go values were calculated by (21) with
the following definition of one-stage cost:

φ(x(k), u(k)) = 50(0.4450−y(k+1))2+(u(k)−u(k−1))2

(32)
Hence, with the ADP based method, we are attempting to
derive a much less detuned controller that still maintains
closed-loop stability. The convergence criterion used for the
value iteration was

erel =
∥∥∥∥

J i(xk)− J i−1(xk)
J i−1(xk)

∥∥∥∥
∞

< 0.01 (33)

wherek = 1, · · · , 2820 and i is the iteration index.
The offline value iteration converged after 31 steps and

theerel was decreased monotonically. The parameters of the
penalty function were set asσ = 0.1587 (1% of normalized
distance range),ρ = 6.6× 10−9, A = 0.0696, andJmax =
200. Fig. 2 shows the improved performance and Fig. 3
illustrates that the suggested strategy uses the model in the
vicinity of the data and avoids undue extrapolations.

20 40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

y

slMPC
NMPC
Best−tuned PID
ADP
Set−point

Fig. 2. Comparison of the closed-loop performances.

We compare the online regulation performance by calcu-
lating the infinite horizon cost, defined as

∞∑

k=0

φ(x(k), u(k)) (34)

Table I shows that the ADP-based scheme improved the
starting control policies (PI controllers), while avoiding the
extrapolation problem seen in the nonlinear empirical model
based MPCs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−3

−2

−1

0

1

2

3

 x
1

 x
5

ID Data
ADP

Fig. 3. State trajectory of ADP-based approach: plot ofx1 vs. x5.

TABLE I

COMPARISON OFONLINE PERFORMANCES: INFINITE HORIZON COST

Detuned PI ADP
slMPC NMPC Kc = 4.5 6.75 9.0

165 42.0 60.9 43.8 58.0 27.2

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented an ADP-based data-driven
control algorithm, which iteratively learns a cost-to-go
function from the data collected through closed-loop iden-
tification experiments. The learned cost-to-go function was
adjusted by a penalty term based on the distribution of local
data used for averaging. The penalty term was intended
to discourage the optimizer from finding a solution in the
regions of the state space with insufficient amounts of data.

If we map all relevant state and action pairs into cost-to-
go values, no model would be necessary at all. This would
let us avoid the problem of choosing the model’s functional
structure. Such a model-less scheme is called Q-learning
in the AI field [6], [7]. However, for continuous state
space systems such as in most process control problems,
the conventional Q-learning framework designed for finite
Markov Decision Problems is not appropriate since it is
unlikely that exactly same states will be visited multiple
times.

Motivated by this, we also developed a policy-iteration
type Q-learning method, in which the policy evaluation step
requires the real implementation of the improved policy.
The policy implemented based on the current estimate of
Qi is in the form of

µi(x(k)) = arg min
u

Q̃i(x(k), u) (35)

After collecting closed-loop data with the above policy in
place, the policy evaluation forµi can be done iteratively

using the equation

Qi+1,`+1(x(k), u(k)) = Qi+1,`(x(k), u(k)) + γ [φ(k)

+ αQ̃i+1,`(x(k + 1), µi(x(k + 1)))−Qi+1,`(x(k), u(k))
]

(36)

wherei is the iteration index for policy improvement,` is
the index for the policy evaluation andγ is a learning rate
parameter. The newQ function yields yet another policy
and this can continue on until no more improvement is seen.
This leads to an evolutionary improvement scheme, which
is not elaborated here due to the space limitation.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support
of National Science Foundation (Grant CTS - 0301993).

REFERENCES

[1] J. Sj̈oberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y.
Glorennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box
modeling in system identification: A unified overview,”Automatica,
vol. 31, pp. 1691–1724, 1995.

[2] H. T. Su and T. J. McAvoy, “Integration of multilayer perceptron
networks and linear dynamic models: A hammerstein modelling
approach,”Ind. Eng. Chem. Res., vol. 32, pp. 1927–1936, 1993.

[3] Y. Chikkula and J. H. Lee, “Robust adaptive predictive control
of nonlinear processes using nonlinear moving averager system
models,” Ind. Eng. Chem. Res., vol. 39, pp. 2010–2023, 2000.

[4] J. H. Lee and Z. Yu, “Worst-case formulation of model predictive
control for systems with bounded parameters,”Automatica, vol. 29,
pp. 911–928, 1993.

[5] J. M. Lee and J. H. Lee, “Simulation-based learning of cost-to-go
for control of nonlinear processes,”Korean J. Chem. Eng., vol. 21,
no. 2, 2004, in press.

[6] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[7] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[8] N. S. Kaisare, J. M. Lee, and J. H. Lee, “Simulation-based strategy
for nonlinear optimal control: Application to a microbial cell reactor,”
International Journal of Robust and Nonlinear Control, vol. 13, pp.
347–363, 2002.

[9] J. M. Lee and J. H. Lee, “Simulation-based dual mode controller for
nonlinear processes,” inPreprints of 7th International Symposium on
Advanced Control of Chemical Processes, vol. 1, Hongkong, China,
jan 2004, pp. 225–230.

[10] ——, “Neuro-dynamic programming approach to dual control prob-
lem,” presented at the AIChE Annual Meeting, Reno, NV, 2001.

[11] J. H. Lee and N. L. Ricker, “Extended Kalman filter based nonlinear
model predictive control,”Ind. Eng. Chem. Res., vol. 33, pp. 1530–
1541, 1994.

[12] N. S. Kaisare, J. M. Lee, and J. H. Lee, “Comparison of policy
iteration, value iteration and temporal difference learning,” presented
at the AIChE Annual Meeting, Indianapolis, IN, 2002.

[13] J. M. Lee, N. S. Kaisare, and J. H. Lee, “Simulation-based dy-
namic programming strategy for improvement of control policies,”
presented at the AIChE Annual Meeting, San Francisco, CA, 2003.

[14] E. Parzen, “On estimation of a probability density function and
mode,” Ann. Math. Statist., vol. 33, pp. 1065–1076, 1962.

[15] M. Kortmann and H. Unbehauen, “Structure detection in the identi-
fication of nonlinear systems,”Autom. Prod. Infor. Ind., vol. 22, pp.
5–25, 1988.

[16] E. Herńandez and Y. Arkun, “Control of nonlinear systems using
polynomial ARMA models,”AIChE Journal, vol. 3, pp. 446–460,
1993.

[17] H. Demuth and M. Beale,Neural Network Toolbox User’s Guide
(MATLAB). Natick, MA: The MathWorks, Inc., 2002.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThM13.5
	Page0: 3041
	Page1: 3042
	Page2: 3043
	Page3: 3044
	Page4: 3045
	Page5: 3046

