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Abstract— This paper proposes a prototype mechanical recti-
fier (PMR) that captures essential dynamics underlying animal
locomotion by a simple pendulum-disk configuration. We use
the PMR to study the control mechanism of animal locomotion.
In particular, we shall verify via numerical experiments the
prediction from biological observations that a central pattern
generator (CPG) with a decentralized structure is capable of
coordinating the body motion to achieve locomotion with the aid
of sensory feedback. The efficiency of locomotion achieved by
the decentralized CPG is also investigated in comparison with
analytical results we derive for statically optimal locomotion.

I. INTRODUCTION

Most animal locomotions such as walking, swimming,
crawling, and flying, are achieved by periodic motion of the
body, coupled with the surrounding environment to generate
propelling force. For instance, a snake crawls by undulating
its body on the ground, while a bird flies by flapping its wings
in the air. The coupled body-environment system may be
conceived as a “mechanical rectifier” that converts a periodic
motion input to a biased forward velocity [1]. Biologists have
found evidence that rhythmic animal motions are generated
through muscle contractions commanded by certain neuronal
elements called central pattern generators (CPGs). Thus,
animal locomotion is realized by effective coupling of a CPG
and a mechanical rectifier.

The CPG is a biological oscillator consisting of a group
of neurons networked in a specific way that allows for
generation of stable limit cycles with appropriate phase and
frequency. In effect, the CPG is a neuronal controller that
drives the mechanical rectifier to achieve certain animal loco-
motion. The architecture of CPGs (i.e., how the neurons are
connected) has been extensively studied for a wide variety of
animals, and their mathematical models have been developed
and validated through carefully designed experiments [2]–[4].
Thus, significant knowledge has been generated through ex-
perimental studies to explain how biological motion control
systems work.

Until very recently, the flow of information through the
nerve cord has been believed to be essential to coordinate
oscillations of various body parts to generate locomotion (see
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e.g. [5] for a survey). However, recent study [6] by Yu et al.
showed that it is not true. They examined experimentally how
the swimming motion of leeches is affected when the nerve
cord is severed at the mid-cord. Surprisingly, the coordinated
undulatory locomotion continued to be observed afterward,
albeit with greater than normal phase lags. This means that
the information necessary for coordination can flow through
the body as mechanical signals, and each of anterior and
posterior CPGs is capable of extracting the information to
determine an appropriate phase. Thus, CPGs can achieve
coordination without directly communicating to each other
with the aid of sensory feedback. From an engineering view
point, this suggests possibility for decentralized feedback
control of mechanical locomotion systems.

The main objective of this paper is to validate the pre-
diction that a CPG-based feedback controller with a decen-
tralized structure is capable of coordinating the motion of a
mechanical rectifier to achieve locomotion. To this end, we
shall first develop a prototype mechanical rectifier (PMR) that
captures essential dynamics of the coupled body-environment
system for animal locomotion. The PMR consists of a double
pendulum and a rotating disk, and this simple structure allows
us to see how the rectification occurs through the interaction
between the body (pendulum) and the environment (disk). We
will then develop a CPG-based controller with a decentral-
ized structure using the reciprocal inhibition oscillator (RIO)
[7]–[9] as a basic unit. Most parameters of the controller
and the PMR are fixed to some nominal values through
nondimensionalization. A few parameters remained are used
to study the behavior of the closed-loop CPG-PMR system.

Our first result confirms that locomotion of the PMR
can be achieved by the decentralized CPG for a range
of parameter values. If biological systems have evolved to
optimize a certain property such as energy efficiency, we
would expect to find some optimality in our CPG-based
controller. If so, the question is: what would be the cost
function optimized by the CPG-based controller? We attempt
to answer this question by developing an analytical char-
acterization of statically optimal locomotion and comparing
observations from numerical experiments with the optimal
behavior.



II. PROTOTYPE MECHANICAL RECTIFIER

A. Overview

Consider a mechanical system composed of a double
pendulum and a rotating disk as shown in Fig. 1. The pivot
O of the pendulum is fixed to the inertial frame, and the two
joints O and A are equipped with DC motors to generate
torques u1 and u2 and optical encoders to measure the
angular displacements θ1 and θ2. The tip of the pendulum B
is not fixed to, but just touches, the disk, and exerts friction
force on the disk. The center of the disk is fixed to the inertial
frame through a bearing and the disk can rotate around C.

Fig. 1. Prototype mechanical rectifier (PMR)

The intended operation of the system is basically to swing
the pendulum to make the disk rotate. The closest analogy
would probably be human legs trying to propel a bicycle.
Since the tip B of the pendulum is not fixed to the disk,
there are three degrees of freedom instead of one, and the
dynamics is more complex than riding on a bike. In fact,
the system captures the essential dynamics of many forms
of animal locomotion. The key is that oscillatory motion of
the body (the pendulum) can generate locomotion (steady
rotation of the disk) if and only if the oscillations of body
parts are appropriately coordinated. This property motivates
us to call the system a PMR.

B. Basic model

The differential equations governing the motion of the
PMR can be derived through an application of the first
principle. For simplicity, we impose the following:

Assumption 1:

(a) Each link has a uniform mass distribution and the both
links have the same mass density and an identical shape
(i.e., proportional dimensions).

(b) There are frictions at the disk bearing C and the contact
point B between the disk and the pendulum, and their
magnitudes are proportional to the angular velocity of
the disk and the relative velocity between the pendulum
tip and point B on the disk, respectively.

Under these assumptions, the equations of motion, after a
normalization, can be given by

Jθ θ̈ + Gθ θ̇
2 + c Vθ

T(Vθ θ̇ + vθ θ̇o) + hθ g = Bu ,
J oθ̈o + c vθ

T(Vθ θ̇ + vθ θ̇o) + θ̇o = 0,
(1)

where the time axis is scaled as τ := c bt and

θ :=

[

θ1
θ2

]

, u :=

[

u1

u2

]

, Ωθ :=

[

cos θ1 cos θ2
sin θ1 sin θ2

]

,

Cθ :=

[

cos θ1 0
0 cos θ2

]

, Sθ :=

[

sin θ1 0
0 sin θ2

]

,

B :=

[

1 −1
0 1

]

, e :=

[

1
1

]

, z c :=

[

yc/`1
−xc/`1

]

,

c c := cc(`
2
1/J1), c b := cb/J1, c := c c/c b, α := `2/`1,

J o := Jo/J1, g := g/(`1c 2
b
), u (τ) := u(t)/(J1c 2

b
),

Jθ := J + SθHSθ +CθHCθ, Gθ := SθHCθ −CθHSθ,

Vθ := ΩθL , vθ := ΩθL e+ z c, hθ := Sθh ,

J :=

[

1 0
0 α5

]

, H := 3

[

1 + 4α3 2α4

2α4 α5

]

,

h := 6

[

1 + 2α3

α4

]

, L :=

[

1 0
0 α

]

,

and the variables and parameters are summarized below.

θo rotational angle of disk
θ1, θ2 link angles from downward vertical
u1, u2 torque inputs
`1, `2 link lengths

(xc, yc) coordinate of disk center (O is the origin)
cb, cc friction coefficients at bearing and contact

Jo, J1, J2 moments of inertia for disk and links

Clearly, the first equation in (1) is for the pendulum, while
the second for the disk. The torque input u generates periodic
motion θ of the double pendulum which in turn interacts with
the disk through a frictional coupling to yield its rotation
with velocity θ̇o. Thus the PMR represents typical dynamics
found in animal locomotion where periodic body motion,
interacting with the environment, produces biased velocity.
Indeed, mathematical models of an n-link robotic snake [10],
[11] also have this exact structure.

C. Statically optimal locomotion of PMR
In this section, we shall discuss optimal locomotion of the

PMR. Reasonable ways to define the notion of optimality are
not unique. For instance, it may be defined by minimality
of the average power θ̇TBu over a cycle supplied as the
torque input u to achieve a given locomotion speed θ̇o.
Alternatively, the average value of ‖u ‖2 − θ̇2

o
in the steady

state may be used as the cost function to be minimized.
Our interest here is to define a particular cost function in
such a way that the locomotion achieved by our CPG-based



controller is close to the optimum with respect to the chosen
criterion. In other words, we look for a criterion with which
a CPG-based controller seems to optimize the locomotion.

Among the criteria we have considered, including the
kinetic energy and the energy loss due to the frictions,
the average value of the pendulum tip speed ‖vtip‖ during
locomotion at a given speed θ̇o = ωo turns out to be the
best candidate for the cost function minimized by CPG-based
controllers.

Let us formalize the optimality criterion as follows.
Definition 1: A function θ(t) is called a trajectory of the

PMR if it satisfies (1) for some u (t) and θo(t). A trajectory
θ(t) of the PMR is called a statically optimal trajectory with
locomotion speed ωo if it possesses the following properties:
(a) θ̇o(t) ≡ ωo for all t.
(b) At every time instant, θ̇(t) minimizes ‖vtip(t)‖.
(c) The initial condition θ(0) minimizes the average value

of ‖vtip(t)‖ in the steady state.
Property (a) means that the PMR locomotion is achieved at
a constant disk speed of ωo. Property (b) specifies θ̇ as a
function of θ at every time instant, and thus the trajectory
is completely determined once an initial condition is given.
Property (c) states how the initial condition should be chosen.

It would be more natural to consider a dynamically (rather
than statically) optimal trajectory that minimizes the average
value of ‖vtip‖ during the steady state locomotion with
speed ωo. However, it seems difficult to obtain a simple
characterization of the dynamically optimal trajectory. On
the other hand, if we consider a statically optimal trajectory
as above, we can obtain clean analytical results that are
useful for examining optimality of CPG-induced locomotion
as shown below.

Let us first consider the class of trajectories that have
Properties (a) and (b). It can be verified that the cost function
is expressed as ‖vtip‖ = ‖Vθ θ̇‖. So the problem is to
minimize this expression subject to (1) and θ̇o(t) ≡ ωo.
Noting that B in (1) is invertible and u does not appear
explicitly in the cost function ‖Vθ θ̇‖, we may ignore the first
equation in (1) and concentrate on the trajectory optimization
based on the second equation. This is because any smooth
trajectory can be generated by an appropriate choice of u due
to invertibility of B. So we formulate the following problem:

min
θ̇

‖Vθ θ̇‖ subject to c vθ
T(Vθ θ̇ + vθ ωo) + ωo = 0 (2)

where ωo 6= 0 is a given (constant) locomotion velocity.
This is a static optimization problem in which we choose
the best θ̇(t) based on the current state θ(t). It turns out that
the optimal dynamics θ̇ = f(θ) chosen in this way gives
rise to a periodic solution with constant ‖vtip(t)‖. The initial
condition θ(0) can then be chosen to minimize ‖vtip(t)‖ to
satisfy Property (c). Thus we have the following result.

Theorem 1: Let ωo 6= 0 and a trajectory θ(t) of the PMR
be given. Suppose that the double pendulum does not become

straight along the trajectory. Then it is a statically optimal
trajectory with locomotion speed ωo if and only if

θ̇ = −2ωoVθ
−1vθ , ‖vθ (0)‖ = 1/

√
c .

In this case, we have

vθ (t) =

[

cosωt sinωt
− sinωt cosωt

]

vθ (0), ω := 2ωo.

Thus the tip of the double pendulum rotates in a circular
orbit with radius 1/

√
c and frequency 2ωo. Moreover, the

tip speed ‖vtip‖ is constant and is given by

‖Vθ θ̇‖ = 2ωo/
√

c .

We remark that, if the objective function in (2) is re-
placed by the instantaneous power loss due to the friction,
c ‖Vθ θ̇ + vθ ωo‖ + ω2

o , then the corresponding statically
optimal trajectory is exactly the same as the one in Theorem 1
except for the initial condition ‖vθ (0)‖. The best choice
for ‖vθ (0)‖ to minimize the power loss is the physically
allowable maximum value, 1 + α − ‖z c‖2, which occurs
when the pendulum is straight and passes through the disk
center. In this case, however, the trajectory is no longer well
defined due to the singularity of Vθ .

III. CPG-BASED FEEDBACK CONTROL

The objective of this section is to develop an architecture
for CPG-based controllers with a decentralized structure,
based on the knowledge from the biological literature.

A. Neuron model
The neuronal dynamics can be modeled as an input-output

system v = N (i) from the current injection input i to the
membrane potential output v [12]. A structure for the neuron
model may be given by

v = A(q), q = F(i)

where A and F represent the dynamical mappings of the
axon and the soma/dendrites part, respectively, and q is the
current flowing from the soma to the axon.

In this paper, we adopt the Lur’e model for neuronal
dynamics [13], [14], in which F is given by

F (s) =
ks

(1 + τ1s)(1 + τ2s)

and A is given by

τv v̇ = ψ1(v) − w + q
τwẇ = ψ2(v) − w

(3)

where functions ψk (k = 1, 2) are defined by

ψ1(v) = cφ(av) + qo − bv
ψ2(v) = φ(d(v + vo))

, φ(x) :=
1

1 + e2−4x
.

Note that φ is a sigmoid function (i.e., monotonically in-
creasing and bounded). All the parameters except for qo and
vo are positive, leading to “N -shaped” −ψ1 and sigmoidal
ψ2.



B. Reciprocal inhibition oscillator
The reciprocal inhibition oscillator is the simplest CPG

consisting of two neurons with mutually inhibitory synaptic
connections [8]. The block diagram of the RIO is shown in
Fig. 2 where two neurons N are connected via inhibitory
synapses with strength σ. Note that the RIO has inputs ri

and outputs vi (i = 1, 2).
Fig. 3 shows the time response of an RIO when an impulse

input is applied to r2. As shown, the typical response is given
by alternating oscillations in v1 and v2 with 180 degree phase
difference. In this simulation, the impulse is of intensity 1,
and the model parameters are taken from [15], [16] with a
modification that the time axis and the membrane potential
variable v are scaled so that the period of the RIO oscillation
is 2π and the integral of v1 over one period is 2 (which is
the area under the sinusoidal curve sin t (0 ≤ t ≤ π)). The
parameter values are summarized in Appendix.

This RIO is bistable when the inputs are zero, with a stable
equilibrium and a stable limit cycle (spike train). The impulse
input pushes the states from the equilibrium into the domain
of attraction of the limit cycle. The condition on the RIO
parameters for existence of an oscillatory solution has been
obtained in [16].
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Fig. 2. RIO

0 10 20 30

0

1

2

v 1

0 10 20 30

0

1

2

v 2

Time

Fig. 3. Oscillation profile of the RIO

C. Decentralized control architecture
The RIO described in the previous section is used to drive

the PMR. All the RIO parameters are fixed as in Appendix
except for the base frequency $ which remains as a design
parameter. Recall that the PMR can be actuated through the
two torque inputs u i (i = 1, 2) at the pivot and joint of the
double pendulum. We assume that the relative angles

φ1 := θ1, φ2 := θ2 − θ1

are measured and conditioned through nonlinearities

ϕi(φ) := ai tanh(bi(φ− φio))

where ai and bi are positive constants and φio are the
nominal relative angles. We shall drive each input u i by
an RIO based on the sensory signal through the feedback
gain κi as shown in Fig. 4. Note that this is essentially a
positive feedback where the positive/negative φi − φio tends
to generate positive/negative u i.
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Fig. 4. CPG-based control system

The CPG consists of the two RIOs and has a decentral-
ized structure, i.e., there is no direct communication path
between the RIOs. Based on the biological observation of
leech swimming, we expect that the decentralized CPG is
capable of inducing locomotion of PMR. In particular, the
information from the sensory feedback should be enough to
coordinate the RIO oscillations.

IV. NUMERICAL EXPERIMENTS

This section examines feasibility/optimality properties of
the CPG-based control architecture developed in the previous
section through numerical experiments. In particular, we
assess whether there exists a set of controller parameters that
yields locomotion of the PMR, and, if so, study optimality
properties of CPG-induced PMR locomotion.

We conduct numerical experiments of the control system
in Fig. 4. We use an identical system for both RIO-1 and
RIO-2, which is given by the block diagram in Fig. 2 where
the neuron model N is as described in Section III-A with pa-
rameters in Appendix. In this preliminary study, we consider
the simple case where κ1 = κ2 =: κ. The normalized PMR
model (1) is used in the simulation. We assume that there is
no gravity g = 0. In this case, we can assume xc = 0 without
loss of generality by choosing an appropriate coordinate
system. The remaining PMR parameters are chosen to yield a
generic configuration; the two links of the double pendulum
have the same length (α = 1), the disk center is located at
the three-quarter of the total pendulum length from the pivot
(yc = −1.5), the moment of inertia for the disk is several
times larger than the link (Jo = 5).

Throughout the experiments, the impulse input pδ(t) is
applied to the RIOs through r12 and r21 channels to initiate
the RIO oscillation when the system is at rest in the nomi-
nal configuration. The intensity p is chosen slightly above
the threshold pth above/below which the RIO oscillation
does/does not occur. The nominal PMR configuration is
defined by alignment of the pendulum tip and the disk



center. Thus the nominal relative angles are given by 2φ1o =
−φ2o = 82.82deg. The other parameters ai and bi in the
sensory signal conditioners ϕi are roughly determined so that
a reasonable pendulum oscillation provides almost saturating
inputs to the RIOs of magnitude comparable to the threshold
of the neuron model (a1 = a2 = 0.1, b1 = 6, b2 = 2).

Once the structure of the CPG-based controller is fixed
from biological observations, the essential design parameters
of the controller are the feedback gain κ and the base
frequency $ of the RIO. In the following, we will study
the locomotion properties for various values of κ, $, and
the friction coefficient c .

A. Decentralized coordination

We fix the parameters c and $ to be c = 50 and $ = 1.
If the gain κ is small, the connection between the PMR and
the CPG is weak, and hence the RIOs oscillate near the base
frequency $ as in Fig. 3, and the double pendulum oscillates
with a small amplitude with no locomotion observed in the
steady state. When the gain is increased above a threshold
value, the tip of the double pendulum starts to encircle the
disk center, resulting in locomotion of the PMR. That is, the
average value of the disk velocity ωo := θ̇o is nonzero over
a period. Such locomotion is observed when 1.6 ≤ κ ≤ 3.1.
If the gain is further increased, the double pendulum goes
“wild” and a chaotic motion results (without locomotion).
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Fig. 5. Decentralized RIOs achieve locomotion (time responses)

Fig. 5 shows the time responses for the case κ = 3. We
see that the double pendulum enters, after an initial transient,
the steady state where the relative angles φ1 and φ2 oscillates
in a sinusoid-like manner with a constant phase difference.
As a result, the locomotion speed ωo is periodic with a large
bias and small fluctuations. The activities of the RIOs can
be seen from the torque plots. Note in particular that the two

RIOs are just out of phase with each other at the beginning,
but they become coordinated through the sensory feedback
in the steady state. The corresponding steady state trajectory
of the tip of the double pendulum is shown in Fig. 6 where
the tip moves clockwise.

In summary, the CPG of decentralized structure is capable
of coordinating the pendulum motion and inducing locomo-
tion of the PMR with the aid of sensory feedback, as expected
from the biological observation of leech swimming.
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Fig. 6. PMR and its tip trajectory

B. Optimality

In this section, we shall examine efficiency of the PMR
locomotion achieved by the CPG. As a measure of efficiency,
we adopt the average value of the tip speed ‖vtip‖ of the pen-
dulum, and the efficiency of the CPG-based controller will
be compared with that of the statically optimal locomotion
discussed in Section II-C.

The friction coefficient is fixed as c = 100 (for different
values of c roughly in the range 50 ≤ c ≤ 200, one can
obtain similar results to those presented below), and the other
parameter values are as given before. We have gridded the
parameter plane ($,κ) and identified the region where the
controller achieves locomotion. Fig. 7(a) shows this region
with contours of the achieved locomotion speed ωo.

For each grid point on the ($,κ) plane, the average
value of the pendulum tip speed ‖vtip‖ and the locomotion
speed ωo are calculated whenever locomotion is achieved.
These values define a point on the (ωo, ‖vtip‖) plane which
is marked by a dot in Fig. 7(b). The straight line in the
figure shows the ωo-‖vtip‖ relation for the statically optimal
locomotion (‖vtip‖ = 2ωo/

√
c ). The lower right boundary

of the set of the dots (marked by ‘∗’) gives the Pareto-optimal
points on which no other choice of the controller parameters
exists to achieve the same locomotion speed with less control



effort measured by ‖vtip‖. The Pareto-optimal curve is fairly
close to the statically optimal line.

The parameter values corresponding to the Pareto-optimal
points are marked by ‘∗’ in Fig. 7(a). We see that the best
feedback gain, for a given base RIO frequency $, is given
by the maximum value of κ for which locomotion occurs.
This indicates the lack of robustness of the Pareto-optimal
controllers with respect to the gain perturbation. Fig. 7(c)
shows the relation between the pendulum frequency1 ω and
the locomotion speed ωo. The Pareto-optimal cases indicated
by ‘∗’ are well aligned with the statically optimal relation
ω = 2ωo. Fig. 7(d) shows the orbit of the pendulum tip
during locomotion for different values of κ where $ is fixed
as $ = 2. As the gain κ gets larger, the orbit becomes
larger, and just before losing locomotion, the orbit is of size
comparable to the statically optimal orbit indicated by the
dashed circle (the radius is 1/

√
c = 0.1).

In summary, we have found that (i) the Pareto-optimal
feedback gain κ is always at the upper boundary of the
parameter region for guaranteed locomotion on the (κ,$)
plane, and in which case, (ii) the RIO-based controller can
achieve the performance close to the static optimum as
measured by the average speed of the pendulum tip.
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V. CONCLUSION

We have examined the property of the CPG-based feed-
back controller with a decentralized structure in the context
of driving a PMR that captures the essential dynamics of
animal locomotion. The main findings in this paper can be
summarized as follows:

1The pendulum frequency ω is always found close to 0.9$ regardless of
the feedback gain κ.

• The decentralized controller is capable of inducing
locomotion of the PMR for a range of the feedback
gain values κ and the RIO base frequency $.

• The controller yields reasonable PMR locomotion in the
sense that a given locomotion speed is achieved without
excessive control effort (the pendulum tip speed), when
compared with the statically optimal trajectory.

Numerous issues still remain for further investigation, in-
cluding: (i) the effect of gravity, moment of inertia of the
disk, and the ratio of the link lengths; (ii) the importance
of neuronal dynamics in RIOs to generate spike trains with
adaptation, (iii) the benefit of a direct communication path
between the RIOs.

APPENDIX

RIO parameters
γv = 2/0.544, γt = 2π/(186.8$),
τv = γt/γv, τw = γt/0.3, qo = −0.2, vo = −0.35γv,
a = 1.8/γv, b = 3/γv, c = 2.2, d = 5/γv,
k = 10γt, τ1 = 10γt, τ2 = 100γt, σ = 8/γv.
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