
Visualization of PLC Programs using XML

M. Bani Younis and G. Frey
Juniorprofessorship Agentenbased Automation

University of Kaiserslautern
P. O. Box 3049, D-67653 Kaiserslautern, Germany

Abstract − Due to the growing complexity of PLC programs
there is an increasing interest in the application of formal
methods in this area. Formal methods allow rigid proving of
system properties in verification and validation. One way to
apply formal methods is to utilize a formal design approach in
PLC programming. However, for existing software that has to
be optimized, changed, or ported to new systems there is the
need for an approach that can start from a given PLC pro-
gram. Therefore, formalization of PLC programs is a topic of
current research. The paper outlines a re-engineering ap-
proach based on the formalization of PLC programs. The
transformation into a vendor independent format and the
visualization of the structure of PLC programs is identified as
an important intermediate step in this process. It is shown
how XML and corresponding technologies can be used for the
formalization and visualization of an existing PLC program.

I. INTRODUCTION
Programmable Logic Controllers (PLCs) are a special

type of computers that are used in industrial and safety-
critical applications. The purpose of a PLC is to control a
particular process, or a collection of processes, by produc-
ing electrical control signals in response to electrical proc-
ess-related inputs signals. The systems controlled by PLCs
vary tremendously, with applications in manufacturing,
chemical process control, machining, transportation, power
distribution, and many other fields. Automation applica-
tions can range in complexity from a simple panel to oper-
ate the lights and motorized window shades in a conference
room to completely automated manufacturing lines.

With the widening of their application horizon PLC pro-
grams are being subject to increased complexity and high-
quality demands especially for safety-critical applications.
The growing complexity of the applications within the
compliance of limited development time as well as the re-
usability of existing software or PLC modules requires a
formal approach to be developed [1]. Ensuring the high-
quality demands requires verification and validation proce-
dures as well as analysis and simulation of existing systems
to be carried out [2]. One of the important fields for the
formalization of PLC programs that have been growing up
in recent time is Reverse-engineering [3]. Reverse Engi-
neering is a process of evaluating something to understand
how it works in order to duplicate or enhance it. While the
reuse of PLC codes is being established as a tool for com-
bating the complexity of PLC programs, Reverse Engineer-
ing is supposed to receive increased importance in the com-
ing years especially if exiting hardware has to be replaced
by new hardware with different programming environ-
ments.

Visualization of existing PLC programs is an important
intermediate step of Reverse Engineering. The paper pro-
vides an approach towards the visualization of PLC pro-
grams using XML which is an important approach for the
orientation and better understanding for engineers working
with PLC programs.

The paper is structured as follows. First, a short intro-
duction to PLCs and the corresponding programming tech-
niques according to the IEC 61131-3 standard is given. In
Section III an approach for Re-engineering based on for-
malization of PLC programs is introduced. The transforma-
tion of the PLC code into a vendor independent format is
identified as an important first step in this process. XML
and corresponding technologies such as XSL and XSLT
that can be used in this transformation are presented in Sec-
tion IV. Section V presents the application of XML for the
visualization of PLC programs and illustrates the approach
with an example. The final Section summarizes the results
and gives an outlook on future work in this ongoing pro-
ject.

II. PLC AND IEC 61131
Since its inception in the early ‘70s the PLC received in-

creasing attention due to its success in fulfilling the objec-
tive of replacing hard-wired control equipments at ma-
chines. Eventually it grew up as a distinct field of applica-
tion, research and development, mainly for Control Engi-
neering.

IEC 61131 is the first real endeavour to standardize PLC
programming languages for industrial automation. In 1993
the International Electrotechnical Commission [4] pub-
lished the IEC 61131 International Standard for Program-
mable Controllers. Before the standardization PLC pro-
gramming languages were being developed as proprietary
programming languages usable to PLCs of a special ven-
dor. But in order to enhance compatibility, openness and
interoperability among different products as well as to
promote the development of tools and methodologies with
respect to a fixed set of notations the IEC 61131 standard
evolved. The third part of this standard defines a suit of
five programming languages:

Instruction List (IL) is a low-level textual language with
a structure similar to assembler. Originated in Europe IL is
considered to be the PLC language in which all other IEC
61131-3 languages can be translated.

Ladder Diagram (LD) is a graphical language that has
its roots in the USA. LDs conform to a programming style

borrowed from electronic and electrical circuits for imple-
menting control logics.

Structured Text (ST) is a very powerful high-level lan-
guage. ST borrows its syntax from Pascal, augmenting it
with some features from Ada. ST contains all the essential
elements of a modern programming language.

Function Block Diagram (FBD) is a graphical language
and it is very common to the process industry. In this lan-
guage controllers are modelled as signal and data flows
through function blocks. FBD transforms textual program-
ming into connecting function blocks and thus improves
modularity and software reuse.

Sequential Function Chart (SFC) is a graphical lan-
guage. SFC elements are defined for structuring the organi-
zation of programmable controller programs.

One problem with IEC 61131-3 is that there is no stan-
dardized format for the project information in a PLC pro-
gramming tool. At the moment there are only vendor spe-
cific formats. This is also one reason for the restriction of
formalization approaches to single programs or algorithms.
However, recently the PLC users’ organization PLCopen
(see http://www.plcopen.org) started a Technical Commit-
tee to define an XML based format for projects according
to IEC 61131-3. This new format will ease the access of
formalization tools to all relevant information of a PLC
project.

III. RE-ENGINEERING APPROACH
The presented approach towards re-engineering (cf. Fig.

1) is based upon the conception that XML can be used as a
medium in which PLC codes will be transformed.

This transformation offers the advantage of obtaining a
vendor independent specification code. (Even if the PLCo-
pen succeeds in defining a standardized format for PLC
applications, there will remain a lot of existing programs
that do not conform to this standard.)

Fig. 1 Re-engineering approach

Based on this code a step-wise transformation to a for-
mal model (automata) is planned. This model can then be
used for analysis, simulation, formal verification and vali-
dation, and finally for the re-implementation of the opti-
mized algorithm on the same or another PLC.

Since re-engineering of complete programs will, in most
cases, be only a semi-automatic process, intermediate visu-
alization of the code is an important point. At different
stages of the process different aspects of the code and/or
formal model have to be visualized in a way that a designer
can guide the further work. XML with its powerful visuali-
zation and transformation tools is an ideal tool for solving
this task.

IV. XML AS A TOOL FOR VISUALIZATION
XML (eXtensible Markup Language) is a simple and

flexible meta-language, i.e., a language for describing other
languages. Tailored by the World Wide Web Consortium
(W3C) as a dialect of SGML [5], XML removes two con-
straints which were holding back Web developments [6].
The dependence on a single, inflexible document type
(HTML) which was being much abused for tasks it was
never designed for on one side; and the complexity of full
SGML, whose syntax allows many powerful but hard-to-
program options on the other side.

While HTML describes how data should be presented,
XML describes the data itself. A number of industries and
scientific disciplines—medical records and newspaper pub-
lishing among them—are already using XML to exchange
information across platforms and applications. XML can be
tailored to describe virtually any kind of information in a
form that the recipient of the information can use in a vari-
ety of ways. It is specifically designed to support informa-
tion exchange between systems that use fundamentally dif-
ferent forms of data representation, as for example between
CAD and scheduling applications.

Using XML with its powerful parsers and inherent ro-
bustness in terms of syntactic and semantic grammar is
more advantageous than the conventional method of using
a lexical analyzer and a validating parser (cf. Fig. 2, [7]).

The conventional method of analysis of program code
requires a scanner (lexical analyser) which generates a set
of terminal symbols (tokens) followed by a parser that
checks the grammatical structure of the code and generates
an object net. In the object net the internal structure of the
program is represented by identified objects and the rela-
tions between them. Both the scanner and the parser to be
used in this method are document oriented which implies
that analysis of different types of documents requires re-
writing the generated code for the scanner and the parser.
An example of an application of this method can be found
in [8].

The most promising aspect of using XML instead is that
XML and its complementary applications for transforma-
tions are standardized so as to provide maximum flexibility
to its user.

PLC-Code
Bosch

PLC-Code
IEC

Transformation

Formalization

Validation

Simulation

(Re)-
Implementation

Analysis

Verification

XML

PLC-Code
S5

Formal
Description

The XML based method is advantageous, since the lexi-
cal specification is an invariant component of XML; there-
fore the well-formedness is independent from the respec-
tive individual application.

Fig. 2 Comparison between conventional and XML based method of lexi-
cal analysis

Hence, an XML-Parser also can transfer well-shaped
XML documents in an abstract representation called Docu-
ment Object Model (DOM) without using a grammar.
DOM is an application programming interface (API) for
valid HTML and well-formed XML documents. It defines
the logical structure of documents and the way a document
is accessed and manipulated. In the DOM specification, the
term “document” is used in a broad sense increasingly.
XML is used as a way of representing many different kinds
of information that may be stored in diverse systems, and
much of this would traditionally be seen as data rather than
as documents. Nevertheless, XML presents this data as
documents, and the DOM can be used to manage this data
[5].

XSLT, the transformation language for XML is capable
of transforming XML not only to another XML or HTML
but to many other user-friendly formats. Before the advent
of XSLT, the transformation of XML to any other format
was only possible through custom applications developed
in a procedural language such as C++, Visual Basic or,
Java. This procedure lacked the generality with respect to
the structural variation of XML documents. Capitalizing on
the concept that the custom applications for the transforma-
tions are all very similar, XSLT evolved as a high-level
declarative language [9].

XSLT functions in two steps. In the first step, it per-
forms a structural transformation so as to convert the XML
into a structure that reflects the desired output. The second
stage is formatting the new structure into the required for-
mat, such as HTML or PDF (cf. Fig. 3). The most impor-
tant advantage of this transformation is that it allows a sim-
ple and easily-conceivable representation of the document
or data structure embedded inside the well-structured but
hard-to-understand XML to be produced. When HTML is
chosen as the format of the transformed produce it is possi-
ble to use the extensive ability of HTML to produce an
easily-conceivable and attractive visualization of a pro-
gram.

Fig. 3 Visualization of XML documents using XSL

Every XML document has its own syntax and vocabulary.
Therefore, in addition to being well-formed, the XML
document needs to conform to a set of rules. According to
W3C recommendations this set of rules has to be defined
either through a Document Type Definition (DTD) or an
XML Schema. The rules defined in a DTD or an XML
Schema state the hierarchical and structural constraints of
the XML document.

The DTD is for defining the document grammars; more
recently a number of alternative languages have been pro-
posed. The W3C XML Schema language replicates the
essential functionality of DTDs, and adds a number of fea-
tures: the use of XML instance syntax rather than an ad hoc
notation, clear relationships between schemas and name-
spaces, a systematic distinction between element types and
data types, and a single-inheritance form of type derivation.
In other words schemas offer a richer and more powerful
way of describing information than what is possible with
DTDs. Fig. 4 shows the XML technologies discussed
above and the connection between them.

V. AN APPROACH FOR THE VISUALIZATION OF
PLC PROGRAMS

A. Overview
Since Instruction List (IL) is the most commonly used

PLC language in Europe, the presented approach is based
on this language. The proprietary IL dialect Siemens STEP
5 and the standardized version according to IEC 61131-3
are considered.

XSL

HTML
 XML

 DOM

XML

XSL-Processor

sülz = 42;
do [
 süüüüüülz->foo;
] repeat while (what);

x = #42

Application
specific
Object net

Parser-
Generator

Parser

bra := b | br;
süülz := s ü lz;

brabra := bra
 { x = 42; }
 | bra bra bra
 { x = x + 42: } ;

sülz := brabra
 | süülz;

yacc, bison,
cup

Grammar + Code for
Object net Generation

Scanner-
Generator

Scanner

TO_SEM = ‘;‘

TOK_b = ‘b‘
TOK_br = ‘br‘

TOK_INT = [0-9]*

TOK_STRING =
 ‘“‘ .* ‘“‘

lex, flex,
jflex

Lexical
Specifications

W3C
Standard

W3C
Standard

»XML Parser«

Scanner Parser
<Tag>

expat, Xerces

XML:

<?xml versi
<bla>
 <blubber>sülz</s
 <quassel/>
 <rabarber wdh=“
 ojeojeoje ojemin
 </rabarber>
</bla>

Object hierarchy
»DOM«

<!ELEMEN
<!ELEMENT b
<!ATTLIST bar ba

<!ELEMENT AT
 #PCDATA>
<!ELEMENT PLT
 #PCDATA>

DTD/XML-Schema
Not Obligatory)

 Conven-
tional

Fig. 4 Relation of XML to the corresponding technologies

The generation of XML documents showing different

aspects of a PLC program is realized in the following three
steps (cf. Fig. 5):

1. Transformation of the PLC program to an XML
document

2. Validation of the XML against the XML Schema
which sets the syntax of the XML

3. Identification of the Instruction elements of the
transformed XML according to the instruction set
of the source PLC

These three steps are discussed in sub-sections B to D
respectively. Sub-section E explains the visualization of the
different XMLs obtained during the preceding steps.

Fig. 5 Conversion of PLC-program text to XML and validation

Throughout this Section an example is used to illustrate
the presented concepts. Fig. 6 shows a PLC code written in
Instruction List Siemens S5. The PLC code is written in a

tabular form where each row element is either a delimited
list consisting of address, label, instruction, operand and
description or a comment.

Kommentar :
Autor :
Erstellt :15.07.2003 Geaendert am: BIB:0

NETZWERK 1 EMPFANGEN SLAVE 3 VON MASTER
 NAME :EMPFMAST

0005 :U M98.7 ABFRAGE OB EMPFANG MOEGLICH
0006 :
0007 :SPB= M001
0008 :
0009 :A DB140 EMPFANGSFACH IST DB 140
000A :L KF+20 LAENGE DES DATENPAKETS
000C :T DL0
000D :L KF+0 ZIELNUMMER 0=MASTER
000F :T DR0
0010 :
0011 :UN M98.7 FANGEN WIEDER ERLAUBEN
0012 :S M98.7
0013 M001 :NOP 0
0014 :
0015 :BE BAUSTEIN ENDE

Fig. 6 A PLC program written in Siemens S5 Instruction List

B. Conversion of a PLC Program into a well-formed
XML

Given a PLC program in ASCII format and in a tabular
structure with separate columns for addresses, labels, in-
structions, operands and descriptions delimited by white-
spaces, XSLT can convert it into a well-formed XML
document. The XML document obtained through this trans-
formation is a hierarchically structured document.

Fig. 7 shows the XML document obtained through the
transformation of the PLC code of Fig. 6. The XML docu-
ment is structured in a hierarchy in which the root element
is the ILCodeBlock representing the whole PLC code. Each
of the rows of the PLC code is contained within a corre-
sponding ILRow element which is further structured into
child elements.
 Note: The structure chosen for the XML representation
of IL-Code is oriented at the working proposal of the
PLCopen.

<?xml version="1.0" encoding="UTF-8"?>
<ILCodeBlock xmlns="IL" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance "
xsi:schemaLocation=" http://www.eit.uni-
kl.de/litz/aconml/ILns.xd name="Code">
<!--Kommentar :-->
 <!--Autor :-->
<!--Erstellt :15.07.2003 Geaendert am: BIB:0-->
<!--NETZWERK 1 EMPFANGEN SLAVE 3 VON MASTER-->

 <ILRow>
 <ILRowComment>NAME:EMPFMAST
 </ILRowComment>
 </ILRow>
 <ILRow>
 <Address>0005</Address>
 <Instruction>U</Instruction>
 <Operand>M 98.7</Operand>

Text2XML

XML

XML
Validation

XML after
Validation

XML
Schema

Instruction
Identification

XSL

HTML
File

PDF
File

Application

XSL-Processor

XML-
Document

XML-Editor

DTD/XML
Schema

Defines the
Structure

XSL

Transformation

PLC-

Program

XML with
Instruction ID

 <Description>ABFRAGE OB EMPFANG
MOEGLICH</Description>

 </ILRow>
 <ILRow>
 <Address>0007</Address>
 <Instruction>SPB=</Instruction>
 <Operand>M001</Operand>
 </ILRow>
 <ILRow>
 <Address>0009</Address>
 <Instruction>A</Instruction>
 <Operand>DB 140</Operand>

 <Description>EMPFANGSFACH IST DB
140</Description>

 </ILRow>

</ILCodeBlock>

Fig. 7 XML transform of the PLC program.

C. XML Validation against the XML Schema
The XML obtained as a result of the previous processing

can be validated using a validating parser that confirms that
the XML document in addition to being well-formed con-
forms to the set of syntactic rules defined in context of the
PLC programming language.

D. Identification of instructions
This step in the process of visualization of PLC pro-

grams using XML ensures that the XML document to be
used for visualization contains only valid instructions.
XSLT can be used to transform the well-formed and valid
XML to another XML which as a result of identification on
instructions has an additional attribute appended to the in-
struction tags. This attribute notifies whether the instruction
is a valid instruction of the concerned instruction set. This
transformation procedure is also capable of attaching at-
tributes to the instruction tags that declares a classification
of the instructions into predefined classes.

The instruction identification of the transformed XML
proofs the semantic of the XML in accordance with the
operation types of the PLC programming language.

In the example of this section, (cf. Fig. 8), the new XML
contains additional attributes which classify the instructions
according to the type of operation it represents. The STEP5
instructions are categorized into eleven different types of
operations e.g. logical, jump, load or transfer operation,
assignment, etc.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ILCodeBlock>
<ILRow>
<Instruction instructionId="Logical Opera-
tion"> U</Instruction>
</ILRow>

 <ILRow>

<Instruction instructionId="Jump Operation">
SPB=</Instruction>

</ILRow>
<Instruction instructionId=" Special Opera-
tion "> BE</Instruction>

</ILRow>
</ILCodeBlock>

Fig. 8 A new transformed XML showing only the instructions and the
corresponding instruction ID

E. Visualization of XML
Both of the XML documents generated above can be

transformed into HTML or other readable documents with
the help of XSL. An ingenious XSL can be designed so as
to produce an HTML which can convey the logical and
other features of the PLC program in an easily conceivable
form. Moreover, the DOM structure embedded in the XML
(cf. Fig. 9), also enables the user to navigate through the
PLC programs in an easy way.

Fig. 9 DOM tree of the XML

For the example the visualization is done in HTML.
This visualization is done for the transformed XML after
the validation of it’s syntax as a table where the child ele-
ments of the ILRow are the columns of this table.

The XML after the instruction identification is trans-
formed using the XSL, where the instruction and the in-
struction Id, obtained after extracting the XML according
to the type of operations are visualized in a table containing
two columns (Instruction, Instruction Id) in HTML.

The HTML structures suggested here are not the only
possibilities, with which the XML can be visualized, but
they give a very easy practical option for the user’s grasp of
the PLC code.

Element: ILRow

Element: ILRowComment

Document

Element: Operand

Element: Instruction

Comment: Erstellt :15.07.2003 Geaendert am: BIB:0

Comment: NETZWERK 1 EMPFANGEN SLAVE 3 VON

Comment: Kommentar :

Comment: Autor:

Element: ILRow

Element: Address

Text: 0005

Text: U

Element: Description

Element: ILCodeBlock--> xmlns='IL'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'

Fig. 10 shows the same PLC code as shown in Fig. 4 as
a HTML document converted from the XML document
shown in Fig. 7 using XSL. This visualization enables a
better understanding of the PLC program. Fig. 11 shows
the special visualization of instruction ids given in the
XML of Fig. 6.

Address Label Inst. Operand Description

1 NAME :EMPFMAST

2 0005 U M 98.7 ABFRAGE OB
EMPFANG MOEGLICH

3 0007 SPB= M001

4 0009 A DB 140 EMPFANGSFACH IST
DB 140

5 000A L KF +20 LAENGE DES
DATENPAKETS

6 000C T DL 0

7 000D L KF +0 ZIELNUMMER
0=MASTER

8 000F T DR 0

9 0011 UN M 98.7 EMPFANGEN WIEDER
ERLAUBEN

10 0012 S M 98.7

11 0013 M001 NOP 0

12 0015 BE BAUSTEIN ENDE

Fig. 10 PLC program visualized in HTML

VI. CONCLUSIONS AND OUTLOOK
Re-engineering of PLC programs needs a formal ap-

proach to be developed. In this paper one way to solve this
task is introduced. Based on a given PLC program written
in Instruction List a step-wise transformation to a formal
representation is proposed. Since this process will not be
fully automatic, the need for flexible visualization of inter-
mediate steps is derived. XML is presented as a flexible,
standardized means to serve as data format for the descrip-
tion of the PLC code. The corresponding technology of
XSL transformations and the Document Object Model are
presented as tools for the variety of customized visualiza-
tion tasks during the re-engineering process.

Based on the XML description of PLC programs further
transformations will be applied to finally derive a com-
pletely formalized description of the original PLC code.
This will be in the form of a finite automaton. During this
process it is planned to identify common IL structures and
formalize them via a library.

Gaining the Benefit of the XML Metadata Interchange
(XMI) as an open industry standard that applies XML to
abstract systems such as UML and referring to the classifi-
cation of the instructions of IL into the eleven categories
mentioned above. We can extract UML classes from this

classification, as it resembles the action semantics of
UML.

Instruction Instruction_Id
U Logical Operation

SPB= Jump Operation
A Special Operation
L Load Transfer Operation
T Load Transfer Operation
L Load Transfer Operation
T Load Transfer Operation

UN Logical Operation
S Assignment

NOP No Operation
BE Special Operation

Fig. 11 HTML of the XML with Instruction ID.

VII. AKNOWLDGMENT
We would like to express gratitude to the “Stiftung
Rheinland-Pfalz für Innovation” for sponsoring our work
under project number 616.

VIII. REFERENCES
[1] L. Baresi, M. Mauri, A. Monti, and M. Pezze,

“PLCTools: Design, Formal Validation, and Code
Generation for Programmable Controllers”, in. IEEE
Conference on Systems, Man, and Cybernetics
(SMC2000), Nashville, USA, Oct. 2000, pp. 2437-
2442.

[2] G. Frey and L. Litz, “Formal methods in PLC pro-
gramming”, in IEEE Conf. on Systems, Man and Cy-
bernetics (SMC'2000), Nashville, USA, Oct. 2000, pp.
2431-2436.

[3] M. Bani Younis and G. Frey, “Formalization of Exist-
ing PLC Programs: A Survey.“, in CESA 2003, Lille
(France), Paper No. S2-R-00-0239, July 2003.

[4] International Electrotechnical Commission, IEC In-
ternational Standard 1131-3, Programmable Control-
lers, Part 3, Programming Languages, 1993.

[5] World Wide Web Consortium: http://www.w3.org/
[6] XML Home Page: http://xml.com/
[7] H. Albrecht and D. Meyer, “XML in der Automatisie-

rungstechnik – Babylon des Informationsaustau-
sches?“, at – Automatisierungstechnik 50 (2002) 2,
R. Oldenbourg Verlag, München, pp 87-96.

[8] R. Kliewer, Reverse Engineering von Steuerungssoft-
ware. Ph.D. thesis, University of Kaiserslautern, Ger-
many, Institute for Production-Automation, 1999.

[9] M. Kay, XSLT – Programmer’s Reference. ISBN
1861005067, Wrox Press Ltd 2001

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThM14.6
	Page0: 3082
	Page1: 3083
	Page2: 3084
	Page3: 3085
	Page4: 3086
	Page5: 3087

