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Abstract— Optical disc drives are subject to various dis-
turbances and faults. A special type of fault is the so-called
disc defect. In this paper we present an approach for disc
defect classification. It is based on hierarchical clustering of
measured signals that are affected by disc defects. The time-
series are mapped into a feature space after which the feature
vectors are clustered in a hierarchical fashion. Finally, signals
are fitted onto the clusters to obtain single representations
for each fault class. The resulting class descriptions can then
be used for (on-line) classification of new disc defects. The
approach is evaluated by applying it to a set of test data.

I. I NTRODUCTION

For most dynamic systems, there are external stimuli that
influence the output of the system. When their influence is
unwanted we call the stimuli disturbances. One of the goals
of control is to achieve rejection of these disturbances.

A special type of disturbance that seriously upsets a
system and endangers its proper functioning is a so-called
fault. Faults are usually associated with system malfunctions
or sudden external disturbances that occur randomly and
infrequently in time [1]. The random nature and severe
impact of faults distinguish them from other disturbances
that have a continuous but more moderate influence on the
system.

For optical disc drives (ODD) a special type of faults
exist. Despite the relative immunity of optical discs (e.g.
CD, CD-ROM, DVDROM and DVD+RW) to damage or
pollution of the surface, the disc can introduce faults intothe
optical drive system. One can think of scratches, dirt spots
and fingerprints that arise on the polycarbonate surface or
the impurities that are included in the substrate layer [2],
[3], [4].

All the mentioned types of damage are called disc defects
according to the following definition.Disc defectsare those
features locally present on or in an optical disc, which result
in different behavior of servo signals than what can be
expected from the geometry of the information track and
the dimensions or shape of the disc [5].
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Disc defects distort the optical beam that is used to read
out the data. Hence disc defects can result in erroneous
data. The optical beam is also used to control the position
of its own focusing point. Therefore disc defects can also
result in deterministic measurement errors. In general, disc
defects form a significant threat to the ability of an ODD to
play back discs without generating errors that are noticeable
to the user. Due to the random occurrence of disc defects
and their severe impact on the drive’s performance, we can
regard disc defects as faults.

In general faults are dealt with in three steps. The first
step is detecting the occurrence of a fault. After detection
it is often required to classify the nature of the fault.
Finally, when the type of fault is classified, it is possible
to select proper countermeasures to prevent the fault from
influencing the system.

Many work has been done on fault detection [6] and
classification [7], and [8], [9] specifically address fault
detection in optical disc drives. Fault classification for
ODDs however, has received little attention in literature.
In [4] a defect classification is proposed for the quality
inspection during optical disc production, and in [3] a rough
distinction is made between fingerprints and scratches on an
optical disc.

This paper addresses the fault classification problem
for ODDs. An approach for disc defect classification is
presented that combines a time-series mapping with a well-
known clustering technique. The fault classes are then
described by signals that are fitted onto the found clusters.
The resulting class descriptions can then be used for (on-
line) fault classification. The approach is evaluated through
experiments on an ODD with a set of optical discs contain-
ing various defects.

The paper is organized as follows. Section II introduces
the proposed classification approach. In Section III we
present the results of the experimental evaluation. Finally,
we summarize and discuss the main contributions in Sec-
tion IV.
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Fig. 1. Disc defects as an external stimulus (fault) for the optical drive system; OPU = optical pickup unit, PCB = printedcircuit board.

II. FAULT CLASSIFICATION FOR ODD

In this section we introduce a fault classification approach
for optical disc drives. The method is based on the clustering
of measured signals that are affected by occurring faults. A
novel set of features is used to describe the shape of these
fault signals. The time-series are mapped into the multi-
dimensional feature space, which enables us to apply a
straightforward hierarchical clustering algorithm to them.
Finally, we discuss how we can obtain a limited set of
functions that describe the fault classes and that we can
use to classify new faults.

A. Measuring fault influence

As mentioned we can regard disc defects as faults, despite
the fact that they are present on the optical disc, which itself
forms an integral part of the system [5]. Fig. 1 clarifies this.
By introducing the concept of an ideal or standard disc
we can model disc defects as faults, denoted byd, which
represents the influence of the defects on the amplitude
and phase of the outgoing optical wave front. The signals
v1 . . . v6 in Fig. 1 represent all other disturbances that
enter the system. In the remainder we assume that these
disturbances are absent or sufficiently suppressed.

The presented notion of regarding disc defects as faults
is not directly usable since a description ofd in the
optical domain is hard to obtain in practice. Furthermore,
expressing the impact of the faults on the ideal optical signal
is far from trivial. A way to circumvent this is by monitoring
the effect of faults on a measurable electronic signal in the
ODD. The effect of faults on such a signal can be regarded
as a simple addition to an ideal zero-mean signal.

A signal particularly useful in our approach is the nor-
malized mirror (MIRN) signal. This signal is proportional to
the total amount of laser light received by the photodetector.
Previous research shows that this signal has the most direct
relation with the faults of interest [5] and it is locally
constant when there are no disturbances or faults present. In
the following section we propose a mapping for this signal
that provides the input for the clustering algorithm.

B. Time-series mapping

Let I denote the set of all possible time-series of the
MIRN signal from which the DC-components are removed.
The subsetA ⊂ I is formed by all signals of lengthN
that are distorted by the disc defects of interest only. Note
that N is not fixed and depends on the physical size of the
fault. Further we remark that in theory the size of the set
A can be infinite, but in practice it will be limited in size.
The labeli is used to uniquely identify the corresponding
elementyi ∈ A. Now let p1, p2, . . . , pm span a spaceB
in R

m, wherepj with j = 1, 2, . . . , m are m different
descriptive features for the elements inA. ThenF : A ⊂
I → B can be defined that maps the signals of interest
(domain) to a set of descriptive signal features or attributes
(range). This mapping is further specified by the functions
fj : A ⊂ I → pj that are chosen as

f1(yi) = W1 ·
1

N

N
∑

k=1

yi(k) (1)

f2(yi) = W2 · N (2)

f3(yi) = W3 · max |yi(k)| (3)

f4(yi) = W4 ·

N
∑

k=1

{

1, |yi(k)| < ∆y

0, |yi(k)| ≥ ∆y
(4)

...

fm(yi) = Wm ·
N

∑

k=1

{

1, |yi(k)| ≥ ymax

0, |yi(k)| < ymax
(5)

where k is the running variable representing the sample
instant andW1, W2, . . . , Wm are the weighting factors that
can be used to tune the signal mapping. See also Fig. 2.

The featuref1 is the mean valueof the signal. This
feature is particularly useful to distinguish between faults
that result in a positive and negative signal level. The
featuresf2 andf3 are theduration, expressed through the
number of samples, and thepeak valueof the absolute
signal respectively. They describe the width and depth of the
distorted signal. In order to describe the shape of the signal
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Fig. 2. Descriptive features for time-series. The verticaldashed lines mark
the begin and end of the disturbed signal part;∆y = 0.02, ymax = 0.2,
hence the number of amplitude bands is equal to11 in this case.

in more detail, we divide the absolute signal into a fixed
number ofamplitude bands. The featuresf4 to fm now
represent the number of samples that fall within each band.
The size of each amplitude band is given by∆y and the
number of amplitude bands is limited by an upper amplitude
limit ymax.

Finally, we remark that the set of features is heuristic
and not scale invariant. By choosing appropriate weighting
factors we can obtain feature values of the same order
of magnitude. The set of features forms the input for the
hierarchical clustering algorithm. In the following section
we discuss this algorithm.

C. Hierarchical clustering

For each element inA we can write the feature set as
a single vector. These vectors can be interpreted as points
in B, representing the corresponding MIRN signals inR

m.
In general, clustering or unsupervised classification is the
process of distinguishing separate groups of similar data.
With respect to the signal mapping result, clustering can
be seen as the identification of different groups of closely
spaced data points.

A clustering algorithm that directly uses this geometric
interpretation of similarity is agglomerative hierarchical
clustering [7]. The input for the clustering algorithm is
a dissimilarity entity-to-entity matrixD. This matrix can
easily be derived from the mapped data points (singletons)
by calculating the Euclidean distance between every pair of
elements in the data set. This distance is usually denoted as
‖ps−pr‖ wherer ands are the labels of the corresponding
vectors. Note thatD is symmetric and the elements of its
main diagonal are zero.

With D available the actual clustering goes as follows.
First the two elements with the smallest distance are com-
bined into a cluster. The two rows and columns for the
combined points inD are then replaced by a single row and
column, which correspond to the newly formed cluster. The
values on this new row and column inD express the inter-
cluster distance or dissimilarity between the new cluster
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Fig. 3. Graphical representation (dendrogram) of a hierarchical cluster
tree.

and all the other points and/or clusters. This dissimilarity is
expressed by

d(r, s) = lrls
d2

c(r, s)

lr + ls
(6)

where l denotes the number of elements in a cluster and
d2

c(r, s) is the squared Centroid distance between clusters
(or points)Sr andSs according to

dc(r, s) = ‖ps − pr‖ (7)

with pr andps given by

pr =
1

lr

lr
∑

i=1

pri (8)

and ps is defined similarly. These steps are then repeated
until only two clusters remain.

The results of the clustering algorithm can be represented
by a convenient and compact graphical tool called den-
drogram. See Fig. 3 for an example. The numbers at the
horizontal axis are the labels of the original points and
they are called leaf nodes. The connecting horizontal lines
or interior nodes, indicate the merging of two particular
clusters and their heights indicate the dissimilarity between
the combined clusters.

From such a dendrogram we can select an arbitrary
number of clusters by drawing a horizontal line. All the
elements—identified by their labeli—that are connected be-
low this line, belong to one particular cluster. The selection
of clusters hence implies a trade-off between the number of
clusters and their size and mutual distinctiveness.

D. Classification

With the clusters of grouped signals available, a final
step remains. The clusters themselves are nothing more than
distinctive groups of similar signals. In order to obtain a
fault classification, each of these groups must be replaced by
a single cluster representation. This results in a limited set
of representations that preserve information on all elements
of the data set, without the need to actually store them
all individually. In the first place these representations



attempt to provide an unambiguous class description. Sec-
ondly they lead to a desirable—especially for an on-line
implementation—reduction of the amount of data.

The most suitable class description is that of a time-series
or model from which such a time-series can be derived.
Not only is it easy to compare graphs of different signals
qualitatively, but a time-series can also be used directly in
mathematical computations. A class description in words
for example, lacks this possibility.

When such class descriptions are available, the classi-
fication of new faults boils down to a similar clustering
problem as discussed above. The task is then to compare
the new signal with the class descriptions and find the one
that is most similar in some sense. This process is called
supervised classification. The similarity can be expressed
via the Euclidean distance, after the new time-series and
those of the class descriptions are mapped into the presented
feature space.

To obtain descriptive signals for each disc defect cluster
we propose the well-known least squares (LS) polynomial
fitting method. The LS method has many advantages, the
most important one being that the global minimum can be
found efficiently and unambiguously (no local minima other
than the global ones exist). Another benefit of this method
in the context of disc defect classification is the ability of
the method to deal with numerous signals simultaneously.

We choose polynomials to approximate the defect signals
in the first place because we lack a parametric function
structure that is based on a disc defect model. This makes
it also difficult to choose a suitable model identification
technique. The polynomial function structure provides a
simple and easily computed alternative to obtain single
representations for each cluster of MIRN signals.

III. E VALUATION OF FAULT CLASSIFICATION APPROACH

We now apply the described approach to a set of MIRN
signals that are affected by various faults. The goal is to
evaluate whether the approach can lead to a usable disc
defect classification. After the generation of the signal data
base, we apply the clustering method to this data set. In
order to obtain a single representation for each class, we
then fit polynomials through all the signals in each cluster.
Finally we classify some well-known disc defects to verify
that the classification of these defects is done properly.

A. Collecting fault data

The test equipment consists of a commercially available
DVD+RW drive, an additional electronic module to gain
access to the drive’s internal signals, a digital oscilloscope,
and a personal computer that we use to control the drive
and to store all measurement data.

In order to obtain a representative data base, various
standardized test discs are gathered. These discs contain
artificial disc defects of various sizes such as black dots that
simulate dirt spots, white dots that represent areas with an
abnormal high reflectivity, scratches and fingerprints. See
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Fig. 4. Artificial disc defects.
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Fig. 5. Dendrogram of the disc defect clustering; Euclideandistance,
Ward linkage,W1 = 1 · 104, W2 = 5, W3, . . . , Wm = 1.

also Fig. 4. Next to these well-defined artificial defects,
several abused discs with realistic defects are added.

After measuring the MIRN signal during these faults,
noise is removed via zero-phase filtering and the disturbed
signal part is selected manually. Finally, the DC-offsets of
the measured signals are removed.

The resulting data base consists of 320 measurements
on 32 different defects. This limited data base is not large
enough to provide a realistic disc defect classification.
However, for the evaluation of the suggested approach it is
considered to be sufficiently varied and large enough. We
discuss the outcomes of the algorithm in the next section.

B. Disc defect clustering

During various trial runs the weighting parameters of
the signal mapping are tuned. This is done in such a
way that the clustering method makes a correct distinction
between defects that are considered to be different. The
final clustering results from the algorithm are depicted
graphically in Fig. 5.

Table I summarizes which disc defects are grouped
together in the different clusters that are selected in the
dendrogram. The obtained clustering result is according



TABLE I

ELEMENTS IN DISC DEFECT CLUSTERS

Cluster Elements

S1

black dots 700–900µma

scratches 420–820µm

S2

black dots 1100µma

scratches 920–1120µm

S3 scratches 1320–1520µm

S4
black dots 700–1100µmb

realistic scratchesc

S5
scratches 320µm

realistic scratchesd

S6 white dots

S7 fingerprints

aMeasured at the center of the black dots.
bMeasured at the edge and at one quarter of the black dots.
cMeasured at the smallest realistic scratch.
dMeasured at all other realistic scratches.

TABLE II

COMBINING DISC DEFECT CLUSTERS

Number of clusters Combined clusters

6 S1 ∪ S2

5 S1 ∪ S2 ∪ S3

4
S1 ∪ S2 ∪ S3

S4 ∪ S5

3
S1 ∪ S2 ∪ S3

S4 ∪ S5 ∪ S6

2
S1 ∪ S2 ∪ S3

S4 ∪ S5 ∪ S6 ∪ S7

to our expectations, based on knowledge of the different
defects and the resulting MIRN signals.

As mentioned, we can alter the number of clusters by
shifting the bisecting line up or down in the dendrogram.
Table II shows which clusters are combined when a smaller
number of clusters is selected or in other words, when the
bisecting line is placed higher.

Both from Table II and the dendrogram in Fig. 5 the
existing hierarchy in the data set becomes clear. Actually
two major clusters can be identified. One with all centered
black dots and artificial scratches and the other holding
all the other defects. In both these large groups a further
subdivision of disc defect types can be made.

In the remainder we consider the results for a selection
of six clusters. The derivation of single class descriptions
for these clusters of MIRN signals will be discussed next.

C. Classification

In order to accurately approximate the shape of the
MIRN signals, a fifteenth order polynomial is fitted onto
each cluster. The clusters and the resulting polynomials are
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Fig. 6. Fitted 15th order polynomials for clustered disc defect signals.

shown in Fig. 6. We conclude that the signals, obtained
from the fitted polynomials, describe the disc defect classes
reasonably well. However, due to the flexibility of the six
fitted polynomials, we observe some small oscillations in
the resulting signals that are not present in the original
signals. Especially at the start and end of the defect signal
these deviations can become significant. This is undesirable,
since it makes the fast and correct classification of new
faults more difficult. Applying a more accurate fitting could
resolve this problem.

D. Evaluation

With the descriptions for the disc defect classes available,
we now evaluate the proposed supervised classification for
new defects. This is done by applying the mapping to the
fitted class signals and doing the same for some new defect
measurements on several of our test discs. We then calculate
the Euclidean distance between the feature vectors of the
test measurements and those of the six defect classes. The
class to which a test measurement belongs, should yield the
smallest distance value.

An extra check is performed by calculating the correla-
tion between the test signal and the fitted class signals. The
correct class signal should result in the highest correlation
coefficient.

The signals that we use for testing are shown in Fig. 7
and the resulting distances and correlation coefficients are
summarized in Tables III and IV. By comparing the results
for our test signals with Table I, we can conclude that the
method assigns the test defects to the correct classes. Again
we note that these tests are only for evaluation purposes.
We want to know whether the approach could be usable
for (on-line) classification of disc defects. However a much
larger data base and extensive testing would be required,
before a classification algorithm could be implemented in a
commercial ODD.
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Fig. 7. Various test measurements used for class validation; A: center of
700 µm black dot, B: edge of 1100µm black dot, C: artificial scratch
1420µm, D: center of white dot 500µm, E: realistic fingerprint, F: small
realistic scratch.

TABLE III

EUCLIDEAN DISTANCE BETWEEN MAPPED CLASS AND TEST SIGNALS

Class Test A Test B Test C Test D Test E Test F

S1 ∪ S2 370 906 373 1280 1214 916

S3 604 1250 214 1592 1164 1259

S4 839 258 1108 548 1363 244

S5 503 439 842 877 1410 452

S6 1400 759 1509 445 1195 731

S7 1721 1732 1388 1689 179 1722

IV. CONCLUSION

In this paper we proposed an approach for classifying
disc defects in ODDs. The classification is based on the
mapping of MIRN signals onto a heuristic feature space.
This mapping of the MIRN signals makes it possible to use
a well-known algorithm to cluster the various time signals.
In order to reduce the amount of data needed to describe
the classes, single functions are fitted onto each cluster.

The test results make it plausible that the suggested
approach can provide a usable (on-line) disc defect clas-
sification. However, the clustering algorithm requires some
manual tuning for which a certain insight of the differences
between faults is needed. Furthermore, the used fault data
base is not large enough to draw conclusions about which
and how many defect classes are needed in practice.

TABLE IV

CORRELATION BETWEEN CLASS AND TEST SIGNALS

Class Test A Test B Test C Test D Test E Test F

S1 ∪ S2 0,983 0, 850 0, 854 0, 274 0, 332 0, 738

S3 0, 768 0, 605 0,999 0, 364 0, 444 0, 538

S4 0, 896 0,998 0, 603 0, 192 0, 202 0,968

S5 0, 945 0, 983 0, 654 0, 208 0, 277 0, 934

S6 0, 279 0, 220 0, 387 0,985 0, 388 0, 304

S7 0, 627 0, 521 0, 863 0, 494 0,815 0, 408

Further work should therefor focus on applying the
approach to a large and representative set of disc defect
measurements. Improvements of the signal mapping and the
fitting of accurate class descriptions also requires attention.
The final goal will be to implement an on-line detection
and classification algorithm that makes it possible to initiate
(different) countermeasures whenever faults occur in an
ODD.
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