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Abstract—This paper is concerned with stochastic opti-
mal control systems, in which uncertainty is described by a
relative entropy constraint between the nominal measure and
the uncertain measure, while the pay-off is a functional of
the uncertain measure. This is a minimax game, equivalent
to the H∞ optimal disturbance attenuation problem, in
which the controller seeks to minimize the pay-off, while
the disturbance described by a set of measures aims at
maximizing the pay-off.

The objective of this paper is to apply the results of
the abstract formulation to stochastic uncertain systems, in
which the nominal and uncertain systems are described by
conditional distributions. The results obtained include exis-
tence of the optimal control policy, explicit computation of
the worst case conditional measure, and characterization of
the optimal disturbance attenuation, for nonlinear partially
observable systems. The linear case is presented to illustrate
the concepts.
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Large Deviations, Relative Entropy, Minimax Games,
Duality Properties.

I. Introduction

Subsequent to the publication of Zames [1] sem-
inal paper on H∞ control, several tools have been
introduced to extend the H∞ techniques to nonlin-
ear deterministic and stochastic systems. Three pay-
off functionals which received significant attention are
deterministic minimax games [3], risk-sensitivity pay-
offs [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [15],
and stochastic minimax games [11], [12]. For nonlinear
problems robustification is captured through dissipation
inequalities [2].
Another class of problems aiming at robustification are
described through relative entropy constraints, using
duality relations between relative entropy and free
energy. The problems are equivalent to risk-sensitive
problems [18], [17], [15], and thus equivalent to the
minimax game formulation [15] of the H∞ disturbance
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attenuation problem. For linear fully observable or
partially observable problems, the characterization of
the optimal disturbance attenuation is expressed in
terms of certain Ricatti equations. Unfortunately, in
nonlinear problems such Ricatti equations are not avail-
able. Therefore, one considers the sub-optimal problem
by either fixing the structure of the controller or by
considering minimax dynamic games that result in
strategies which ensure a certain dissipation inequality
with respect to the supply rate (energy functional) [3].
Ideally, one would like to have an explicit expression
which describes the optimal disturbance attenuaton
level for general nonlinear fully observed and partially
observed (output feedback) problems. Such an expres-
sion will be usefull in determining how far any sub-
optimal solution is from the optimal one. However, there
is another important issue associated with partially
observable systems, namely, the fundamental question
of existence of an optimal control law. To the best of
the authors knowledge, no results have been presented
addressing the existence of optimal control laws for non-
linear partially observable stochastic minimax games.
The abstract formulation is the following.
Let (Σ, d) denote a complete separable metric space
(Banach Space), and (Σ,B(Σ)) the corresponding mea-
surable space in which B(Σ) are identified as the Borel
sets generated by open sets in Σ. Let M(Σ) denote the
set of probability measures on (Σ,B(Σ)), Uad the set
of admissible controls, and let `u : Σ → < be a real-
valued measurable function, bounded from below, which
depends on the control u ∈ Uad. Here, M(Σ) denotes
the set of all possible measures induced by the stochastic
systems, while `u denotes the energy function associated
with a given choice of the control law u ∈ Uad.
Given a control law u ∈ Uad and a nominal measure
µu ∈M(Σ) induced by the nominal stochastic system,
the pay-off is defined by

J(u, νu) = Eνu

(
`u

)
=

∫

Σ

`udνu (I.1)

Subject to fidelity H(νu|µu) ≤ R where νu << µu

and R ∈ (0,∞), µu ∈ M(Σ) and H(νu|µu) denotes
the relative entropy between the uncertain measure νu



and the nominal measure µu, and << denotes absolute
continuity of νu ∈M(Σ) with respect to µu ∈M(Σ).
For a given control law u ∈ Uad, and nominal measure
µu ∈M(Σ), let νu,∗ ∈M(Σ) denote the measure which
achieves the supremum in (I.1) defined by

J(u, νu,∗) = sup
νu∈A(µu)

∫

Σ

`udνu (I.2)

where

A(µu) = {νu ∈M(Σ); H(νu|µu) ≤ R, νu << µu}
and R ∈ (0,∞). The robust control problem is to find
a control law u∗ ∈ Uad which impacts

J(u∗) = inf
u∈Uad

J(u, νu,∗)

= inf
u∈Uad

(
sup

νu∈A(µu)

∫

Σ

`udνu
)

(I.3)

The important contribution of this paper is to trans-
form nonlinear partially observable uncertain stochastic
systems into separated minimax uncertain stochastic
systems which are equivalent to (I.1)-(I.3). In the sepa-
rated stochastic minimax systems the nominal measure
is described by the conditional measure, while the un-
certain measures are described by conditional measures
which satisfy relative entropy constraints. All partially
observable minimax problems can be transformed into
separated problems provided the conditional distribu-
tion can be found.

In [20] some of the important mathematical tools
and duality relations, which are employed in this
paper, are discussed. The main properties associated
with the dual functional and the equivalence of the
unconstrained and constrained problems is also shown
in [20] .

Section II, is concerned with application of the results
of [20] to nonlinear stochastic optimal control systems
with partial information. The problem is reformulated
as a separated minimax game in which the nominal
and uncertain measures are described by conditional
distributions. Under this separated minimax game for-
mulation it is shown that those results remain valid,
while existence of an optimal control policy is shown.
Finally, in Section II-D, closed form expressions are
presented for the class of Gaussian nominal conditional
measures, when the sample path pay-off has a quadratic
form.
Due to the space limitation the derivations are not
included (they are found in [21]).

II. Partially Observed Wide Sense Uncertain Control
Systems

In this section the results derived in Lemma (3.2)
and Theorem (3.3) in [20] are employed to address the
partially observable problem. The difficulty of dealing

with partially observable systems is overcome by in-
troducing an equivalent separated minimax problem.
In the separated minimax formulation, the nominal
model is described by a conditional distribution while
the uncertain system is described by a family of condi-
tional distributions, which satisfy the relative entropy
constraint. Thus, the problem is described through a
posteriori information rather than a priori information.
Under the equivalent separated minimax formulation,
all previous results obtained in [20] remain valid. In
addition, existence of an optimal control u ∈ Uad is
shown among the class of wide-sense control laws which
are measures.

A. Problem Formulation

Let {x(t)}t≥0 denote the state process which is
subject to control, {y(t)}t≥0 the observation process,
and {u(t)}t≥0 the control process, all defined for a fixed
and finite interval of time 0 ≤ t ≤ T .
For each u ∈ Uad (in some admissible set which is
defined shortly) the nominal state and observation
process, giving rise to a nominal probability measure Pu

are governed by the following Ito stochastic differential
equations, in the probability space (Σ,B(Σ), Pu).




dx(t) = f(x(t), u(t))dt + σ(x(t))dw(t), x(0)

dy(t) = h(x(t))dt + Ndv(t), y(0) = 0
(II.4)

Here x(t) ∈ <n, y(t) ∈ <d, u(t) ∈ U ⊂ <k, {w(t)}t≥0

and {v(t)}t≥0 are independent Brownian motions taking
values in <m,<d, respectively, which are also indepen-
dent of the Random Variable x(0).
The following assumptions are introduced.

Assumptions 2.1: The nominal system satisfies the
following assumptions.
1) The controls {u(t); t ∈ [0, T ]} take values in U ⊂ <k

which is compact and convex.
2) f : <n × U → <n, σ : <n → L(<n;<m), f(x, u) =
f0(x)+ f1(x)u, and f0, f1, σ are bounded and Lipschitz
continuous.
3) h : <n → <d, h ∈ C2

b (<n).
4) N ∈ L(<d;<d) and ∃β > 0 such that NN ′ ≥ βId.
5) The random variable x(0) has distribution Π0(x).
6) λ : <n × U → <, κ : <n → <, `, κ are continuous,
bounded from below and from above, and λ(·, x) is
convex in u for all x ∈ <n.
Next, the problem is made precise by identifying the
spaces on which the nominal system is defined and then
introducing the precise definition of admissible controls.
Consider the sample space

Ω = Ωw × Ωx × Ωy × Ωu

where

Ωw = C([0, T ];<m), Ωx = C([0, T ];<n)
Ωy = C([0, T ];<d), Ωu = L2([0, T ];U)



and y(0) = 0 is assumed throughout. Here, Ωw,Ωx, Ωy

are endowed with the usual sup-norm topology, while
Ωu is endowed with the weak topology (which is
metrizable and separable). A typical element of Ω is
ω(t) = (w(t, ω), x(t, ω), y(t, ω), u(t, ω)), 0 ≤ t ≤ T . Let
Ωw,x = Ωw × Ωx, Ωy,u = Ωy × Ωu. Then Ω is provided
with a filtration {Ft; t ∈ [0, T ]} which is defined as
follows.
Let Fw

t = σ{w(s); 0 ≤ s ≤ t}, Fx
t = σ{x(s); 0 ≤ s ≤ t},

Fy
t = σ{y(s); 0 ≤ s ≤ t}, which may be regarded

as the Borel σ−algebras on C([0, T ];<q), q = m,n, d,
respectively, and Fu

t = σ{∫ s

0
u(τ)dτ ; 0 ≤ s ≤ t}, which

is the Borel σ−algebra on Ωu.
Then

Ft = Fw,x
t ×Fu,y

t , Fw,x
t = Fw

t ×Fx
t , Fy,u

t = Fy
t ×Fu

t

Fix a sample path for the observation and control
process y(·, ω), u(·, ω). Given the initial data x(0) =
x, y(0) = 0, w(0) = 0, Assumptions 2.1 imply existence
of a unique probability measure P̄ y,u

x on (Ωw,x,Fw,x
T )

which coincides with the law of {w(t), x(t); t ∈ [0, T ]},
such that {w(t); t ∈ [0, T ]} and {v(t); t ∈ [0, T ]} are
independent Wiener processes and in the probability
space (Ωw,x,Fw,x

T , P̄ y,u
x ) we have





x(t) = x +
∫ t

0
f(x(s), u(s))ds +

∫ t

0
σ(x(s))dw(s)

y(t) = Nv(t)

In addition, Assumptions 2.1, imply that P̄ y,u
x ∈

M(Ωw,x) depends continuously on (u(·, ω), x).
Definition 2.2: The set of admissible controls denoted

by Uad consists of measures π on (Ωy,u,Fy,u
T ), that is,

π ∈M(Ωy,u), such that {y(t); t ∈ [0, T ]} is Fy,u
T −π-a.s.

Brownian motion.
The projection (y(·, ω), u(·, ω)) 7→ y(·, ω) maps π ∈
M(Ωy,u) onto a Wiener measure, and for all t ∈ [0, T ],
u(t) and σ{y(r)− y(t); 0 ≤ t ≤ r ≤ T} are independent
under π.
Given the measure Π0 ∈M(<n) of x(0), by Baye’s rule

P̄ y,u(A) =
∫

<n

P̄ y,u
x (A)dΠ0(x), A ∈ Fw,x

T (II.5)

which is the unique joint distribution measure of
{x(t), w(t); t ∈ [0, T ]} given (y(·, ω), u(·, ω)).
For each π ∈ Uad define the joint distribution measure
P̃π on (Ω,FT ) by

P̃π(dw, dx, du, dy)
4
= P̄ y,u(dw, dx)× π(dy, du) ∈M(Ω) (II.6)

Notice that the projection(
w(·, ω), x(·, ω), y(·, ω), u(·, ω)

)
7→

(
y(·, ω), u(·, ω)

)

under P̃π ∈M(Ω) is π ∈M(Ωy,u) .
Finally, define the nominal measure Pπ as follows.

Introduce the ({Ft; t ∈ [0, T ]}, P̃π)-adapted exponential
martingale process

Λu(t) = exp
{ ∫ t

0

h′(x(s))(NN ′)−1dy(s)

−1
2

∫ t

0

h′(x(s))(NN ′)−1h(x(s))ds
}

(II.7)

Define the nominal measure through the Radon-
Nikodym derivative

dPπ(w, x, y, u)
dP̃π(w, x, y, u)

|FT

4
= Λu(T ) (II.8)

Then, Assumptions 2.1 imply that Pπ(Ω) =
EP̃ π

{
Λu(t)

}
= 1, ∀t ∈ [0, T ], and thus Pπ ∈

M(Ω). Moreover, by Girsanov’s theorem, vπ(t)
4
=∫ t

0
N−1dy(s) − ∫ t

0
N−1h(x(s))ds is a standard Wiener

process under Pπ ∈ M(Ω), and the distribution of
{w(t), x(t); t ∈ [0, T ]} is invariant under the measure
change of (II.8). Thus, under the measure Pπ ∈M(Ω),
the processes {vπ(t); t ∈ [0, T ]} and {w(t); t ∈ [0, T ]}
are independent Wiener processes.
Thus, for each π ∈ Uad, there exists a unique nominal
measure Pπ ∈ M(Ω) on which the state {x(t); t ∈
[0, T ]} and observation process {y(t); t ∈ [0, T ]} satisfy
(II.4).
The following is shown in [19].

Lemma 2.3: The set of admissible controls Uad is
compact under weak sequential convergence.
The precise problem statement should thus, be as
follows.

Definition 2.4: Given the nominal measure Pπ ∈
M(Ω), find a π∗ ∈ Uad and a probability measure
Qπ∗,∗ ∈ M(Ω) which solve the following constrained
optimization problem.

J(π∗, Qπ∗,∗) = inf
π∈Uad

sup
Qπ∈A(P π)

(

EQπ

{ ∫ T

0

λ(x(t), u(t))dt + κ(x(T ))
})

subject to fidelity
H(Qπ|Pπ) ≤ R, R ∈ (0,∞) (II.9)

where A(Pπ) = {Qπ ∈M(Ω); Qπ << Pπ}
B. Duality of Wide Sense Separated Uncertain Systems

Similar to [20], the problem is reformulated using
the dual functional. However, in partially observable
problems it is crucial to reformulate them as completely
observable problems, using separated laws, in which the
minimizing and maximizing players are functionals of
conditional distributions, rather than a priori distrib-
utions. For the specific problem under investigation,
the maximizing measure Qπ,∗ should be restricted
on (Ωy,u,Fy,u

T ), because this is the only information



available to both controller and minimizing measure.
This approach is considered next.
For each

(
u(·, ω), y(·, ω)

)
introduce the multiplicative

functional

χu(t)
4
= exp

(1
s

∫ T

0

λ(x(t), u(t))dt
)

(II.10)

Define the measure-valued process My,u
t (φ), φ ∈ Cb(<n)

by

My,u
t (φ)

4
= EP̄ y,u

{
φ(x(t))χu(t)Λu(T )

}
(II.11)

Then

My,u
t (φ) =< φ, My,u

t >

=
∫

<n

φ(z)dMy,u(z, t), φ ∈ Cb(<n) (II.12)

It can be shown that the following separated minimax
game is equivalent to the original problem.

Theorem 2.5: The problem of Definition 2.4 is equiv-
alent to the following separated minimax problem.
Define

µπ(T, x, y, u)
4
= My,u(t, x)π(y, u) ∈M(Ωy,u ×<n)

νπ(T, x, y, u)
4
= Ny,u(t, x)π(y, u) ∈M(Ωy,u ×<n)

Given a nominal conditional measure valued-process
My,u

t ∈ M(<n) find a π∗ ∈ Uad and a conditional
measure-valued process Ny,u,∗

t ∈ M(<n) which solve
the following constrained optimization problem.

J(π∗, νπ∗,∗) =

inf
π∈Uad

sup
νπ∈A(µπ)

∫

Ωy,u×<n

κ(z)dνπ(T, x, y, u) (II.13)

where

A(µπ) = {νπ ∈M(Ωy,u ×<n);
H(νπ|µπ) ≤ R, νπ << µπ}

and µπ ∈ (Ωy,u ×<n). Equivalently,

J(π∗, νπ∗,∗) =

inf
π∈Uad

sup
Ny,u∈A(My,u)

∫

Ωy,u

< κ, Ny,u
T > dπ(y, u) (II.14)

where

A(My,u) = {Ny,u ∈M(<n);
H(Ny,u × π|My,u × π) ≤ R, Ny,u

t << My,u
t }

and My,u
t ∈M(<n).

Similar to [20], the above problems can be reformulated
using the dual functional as follows.
For every s ∈ < define the Lagrangian

Js,R(π, νπ)
4
=∫

Ωy,u

< κ, Ny,u
T > dπ(y, u)− s

(
H(νπ|µπ)−R

)

(II.15)

and its associated dual functional

Js,R(π, νπ,∗) = sup
νπ∈A(µπ)

Js,R(π, νπ) (II.16)

where A(µπ) = {νπ ∈ M(Ωy,u × <n); νπ << µπ} and
µπ ∈M(Ωy,u ×<n). In addition define the quantity

ϕs∗(π,R)
4
= inf

s>0
Js,R(π, νπ,∗) (II.17)

which may or may not exist.
Then, the statements of Lemma (3.2) and Theorem
(3.3) in [20] hold, provided the appropriate changes are
made, which are made precise in the next Corollary.

Corollary 2.6: Let π ∈ Uad be fixed.
The statements of Lemma (3.2) and Theorem (3.3) in
[20] hold with the following changes.

Σ 7→ Ωy,u ×<n; u 7→ π ∈M(Ωy,u);
µu 7→ µπ ∈M(Ωy,u ×<n);

νu 7→ νπ ∈M(Ωy,u ×<n); `u 7→ κ

In particular,

Js,R(π, νπ,∗) = sR + s log Eνπ

{
e

1
s κ

}

= sR + s log
∫

Ωy,u×<n

e
1
s κ(z)dNy,u

T (T, z)× dπ(y, u)

∇= sR + sΨµπ (
1
s
) (II.18)

where the supremum in (II.16) is attained by νπ,∗ ∈
M(Ωy,u ×<n) given by

dνπ,∗(T, z, y, u) =
e

1
s κ(z)dµπ(T, z, y, u)∫

Ωy,u×<n e
1
s κ(z)dµπ(T, z, y, u)

(II.19)

or equivalently,

dNy,u,∗(T, z, y, u)

=
e

1
s κ(z)dMy,u(T, z, y, u)∫

Ωy,u×<n e
1
s κ(z)dMy,u(T, z, y, u)× dπ(y, u)

(II.20)
Proof. The derivation is found in [21].
Using the results of Corollary 2.6 the existence of the
optimal control policy π∗ ∈ Uad can be shown, using
the property that the measure valued process My,u

t is
a continuous function of

(
y(·, ω), u(·, ω)

)
, ∀t ∈ [0, T ].

Theorem 2.7: Consider any s in the admissible inter-
vals, (0, s∗], and the resulting pay-off corresponding to
the maximizing measure, namely,

Js,R(π, νπ,∗) = Js,R(π,My,u) = sR

+s log
∫

Ωy,u

{ ∫

<n

e
1
s κ(z)dMy,u

T (T, z)
}
× dπ(y, u)

(II.21)

Then
1) Js,R(π, νπ,∗) is lower-semi continuous on Uad.
2) There exists a π∗ ∈ Uad such that Js,R(π∗, νπ∗,∗) ≤
Js,R(π, νπ,∗),∀π ∈ Uad

Proof. The methodology is similar to that found in [19]
(the complete derivation is found in [21]).



C. Evolution of the Density of the Minimum Measure

Introducing some additional regularities on σ,Π0

would imply that the measure valued processes
Ny,u

t (φ),My,u
t (φ) have densities. The following are

sufficient to show that such densities exists

7) n = m, a(x)
4
= σ(x)σ′(x) ≥ Inα, α > 0, ∀x ∈ <n,

∂
∂xj

ai,j ∈ L∞(<n), ∀i, j.

8) Π0 has a density p0(x) and p0 ∈ L2(<n).

Under Assumptions 2.1 and 7), 8), it can be shown that
My,u

t has an unnormalized density and thus

My,u
t (φ)

=
∫

<n

φ(z)ey′(t)h(z)qy,u(t, z)dz, φ ∈ Cb(<n)

(II.22)

Moreover, qy,u(·, z) is the solution of the following
partial differential equation

∂

∂t
qy,u(t, x)

= A∗(y(t))qy,u(t, x) + e(x, y(t), u(t))qy,u(t, x)

where (t, x) ∈ (0, T ]×<n and qy,u(0, x) = p0(x).
where A∗(y) is the adjoint operator of A(y) (e.g.,

with respect to the duality product < A(y)φ, ψ >=<
φ, A∗(y)ψ >, φ, ψ ∈ C2

b (<n))

A(y) =
1
2

n∑

i,j=1

ai,j(x, y)
∂2

∂xi∂xj
+

n∑

i=1

bi(x, y, u)
∂

∂xi

−
n∑

i=1

(ay · ∇h)i
∂

∂xi

e(x, y, u) =
1
2
(ay · ∇h, y · ∇h)− y ·A(y)h− ||h||2<d

in which ·, (, ) are the dot products in <d, <n, respec-
tively.
Using the density of the measure valued process the
maximization with respect to π ∈ Uad can be expressed
as

Js,R(π, νπ,∗) = sR + s log
∫

Ωy,u

{

∫

<n

e
1
s κ(z)ey′(t)h(z)qy,u(t, z)dz

}
× dπ(y, u)

∇= Js,R(π, qy,u,∗) (II.23)

Therefore, existence of the optimal control policy π∗ ∈
Uad can be shown, through the partial differential
equations arguments.

Theorem 2.8: Consider any s in the admissible inter-
vals, (0, s∗] specified by the solution of the minimizing
measure.
Then

1) The functional Js,R(π, qy,u,∗) is upper semi continu-
ous on the set Uad

2) There exists an optimal control policy π∗ ∈ Uad.
Proof. This is similar to the proof found in [19] (a
complete proof is given in [21]).

D. Solvable Partially Observable Problems
For the purpose of illustrating the concepts presented

earlier, the following linear dynamics and observations
are considered, with quadratic constraints.

Assumptions 2.9: The coefficients of (II.4), the den-
sity of x(0), and the constraint are given by

f(x, u) = Fx + Bu, σ(t, x) = G, h(x)Hx,
2λ(x, u) = x′Qx + u′Ru, 2κ(x) = x′Mx

p0(x) = exp(− 1
2 |P

− 1
2

0 (x−ξ)|2)
(2π)

n
2 |P0|

1
2

, P0 = P ′0 ≥ 0,

each element having appropriate dimensions.
Under Assumptions 2.9, it can be shown that My,u

t has
a density my,u(x, t) given by

dMy,u(t, x) = my,u(x, t)dx

= νu
0,t ×

exp
(
− 1

2 |P (t)−
1
2 (x− r(t))|2

)

(2π)
n
2 |P (t)| 12

× exp
1
2s

(Cu
0,t

)× I0,tdx, (II.24)

where

νu
0,t = exp

( ∫ t

0

(Hr)′
(
NN ′

)−1

dy

−1
2

∫ t

0

||N−1Hr||2<dds
)

and

Cu
0,t

.=
∫ t

0

(r′Qr + u′Ru)ds

I0,t
.= exp

1
2s

{ ∫ t

0

Tr(PQ)ds
}

and P : [0, T ] → L(<n;<n), P = P ′ ≥ 0, r : [0, T ]×Ω →
<n, are given by

Ṗ = FP + PF ′ +
1
s
PQP +

GG′ − PH ′
(
NN ′

)−1

HP

P (0) = P0,

dr = (F +
1
s
PQ)rdt + Budt

+PH ′
(
NN ′

)−1(
dy − (Hr + h)dt

)
,

r(0) = ξ, (II.25)

where y(·) is an {Fy,u
t ; t ∈ T}-adapted Wiener process

with correlation NN ′. Suppose the class of strict-sense
control laws is considered.



Then the minimizing density associated with the mea-
sure valued process Ny,u

t is given by

dMy,u,∗(t, x) =
exp

(
− 1

2 |P (t)−
1
2 (x− r(t))|2

)

(2π)
n
2 |P (t)| 12

× |I − 1
sP (T )M(T )| 12

exp 1
2s

(
r′(T )

(
I − 1

sP (T )M(T )
)−1

M(T )r(T )
)dx

where dIudy − Hrdt − hdt is the innovations process
with covariance NN ′ defined on the space (Pu;Fr,u

t ),
Fr,u

t
.= σ {r(t), u(t); t ∈ [0, T ]}.

Moreover, the optimal s∗ corresponds to the value of
s for which the relative entropy between My,u,∗

t and
Ny,u,∗

t equals R.
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