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Abstract: In many manufacturing processes, an interval 
model is a useful description of the processes for control.  
Conditions for the same process can vary widely.  Interval 
models take into account these variations and consequently 
can have wide applications.  However, interval models 
present problems when their intervals are too wide or not 
accurate.  An adaptive interval model control which alters 
the interval has been proposed in this paper.  Simulations 
verify its effectiveness.  It has been used to successfully 
control a novel arc welding process.     
 
I. Introduction 
 
In many manufacturing processes, an interval model is a 
useful description of the processes for control.  Conditions 
for the same process can vary widely.  Interval models take 
into account these variations and consequently can have 
wide applications.  Abdallah et al. [1] and Olbrot and 
Nikodem [2] addressed a class of interval plants with one 
interval parameter.  In another study [3], a prediction based 
algorithm with guaranteed robust steady-state performance 
in tracking a given set-point is proposed to control interval 
plants described using linear impulse response models. 
Despite the advantages interval model control algorithms 
offer over traditional control algorithms, an interval model 
has problems.  If there is too much variation, the intervals of 
the model parameters become wide and system speed is 
affected.  If the system parameters lie altogether outside the 
given intervals, the system is not guaranteed stability. 
Adaptive interval model control algorithm offers solutions to 
these problems.  An adaptive interval model control 
algorithm, while starting with a set of intervals, can narrow, 
widen, and otherwise change the intervals based on the 
performance of an individual system.  Thus, an adaptive 
interval model control algorithm should have wide 
applications in manufacturing processes. 

 
II. Problem Formulation 
 
The first problem encountered using the adaptive interval 
model control algorithm is that the original interval model 
control algorithm [3, 4] uses an impulse response model of 
the form: 
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where k  is the current instant, ky  is the output at k , 
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the input at ( )k j−  ( )j > 0 , while n  and h j s( )'  are the order 
and the real parameters of the impulse response function. 
Assume h j s j n( )' ( ) 1 ≤ ≤  are time-invariant. They are 
unknown but bounded by the following intervals: 
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where h j h jmin max( ) ( )≤  are the minimum and maximum 
value of )( jh  and known. Assume y0  is the given set-point. 

It was proved that the prediction based control algorithm 
guarantees  
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if the parameters are bounded as given in (2).  In order for 
the control algorithm to predict and thus determine the input, 
the model needs to be given in the form (1) and (2).   For 
identification purposes, this model becomes cumbersome 
due to the large number of parameters.  To minimize the 
number of parameters needing identification, a second order 
model with auto-regression of the form  

112211 −−− ++= kkkk ubyayay                  (4) 
may be used.  This type of model is referred to as an 
autoregressive model [5].  Thus the system parameters in the 
autoregressive model (4) must be converted to those in (1).   
 
III. Model Conversion 
 
The z-transform function of the auto-regressive model (1) 
can be written as: 
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If the system has two real poles  

1α=z  and 2α=z , the 
parameters can be converted into poles and the function can 
be rewritten. Partial fraction expansion can be used to 
manipulate the equation (5). Hence, 

....)3()2()1()( 321 +++= −−− zhzhzhzH              (6) 
That is, the auto-regressive model is equivalent to the 
moving average model (1) where: 
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A similar method of manipulation may be used for repeated 
real roots and complex conjugate roots. If the two real poles 
are the same, i.e., α=z ,  then  
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If the two poles are complex conjugates, ivuz ±=  
where Ru ∈ , Rv ∈ , and 0>v ,  
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The relationships 2/1au =  and 2
22 )( avu −=+ , given in the 

above equation hold because   
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For a stable system, 122 <+ vu .  It can be shown  
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IV. Interval Conversion 
 
Assume the intervals of the parameters in model (5) can be 
obtained from on-line identification:   
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These intervals need to be used to find the intervals in (2).  
To this end, letís use the case of two distinctive real poles as 
an example.  In this case, (7) can be written as    
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Because 1b  is independent from 1α  and 2α , )(max jh  and 
)(min jh  will occur at four possible locations 
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and max1b  are given, one must find ),(min 21 ααf  and 

),(max 21 ααf .  To achieve this, an analytic method will be 
used that divides the possible distinct real pole interval 
combinations into three categories: 1) both positive 2) both 
negative and 3) differing polarities.  Overlapping intervals, 
because of the difficulty of analysis will use a quasiñanalytic 
method in Section E.  Systems with complex poles, because 
of the complexity of the equation, will also use a numerical 
method whereby u and v intervals will be searched for 
instead of 1α  and 2α  intervals. 

The control algorithm will determine which case the 
particular 21 ,αα  interval pair satisfies by first testing the 
sign of the products of min1α , max1α  and min2α , max2α . A 
positive product indicates consistency of polarity within 
each α  interval.  Consistency of polarity between the two α  
intervals can be determined if a positive product results from 
multiplying any one element of the set [ min1α , max1α ] by an 
element of the set [ min2α , max2α ]. Satisfaction of both 
conditions narrows the 21 ,αα  pair to either case 1.) both 
positive or case 2.) both negative. Differentiation between 
case 1 and case 2 is easily accomplished. All 21 ,αα  interval 
pairs that do not fit all of the above requirements are 
assigned to 3.) differing polarities. 

 
IV.A Two Positive α Intervals 
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Finding max21 ),( ααf  and min21 ),( ααf  with two positive α  
intervals is relatively straightforward. Positive α  interval 
values guarantee positive values when exponentiated.  To 
find max21 ),( ααf , max1α  and max2α  will be used.  Similarly, 
using min1α  and min2α  will yield min21 ),( ααf .  
IV.B Two Negative α Interval 
Unlike positive α  intervals, negative α  intervals have 
different polarities when raised to different powers. Even 
exponents yield positive values whereas odd exponents yield 
negative values. When finding max21 ),( ααf  and min21 ),( ααf  
with negative α  intervals, analysis is aided by further 
dividing α  interval pairs into two subclasses.  

1. Odd j value: For every odd j value, j-1 is even.  The sum 
of the exponents of both 1α  and 2α  in any one term of 

),( 21 ααf  is j-1 and therefore, even. Because both α  

interval values are negative and negative values raised to 
an even power become positive, all terms of ),( 21 ααf  will 
be positive.  To derive max21 ),( ααf , α ís with the greatest 
absolute value, min1α  and min2α  are required.  Similarly, to 
derive min21 ),( ααf , α ís with the least absolute value, 

max1α  and max2α  should be used. 
2. Even j value: For every even j value, j-1 is odd.  The 
sum of the exponents of both 1α  and 2α  in any one term 
of ),( 21 ααf  is j-1 and therefore, odd. Because both α  
interval values are negative and negative values raised to 
an odd power remain negative, all terms of ),( 21 ααf  will 
be negative.  To derive max21 ),( ααf , α ís with the greatest 
value, max1α  and max2α , should be used. Similarly, to 
derive min21 ),( ααf , α ís with the least value, min1α  and 

min2α , are used. 
 

   IV. C Differing Polarities 
1. Even j values 
For all even j values, ),( 21 ααf will have j, or an even 
number of terms.  Consecutive terms can be grouped into 
(j-1)/2 pairs.  Factoring an )( 21 αα +  from each pair yields 
the following result: 

)...)((),( 2
2

2
2

4
1

2
12121

−−− ++++= jjjf αααααααα    (13A) 
Analysis reveals that the polarity of the first factor, 

)( 21 αα + , depends on the relative size of the positive and 
negativeα  values. Because every term of the second 
factor, )...( 2
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raised to even powers, the polarity of the second factor is 
guaranteed to be positive.  The possibility of the first factor 
being either negative or positive complicates analysis, and 
thus it is advantageous to divide 21 ,αα  intervals further 
into two subclasses: a.) −+ > αα  and b.) +− > αα  where 

0;0 <> −+ αα  
1a. −+ > αα : Let it be assumed that 1α  = −α  and that 

2α = +α .  From (13A), it can be shown that under the 
conditions imposed ( −+ > αα ), the first factor, 

)( 21 αα + , will be positive.  It has already been proved 
that the second factor, )...( 2
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positive.  To find max21 ),( ααf , both factors should be 
maximized.  To maximize the first factor, α 's with the 
greatest value, max1α  and max2α , should be used.  To 
maximize the second factor, α ís with the greatest absolute 
value, max2α  and min1α should be used.  Both factors indicate 
that max2α should be used; however, there is inconsistency 
on 1α  value to be used.  A numerical method explained in 
III.D will be used to obtain the 1α  value.  To find 

min21 ),( ααf , both factors should be minimized. To 
minimize the first factor, α 's with the least value, min1α  and 



min2α , should be used.  To minimize the second factor, 
α ís with the least absolute value, min2α  and max1α should be 
used.  Similar to finding max21 ),( ααf , both factors indicate 
that min2α should be used; but there is inconsistency on 1α  
value to be used.  A numerical method explained in III.D 
will be used to obtain the 1α  value. 
1b. +− > αα : Let it be assumed that 1α  = −α  and that 

2α = +α .  From (13A), it can be shown that under the 
conditions imposed ( +− > αα ), the first factor, 

)( 21 αα + , will be negative.  It has already been proved 
that the second factor, )...( 2
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positive.  To find max21 ),( ααf , the first factor should be 
maximized while the second factor should be minimized.  
To maximize the first factor, α 's with the greatest value, 

max1α  and max2α , should be used.  To minimize the second 
factor, α ís with the least absolute 
value, min2α and max1α should be used.  Both factors indicate 
that max1α should be used; however, there is inconsistency 
on the 2α  value to be used.  A numerical method 
explained in III.D will be used to obtain the 2α  value.  To 
find min21 ),( ααf , the first factor should be minimized 
while the second factor should be maximized. To minimize 
the first factor, α 's with the least value, min1α  and min2α , 
should be used.  To maximize the second factor, α ís with 
the greatest absolute value, max2α  and min1α should be used.  
Similar to finding max21 ),( ααf , both factors indicate that 

min1α should be used; but there is inconsistency on the 2α  
value to be used.  A numerical method explained in III.D 
will be used to obtain the 2α  value. 

2. Odd j values  
For all odd j values, ),( 21 ααf will have j, or an odd 
number of terms. Separating the last term, 1

2
−jα  from the 

other terms, grouping consecutive terms into (j-1)/2 pairs, 
and subsequently factoring an )( 21 αα +  from each pair 
yields the following result: 
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By separating the first term instead of the last, a different 
factorization may result of the form: 
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If it is assumed that 1α  = −α  and that 2α = +α  and (13C) is 
used, analysis reveals that the polarity of the first factor, 

)( 21 αα + , depends on the relative size of the positive and 
negative α  values. Taking into account our assumptions, 
the second factor, )...( 3
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either negative α ís raised to even powers or positive α ís 
raised to odd powers; therefore, the polarity of the second 
factor is guaranteed to be positive.  The added element will 
also be positive because it consists of an α value raised to 

an even power. The possibility of the first factor being 
either negative or positive complicates analysis, and it is 
advantageous to divide 21,αα  intervals further into two 
subclasses: a.) −+ > αα  and b.) +− > αα  where 

0;0 <> −+ αα . 
2a.  −+ > αα : From (13C), it can be shown that under the 

conditions imposed ( −+ > αα ), the first factor, 

)( 21 αα + , will be positive.  It has been proved that the 
second factor, )...( 3
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added element, 1
1

−jα  will both be positive.  To find 

max21 ),( ααf , both factors and the added element should be 
maximized.  To maximize the first factor, α 's with the 
greatest value, max1α  and max2α , should be used.  To 
maximize the second factor, α ís with the greatest absolute 
value, max2α  and min1α should be used.  To maximize the 
added element, anα  with the greatest absolute value, 

min1α , will be used. Both factors indicate that max2α should 
be used; however, there is inconsistency on the 1α  value to 
be used.  A numerical method explained in III.D will be 
used to obtain the 1α  value.  To find min21 ),( ααf , both 
factors should be minimized. To minimize the first factor, 
α 's with the least value, min1α  and min2α , should be used.  
To minimize the second factor, α ís with the least absolute 
value, min2α  and max1α should be used.  To minimize the 
added element, an α  with the least absolute value, min1α , 
will be used.  Similar to finding max21 ),( ααf , both factors 
indicate that min2α should be used; but there is 
inconsistency on the 1α  value to be used.  A numerical 
method explained in III.D will be used to obtain the 1α  
value. 
2b. +− > αα : From (13C), it can be shown that under the 

conditions imposed ( +− > αα ), the first factor, 

)( 21 αα + , will be negative.  It has already been proved 
that the second factor, )...( 2
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added element, 1

1
−jα , will be positive.  To find 

max21 ),( ααf , the first factor and the added element should 
be maximized while the second factor should be 
minimized.  To maximize the first factor, α 's with the 
greatest value, max1α  and max2α , should be used.  To 
maximize the added element, an α  with the greatest 
absolute value, max1α , will be used.   To minimize the 
second factor,α ís with the least absolute value, min2α  and 

max1α should be used.  Both factors and the added element 
indicate that max1α should be used; however, there is 
inconsistency on the 2α  value to be used.  A numerical 
method explained in III.D will be used to obtain the 2α  



value.  To find min21 ),( ααf , the first factor and the added 
element should be minimized while the second factor 
should be maximized. To minimize the first factor, α 's 
with the least value, min1α  and min2α , should be used.  To 
minimize the added element, anα  with the least absolute 
value, max1α  should be used. To maximize the second 
factor, α ís with the greatest absolute value, max2α  
and min1α should be used.  Because there is no agreement at 
all, a numerical method explained in IV.D will be used to 
obtain both the 1α  and 2α  value. 

IV.D Numerical Method for max21 ),( ααf and min21 ),( ααf  

For instances where analysis fails to yield a clear α  value, a 
numerical method is needed.  For the α  value in question, 
the interval between minα and maxα is divided into n sections.  
The boundary points between each two consecutive sections 
are stored as test points.  These test points are inputted into 
one form of equation 13 and the output stored.  After all test 
points have been tested, a comparison will reveal 
the max21 ),( ααf and min21 ),( ααf .    If neither α  value can be 
found using analytic methods, both α  intervals will be 
divided using the method above.  Every combination of α  
test points will be inputted into one form of equation 13 to 
yield max21 ),( ααf and min21 ),( ααf .  For a model with two 
complex conjugate roots, interval conversion follows a 
slightly different path.  Because both roots can be expressed 
in the form u±iv, instead of using α intervals, the u and v 
intervals can be used.  However, similar to the α intervals, 
the u and v intervals will be divided into sections and the 
boundary points tested with the equation 13A to find 

max21 ),( ααf and min21 ),( ααf .   
IV.E Overlapping Intervals with consistent polarity 
For instances where intervals overlap and there is consistent 
polarity between the intervals, a quasi-analytic method can 
also be developed.  First the overlapping section of one pole 
interval will be ignored, thus reducing one pole interval.  
The pole interval that is reduced will be called the changed 
interval.  With one original pole interval and one changed 
interval, it is then possible to use analytic method to 
determine which 21 ,αα  values should be used.  To account 
for the overlapping section, a numerical method is then used 
with the overlapping part of the changed interval.  The 
function values from the analytic method and the numerical 
method can be compared, and the true find max21 ),( ααf and 

min21 ),( ααf .   
After max21 ),( ααf and min21 ),( ααf  have been attained 

using any method, they will be multiplied by min1b  and 

max1b and the )(max jh  and )(min jh  found for a particular j. 
 
V. Adaptation 
The control algorithm is adaptive because it utilizes online 
identification.  A system with auto-regression can be 

expressed in the form θϕ )()( kky T=  where 
[ ])1()2()1()( −−−= kukykykϕ  and [ ]121 baa=θ .  

At every time instant k, )(kϕ  changes, causing a change in 
θ.  A recursive algorithm [5] can be used to calculate the 
new θ:  Once system parameters are identified online, they 
are converted into poles and pole intervals acquired using 
history.  The last n previous instantsí poles are searched and 
a maximum and minimum are found.  The use of pole 
intervals rather than parameter intervals guarantees stability 
within the system.  Because the parameters 

2,1 αα  are 
dependent on each other, their stability is guaranteed only 
for that particular combination.  If a parameter interval is 
established and 

2,1 αα  from two different instances are 
paired with each other, the system could become unstable.  
Poles are inherently stable because they are within the unit 
circle and consequently the better interval for adaptivity.  
History, while lacking a theoretical basis has been shown to 
be practically the same as other more complex methods. 
 
VI. Simulation  
In a series of simulations, the poles are the same (α1=.5, 
α2=.5) but the value of b1 varies.  Examination of these 
simulations that the b1 location with relation to the nominal 
b1 interval has a great effect on the relative performance of 
non-adaptive interval model control algorithms.  When the 
actual b1 is near the maximum of an interval (Figure 2) the 
non-adaptive interval model control algorithm performs 
slightly worse than its adaptive counterpart.  However, when 
the actual b1 is located near the minimum of an interval 
(Figure 1), the non-adaptive interval model control 
algorithm performs drastically worse than the adaptive.  
Further, as b1 increases gradually from .2 to .8, the relative 
advantage of the adaptive over the non-adaptive also 
increases.  It is apparent that the performance of the adaptive 
algorithm is consistent while that of the non- adaptive 
algorithm varies with the value of b1 in the interval.  The 
performance of the non-adaptive algorithm becomes worse 
when b1 decreases.  

It is possible that pole location can also affect the relative 
performance of adaptive and non-adaptive interval model 
control algorithms.  A series of simulations has been done by 
varying the location of the pole.  As can be seen in Figs. 7 
and 11, when the pole is close to the maximum of its 
interval, the difference between the adaptive interval model 
control algorithm and its non-adaptive equivalent is small.  
However, when the actual pole is located near the minimum 
of its interval, the difference is quite large. Once again, the 
adaptive is performs more consistently than its non-adaptive 
counterpart. 

Oftentimes it will be the case that a known uncertainty 
interval will not be centered on the true system parameter 
value.  Taking into account the results of the previous 
simulations, a theoretical explanation for the differences in 
relative performance of adaptive and non-adaptive interval 
model control algorithms can be developed.  Because for the 
system:  
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The gain can be expressed as [6]: 

)1)(1/( 211 αα −−= bK               (15) 



the discrepancy in the relative performance of adaptive and 
non-adaptive interval model control algorithms makes sense.  
From Equation 22, it is seen that the larger the actual pole or 
actual b1 value, the larger the gain.  Keep in mind that the 
interval control algorithm [3] tends to use the highest gain of 
the gain interval to assure stability.  Hence, when the gain is 
near the maximum of its interval, the control algorithm 
accurately predicts the system response and the system 
response speed is thus fast.  However, when the systemís 
gain is at the low end of the interval, the control algorithm 
cannot accurately predict the system response.  The control 
action determined based on the highest gain will reduce the 
systemís response speed.  As a result, the relative location of 
the actual gain in the gain interval, which can be determined 
by the intervals of the model parameters affect the 
performance of non-adaptive algorithm.   
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Figure 1: Simulation with b1 = .2 
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Figure 2: Simulation with b1=. 8 

 

0 20 40 60 80 100
0 
2 
4 
6 
8 

10 
12 P o le  In te rv a l S tu d y  1  

T im e  (s te p )  

Y 
(O

ut
pu

t)  

A dapt ive      
N on-A dap t ive 

 
Figure 3: Simulation with α1 = .2 
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Figure 4: Simulation with α2 = .8 

VII. Application  
To verify the effectiveness of the proposed adaptive interval 
model control algorithm, experiments were conducted with a 
quasi-keyhole plasma arc welding process [7]. The quasi-
keyhole plasma arc welding process is a novel arc welding 
process which switches the current from a peak value to a 
base value after a keyhole is established.  If the peak current 

is maintained, excessive metal will separate from the work 
piece [7].  For this process, an appropriate peak current is 
needed to establish the keyhole in an appropriate period, 
which is controlled through the amplitude of peak current.  
This can be measured as the time between the start of peak 
amperage and the time a current is detected between the 
work piece and detection plate.  In order to detect the 
establishment of the keyhole for measuring the keyhole 
establishment time, various methods have been utilizes in 
the past. Some of these include monitoring the light of the 
plasma efflux from the keyhole [8] and the spectral lines of 
hydrogen and argon [9].  The utilized plasma efflux 
detection method for this study is the EPCS, a sensor based 
on the backside efflux plasma charge [10].  Once detection 
using this method has been proven valid [11], a control 
algorithm can be developed using the current as input and 
the keyhole establishment time as output.  Previously this 
system was modeled by a non-linear auto-regressive model. 
However, the on-line identified model used in this study 
may be considered as a locally linearized model.  Hence, 
using experimental data and least squares method, the 
system is fit to the linear auto-regressive model and 
controlled by the adaptive interval model control algorithm.   

Using experimental data, an interval model was derived 
with α1: [0.6145, 0.9555]; α2: [-0.2244,-0.0853] and b1: 
[1.2487,1.9345].  In order to examine the effectiveness of 
the adaptive interval model control for the plasma arc 
welding process, simulation has been done for a model with 
α1=0.7, α2=-0.2, b1=1.5.  As can be seen in the simulation of 
the plasma quasi-keyhole arc welding process shown in 
Figure 5, the adaptive algorithm reaches the set point (250 
ms) very quickly.  However, the closed-loop response speed 
of the non-adaptive system is very slow. In another 
simulation shown in Figure 6, the model parameters are 
α1=0.9, α2=-0.1, b1=1.9.  In this particular simulation, the 
non-adaptive performs acceptably in relation to the adaptive 
control algorithm.  This is consistent with the findings from 
the previous simulations showing that system parameters 
affect the performance of the non-adaptive interval model 
control algorithm. In summary, the effectiveness of the 
adaptive algorithm is consistent but the non-adaptive is not 
assured.  Hence, the adaptive algorithm offers a large 
advantage over its analogous non-adaptive control algorithm 
and can be considered for the control of quasi-keyhole arc 
welding process.   

To test the effectiveness of the designed system, control 
experiments have been done.  In experiment 1, the desired 
peak current duration is set to 250ms. The orifice diameter 
of the plasma arc welding nozzle is 2mm. The welding speed 
is kept to be 2 mm/s. The plasma gas and shielding gas flow 
rates are 6.5fph and 25fph, respectively. Welding 
experiments are fulfilled on stainless steel 304 plate with the 
thickness of 3.66mm. The output signal and the control 
signal are shown in Figure 7 and Figure 8, respectively. As 
can be seen, the first 10 control signals are predetermined 
with the average at 150A and biased by some white noises. 
At the 11th step, Least Square estimation is implemented 
according to the input-output pairs. Then, recursive Least 
Square estimation is implemented online to obtain the 
current parameters. For the first few steps right after the 
online estimation, the control process is oscillating a little 
bit. However, after a few steps, it converges to the set point 
and maintains it, which verifies the validity of the control 
algorithm. In experiment 2, the plasma gas and shielding gas 
flow rates are changed to be 4.5fph and 15fph, respectively. 

α1 = .2; α1 = [.2,.8] 
α2, b1 = .5,.5 ;  
α2, b1 = [.475,.525] 
 

α1 = .8; α1 = [.2,.8] 
α2, b1 = .5,.5 ;  
α2, b1 = [.475,.525] 

b1 = .2; b1 = [.2,.8] 
α1,α2 =  .5; 
α1,α2 =[.475,.525] 
 

b1 = .8; b1 = [.2,.8] 
α1,α2 =  .5; 
α1,α2 =[.475,.525] 
 



The welding speed is 4mm/s. In order to prove the proposed 
algorithm can track different set points, 500ms peak current 
duration is selected to be the desired value. Bead-on-plate 
PAW is fulfilled on 4.40mm thick stainless steel plate. The 
output and input are shown in Figure 9 and Figure 10, 
respectively. The parameters variations are shown in Figure 
9 and Figure 10. Same result can be concluded as the first 
experiment.  
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Figure 5:  Plasma Arc Welding Process Simulation 1 
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Figure 6: Plasma Arc Welding Process Simulation 2 

 
Figure 7: Control Experiment 1-Peak Current Duration    

 
Figure 8: Control Experiment 1-Peak Current  

 
Figure 9: Control Experiment 2 - Peak Current Duration     

 
Figure 10: Control Experiment 2 - Peak Current 

VIII. Conclusion 
  
The interval model has been proved an acceptable model of 
control for many manufacturing processes.  However, it still 
has its problems when the intervals are either inaccurate or 
too wide.  The adaptive interval model from simulation can 
be concluded as superior to the interval model.  The 
alteration of parameters based on system response that 
characterizes the adaptive interval model guarantees 
attaining the set point faster.  The main problem with the 
adaptive interval model, model conversion from an impulse 
response model to a model with auto-regression, can be 
overcome through a combination of analytic and numerical 
methods.  Application of the adaptive interval model to a 
real world plasma arc welding process shows its practical 
viability.   
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Actual Parameters 
α1=0.7, α2=-0.2, 
b1=1.5

Actual Parameters 
α1=0.9, α2=-0.1, b1=1.9 

Set pointñ350ms; Thick- 
nessñ3.4mm; Weld  speed - 
4.5mm/s; Orifice Diameter ñ 
2mm; Pilot Current ñ 20A 

Set point ñ 250ms 
Thickness ñ 3.66mm 
Weld speed -  4.5mm/s 
Orifice Diameter ñ 2mm 
Pilot Current ñ 20A 
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