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Abstract— Two further developments of the inventory con-
trol strategy are studied in this paper. First we use high gain
(sliding mode) adaptive control to handle the system uncertain-
ties caused by modelling errors and unmeasured disturbances.
It is proved that this control law makes the uncertain system
globally stable. The parameters of the resulting controller
are easy to tune. Second, inventory control was primarily
developed for systems with relative degree equal to one. In this
paper we develop an objective-based control strategy which
allows application of the inventory control idea to systems with
higher relative degree. Several simulation studies illustrate the
application of the novel method.

I. INTRODUCTION

Passivity theory [1], [2], [3] provides an effective means
to design control systems for wide range of electro-
mechanical systems. We used passivity theory to develop
control systems for chemical processes [4]. The central
feature of passivity based process control is that the so-
called ”inventory” variables decay with time. Applications
of this method have been reported in recent papers [5], [6],
[7].

The inventory of a process is defined as any extensive
variable such as total mass, amount of moles of a chemical
species or the total energy. The reason for choosing inven-
tory species for control is that many large scale chemical
processes can be modelled as networks of unit operations
whose dynamics are described by balances of inventories,
interconnected by material and energy flow [4]. In such
systems, a quadratic error function between the invento-
ries and their ideal objective values, is a suitable storage
function for passivity design. This choice ensures that the
process is passive and the process inventories will converge
to their setpoints when we use strictly passive feedback. For
example, the inventory vector may be defined so that

vT = [U,M1,M2...Mn] (1)

The inventory dynamics are than given by the conservation
law:

dv

dt
= ψ = Jin − Jout + p (2)

where U and Mi, i = 1, 2..n denotes the energy and
component masses; Jin and Jout are flows into and out
of the system; and p the rate of production. The control
task is to derive the control input u from

ψ = −k(v − v∗) + v̇∗ (3)

Many chemical engineering systems take the Jin as u,
we can easily calculate it from (3). The essence of the
solvability of the control law from (3) is that, the relative
degree of this kind of system is equal to 1, and ψ is
invertible with respect to the control variables.

The inventory control approach may not function well if
there are model uncertainties, errors in the measurements
and noise acting on the system. It is also limited to systems
that have relative degree equal to one. The purpose of the
current paper is to design a strategy to overcome these
limitations. To make the method more robust, we develop
a sliding mode approach with an adaptation feature to
estimate the size of the unmodeled errors. The inventory
control approach with sliding mode control is then extended
to systems with relative degree larger than one by using an
objective based method.

Based on the brief discussion above we have decided to
address two issues, which will make the inventory control
more robust and applicable to a wider class of systems.

• First, we want to consider uncertainty and develop
the nonlinear robust control approaches which provide
system dynamics with an invariance property to uncer-
tainties. We achieve this using sliding mode control,
to satisfy the Lyapunov stability conditions for the
inventory control systems.

• Second, we extend the inventory control method to
systems that have higher relative degree than one. This
may make inventory control applicable to a wide-range
of physical systems than just chemical processes.

II. ROBUST INVENTORY CONTROLLER DESIGN

Let the inventories be represented by the vector v. The
dynamics of many chemical processes like reactors, distil-
lation columns, bio-reactors and distributed processes with
fluid flow, can then be represented by the inventory balance,

dv

dt
= p(x) + φ(d, x, u) (4)

where, p(x) is called the production rate, and φ(d, x, u)
is called the inventory supply function which depends on
the state variable x, the manipulated variables u and the
disturbance variables d. The storage function 1

2
(v−v∗)T (v−

v∗) can be used to show that the mapping φ → v − v∗ is
passive and the system is stabilized by any strictly passive
feedback [4].



Considering now the inventory system (4) with uncertain-
ties,

v̇ = p(x) + φ(d, y, u) + 4 (5)

4 denotes a lumped uncertainty which is possibly nonlinear
and time-varying. The uncertainty is not known but is
assumed to be bounded so that:

|4| ≤ δ (6)

The objective of this paper is to show that sliding mode
control provides a method to control the system dynamics
so that they have an invariance property with respect to
uncertainties once the system dynamics are controlled in
the sliding surface [8], [9].

To develop the sliding mode control strategy, we define
the inventory error

e(t) = v(t) − v∗(t) (7)

where v∗(t) is the desired inventory trajectory. The inven-
tory error dynamics are then described by,

ė(t) = v̇ − v̇∗

= p+ φ− v̇∗ + 4 (8)

Following the sliding mode approach [8], we now define
a switching surface.

S(t) = (
d

dt
+ k0)

∫ t

0

e(τ)dτ = 0, S(0) = 0 (9)

The dynamics while in sliding mode can be writen as

Ṡ(t) = 0

which leads the inventory error dynamics,

ė(t) = −k0e(t) (10)

By solving this equation formally for the control input, we
obtain an expression for control law called the equivalent
control by solving,

p+ φ = −k0e+ v̇∗ − δ̂sgn(S(t)) (11)

where S(t) is given by equation (9), the estimate δ̂ satisfies
the condition

|4| ≤ δ̂ (12)

and

sgn(z) =

{

+1, z > 0
−1, z < 0

}

Remark 1: With no uncertainty, the control law (11)
becomes

p+ φ = −k0e+ v̇∗ (13)

This is the same as proposed in [4]. The control design (13)
corresponds to the design of the first order sliding control
(9).

We will use the following adaptation algorithm for the
bound of δ

˙̂
δ = α|S(t)| (14)

where α is a positive constant, The closed-loop system is
then derived from equations (8) and (11), so that,

ė(t) = −k0e(t) − δ̂sgn(S(t)) + 4 (15)

Lemma 1: Let η > 0 be a real constant, If the switching
surface S(t) of the controlled system satisfies,

1

2

d

dt
S2 ≤ −η|S| (16)

then S(t) converge to zero and the sliding surface, S(t) = 0
exists [8].
To achieve perfect tracking, all system trajectories have to
converge to S and stay on the S afterwards. We have to
determine a control law such that the above condition (16)
is satisfied.

Theorem 1: The control law designed by (11) stabilizes
the inventory system with uncertainties (8) and the error
converges to the sliding mode.

Proof: According to our control design,

S(t)Ṡ(t) = S(t)(ė(t) + k0e(t))

= S(t)(−δ̂sgn(S(t)) + 4)

= −δ̂|S(t)| + 4S(t)

≤ −δ̂|S(t)| + |4||S(t)|
= −(δ̂ − |4|)|S(t)|
= −η|S(t)| (17)

where η = δ̂ − |4|. Therefore, our controller designed by
(11) satisfies the existence condition of the sliding mode
described by Lemma 1. That implies, when the inventory
error e(t) is trapped into the sliding surface, the dynamics
of the system is governed by (10), which is always stable,
so the inventory error e(t) will converge to zero.

Theorem 2: The sliding mode controller with the adapta-
tion algorithm (14) makes the controlled system (8) asymp-
totically convergent to the switching surface S(t) = 0, and
further guarantees that the system is stable.

Proof: Define a Lyapunov function candidate

V (S(t), δ̃) =
1

2
S2(t) +

1

2α
δ̃2 (18)

where

δ̃ = δ̂ − δ (19)

Then

V̇ (S(t), δ̃) = S(t)Ṡ(t) +
1

α
(δ̂ − δ)

˙̃
δ

= S(t)(ė(t) + k0e(t)) +
1

α
(δ̂ − δ)α|S(t)|

= S(t)(−δ̂sgn(S(t)) + 4) + |S(t)|(δ̂ − δ)

≤ |S(t)|(|4| − δ) ≤ 0 (20)



This implies,

P (t) ≡ |S(t)|(|4| − δ) ≤ −V̇ (S(t), δ̃) (21)

then
∫ t

0

P (τ)dτ ≤ V (S(0), δ̃(0)) − V (S(t), δ̃(t)) (22)

As V (S(0), δ̃(0)) is bounded and V (S(t), δ̃(t)) is bounded
and non-increasing, we conclude that,

lim
t→∞

∫ t

0

P (τ)dτ <∞ (23)

And clearly, Ṗ (t) is bounded ⇐⇒ P (t) is uniformly
continuous, by Barbalat’s Lemma [8]

lim
t→∞

P (t) = 0 (24)

Hence, S(t) → 0 as t → ∞. Furthermore, the stability
is obtained and the inventory error e(t) converges to the
switching surface.

The above sliding mode design is equivalent to the
passivity-based control. The mapping

p+ φ→ e(t) (25)

is passive with the storage function

V (S(t), δ̃) =
1

2
S2(t) +

1

2α
δ̃2 (26)

and the supply rate

w = |S(t)|(|4| − δ) (27)

with the control law

p+ φ = −k0e+ v̇∗ − δ̂sgn(S(t)) (28)

III. INVENTORY CONTROL FOR RELATIVE DEGREE
GREATER THAN ONE

For some systems, for example mechanical system, we
find that it is hard to solve u from (3) because the relative
degree is greater than 1. In such cases, it is not possible to
converge to a sliding surface that has relative degree equal
to one. We need to extend the order of the error equation
accordingly. For example, for a system with relative degree
two, we use the second order error equation,

ë+ k1ė+ k0e = 0 (29)

where k0 and k1 are chosen so that the error dynamics
are stable(e(t) → 0). Of course, we can extent this to
nth order error equation, where the coefficient vector
k = [k0, k1...kn−1]

T is appropriately chosen so that the
polynomial sn−1 +kn−1s

n−2 + ...+k0 is Hurwitz. We call
this approach Objective Based Control Design.

The detailed procedure for Objective-Based Inventory
Control Design is as follows:

Step 1. Define inventory v and its equilibrium v∗ based
on the physical model.

Step 2. Write the inventory error balance equations, and
solve the control law from these equations. The feedback
gains (k0, k1, ...) satisfy the Hurwitz.

Step 3. Divide the control law into two parts, a feed-
forward and a feedback term. The feedback term (ufb) is
synthesized by the feedback gains. The feedforward term
(uff ) is the controller output at steady state, such that uff

can be solved from uff = u|v=v∗ . And eventually the
control law is re-written as u = uff + ufb.

Remark 2: The system stability is guaranteed by the
Hurwitz condition. For first order inventory error equation,
there is only one feedback gain, stability follows as long
as k0 > 0. For higher order inventory error equations,
the feedback gain constants can be easily chosen by pole-
placement same as in [10].

Remark 3: It is not necessary to use the feedforward
term in Step 3 to achieve stability since the system stability
is guaranteed via the Hurwitz condition, and the instant
performance can be adjusted by the parameters(ki). But
solving the feedforward term helps improve disturbance
rejection and setpoint tracking performance.

IV. EXAMPLES

To demonstrate the effectiveness of the design developed
in this paper, we will apply our methods to a few benchmark
control problems. The first two examples demonstrate the
effectiveness of sliding mode inventory control for handling
system uncertainties. The last one example demonstrate the
objective based design method for higher order systems.

Example 1: (Nonlinear tank problem) Consider the liquid
surge tank shown in Fig.1 with one inlet (flowing from the
upstream process) and one outlet stream (flowing to the
downstream process). Based on the material balance, the
overall mass balance equation is written as:

dV ρ

dt
= Finρ− Foutρ (30)

where V is the volume of liquid in the tank; ρ is the
liquid density; Fin and Fout are inlet and outlet volumetric
flowrates respectively. This mass balance describes how the
volume of the liquid hold-up changes with time. It is often
desirable to use tank height h, rather than volume as the
state variable. If we assume a constant tank cross-sectional
area A, we can express the tank volume as V = Ah. We also
know that the flowrate out of the tank can be approximated
so that it is proportional to the square root of the height of
the liquid in the tank,

Fout = β
√
h

where β is a flow coefficient. This gives

dh

dt
= −β

√
h

A
+
Fin

A
(31)

For this model we refer to h as the state variable,
inlet flowrate (Fin) as the input variable and β and A as
parameters. Let’s define the inventory (objective function),
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Fig. 1. Liquid Surge Tank

v = h, and its equilibrium v∗ = h∗. The inventory error
equation is written as,

(v̇ − v̇∗) + k0(v − v∗) = 0 (32)

It leads to

Fin = β
√
h+ ḣ∗A− k0(h− h∗)A (33)

In steady state, h = h∗, the feedforward term u = uff =
β
√
h∗ + ḣ∗A. Therefore, the finial control law becomes,

Fin = β
√
h∗ + ḣ∗A− k0(h− h∗)A (34)

This is normal inventory control. In this study, A = 1,
β = 0.5, a parameter uncertainty is considered, the flow
coefficient becomes β + ∆β. In this case, the inventory
equation becomes

dh

dt
=

Fin − (β + ∆β)
√
h

A

=
Fin − β

√
h

A
− ∆β

√
h

A
=
Fin − β

√
h

A
+ ∆(35)

where ∆ = −∆β
√

h
A

. We derive the control law for the
inventory control system with this uncertainty from (11):

Fin = β
√
h− k0(h− h∗)A+ ḣ∗A− δ̂sgn(S(t)) (36)

In the same way, considering the feedforward term can be
obtained from steady state, the finial control law for the
parameter uncertainty becomes,

Fin = β
√
h∗ − k0(h− h∗)A+ ḣ∗A− δ̂sgn(S(t)) (37)

The control objective is to control the flowrate inlet Fin

so that h tracks the square setpoints shown in Fig.2. To
investigate the effectiveness of the proposed control system,
the following case with parameter variations and time-
varying disturbance are considered here: The uncertainty
term in this simulation, ∆β ∈ [−0.2 0.2] is a random vari-
able which is unknown for our control design. In addition,
the parameters of the controller with adaptive learning are
given as follows:

k0 = 2, α = 2
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Fig. 2. Control Response of tracking a square setpoint (h∗)
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Fig. 3. Control Response of tracking a square setpoint (h∗) without
sliding mode

The control response is plotted in Fig.2. To show the
function of sliding mode in the control system, we use
the normal inventory control (33) without sliding mode
for the uncertain system under the same conditions, the
result is shown in Fig.3. It is clear that the sliding mode
controller plays an important role in handling this parameter
uncertainty.

Example 2: (Relative degree is equal to 1) In this
example, we use the nonlinear control problem developed
by Byrnes and Isidori [11]:

ẋ = −x+ µx2 + u

y = x (38)

Assume the exosystem (reference inputs or disturbance
[11]) satisfies:

ẇ1 = w2

ẇ2 = −w1

This control problem is to have the system output y track
the reference w1. Let the inventory be defined v = x, we
get the error equation

ė = v̇ − v̇∗ = p+ φ− v̇∗ = −k0(v − v∗) (39)
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Hence, the control law,

u = x+ v̇∗ − µx2 − k0(x− v∗) (40)

Clearly, the the control law consists of feedforward term
uff and feedback term ufb. The feedforward reflects system
input in the steady state, i.e. uff = v∗ + v̇∗ − µv∗2 =
w1 + w2 − ww2

1 , The control law is the same as Byrnes
and Isidori [11] approach obtained by Output Regulation
Theory:

u = w1 + w2 − µw2

1 − k0(x− w1) (41)

Consider an unknown random disturbance | d |≤ 1 acting
on the system, which is shown in Fig.6.

ẋ = −x+ µx2 + u+ d

y = x (42)

The sliding mode control law based on (11) then becomes

u = w1 + w2 − µw2

1 − k0(x− w1) − δ̂sgn(S(t)) (43)

In this example, µ = 2, choose k0 = 2, α = 30. Our
trajectory function is given by w1 = 2 sin t. Fig.5 and Fig.4
shows the tracking error and tracking response. If we don’t
use the sliding mode to overcome the disturbance, system
output diverges as shown in Fig.7.

Remark 4: We applied our sliding mode inventory con-
trol strategy to a time-varying tracking problem with system
uncertainty, which can not be solved by output regulation
theory [11] due to the unknown disturbance. In addition,
the output regulation theory requires that the exosystem is
central stable [11], [12]. The approach proposed here does
not have this limitation. In another words, sliding mode
inventory control strategy can be used to track more general
references. Another advantage of the proposed approach
over the approach of output regulation theory is that, there
is no need to solve the regulator equations which is the most
difficulty for output regulation theory [11], [12], [10].

Example 3: (Relative degree is equal to 2) We illustrate
here the application of our control strategy to a simple
pendulum (Fig.8). This problem which has been extensively
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Fig. 8. Simple Pendulum

studied in nonlinear control literature [2], can be described
by the equation:

ml2q̈ +mgl sin(q) = u (44)

where q, m, l and g are the angle, the ball mass, pendulum
length and gravity acceleration respectively. The torque is
used as a control input u. Our objective is to control the
pendulum so that its angle q reaches a given setpoint q∗. We
choose the inventory variable v = q, and error e = v − v∗.
We then get

v̈ = q̈ =
u−mgl sin v

ml2
(45)

According to the second order error surface equation (29),
we have,

u−mgl sin v

ml2
+ k1q̇ + k0(q − q∗) = 0 (46)

which leads to,

u = mgl sin(q) − k1ml
2q̇ − k0ml

2(q − q∗) = uff + ubf (47)

which is the same as (3.3) in [2]. In steady state, q = q∗

and q̇ = 0,

u = uff = mgl sin(q∗) (48)

it derives the control law,

u = mgl sin(q∗) − k1ml
2q̇ − k0ml

2(q − q∗) (49)

which is the same as the Passivity-Based Control (3.6) in
[2].

V. CONCLUSIONS

Two issues about inventory control are discussed in this
paper. First we developed an improved, sliding mode-based,
robust inventory control strategy was proposed for control-
ling process systems with bounded uncertain parameters and
disturbances. The approach is based on an adaptive param-
eter law for estimating the magnitude of the disturbance. A
stability analysis based on Lyapunov theory was given to
motivate the theory. Secondly, we developed an extension

of the original inventory control theory which makes this
method applicable to systems with relative degree larger
than one.

Several benchmark example results show that the control
strategies proposed here can effectively control nonlin-
ear plants with uncertainties. Good performance, simple
structure and adjustment of parameters make the proposed
strategies attractive to industrial application.
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