
Rank Minimization and Applications in System Theory

M. Fazel, H. Hindi, and S. Boyd

Abstract— In this tutorial paper, we consider the problem of
minimizing the rank of a matrix over a convex set. The Rank
Minimization Problem (RMP) arises in diverse areas such as
control, system identification, statistics and signal processing,
and is known to be computationally NP-hard. We give an
overview of the problem, its interpretations, applications, and
solution methods. In particular, we focus on how convex
optimization can be used to develop heuristic methods for
this problem.

I. INTRODUCTION

In many engineering applications, notions such as order,
complexity, or dimension of a model or design can be
expressed as the rank of a matrix. If the set of feasible
models or designs is described by convex constraints, then
choosing the simplest model can often be expressed as a
Rank Minimization Problem (RMP). For example, a low-
rank matrix could correspond to a low-order controller for
a system, a low-order statistical model fit for a random
process, a shape that can be embedded in a low-dimensional
space, or a design with a small number of components. It is
not surprising that rank minimization has such a wide range
of applications across all disciplines of engineering and
computational sciences: we are often interested in simple
models. This idea is well captured by the principle known
as Occam’s razor, which states that “Among competing
explanations for a phenomenon, the simplest one is the
best.”

There are several special cases of the RMP that have
well known solutions. For example, approximating a given
matrix with a low-rank matrix in spectral or Frobenius
norm is an RMP that can be solved via singular value
decomposition (SVD) [15]. However, in general, the RMP
is known to be computationally intractable (NP-hard) [26]..
Therefore, we do not expect to find a computationally effi-
cient (polynomial-time) method that can solve all instances
of the problem exactly. And unless the number of variables
in the problem is very small, global search methods, that
have exponential time complexity, are not viable options.
Therefore, what we discuss here are heuristics that solve
the problem approximately but efficiently.

The structure of the paper is as follows. In sections II
and III we define the RMP and demonstrate its meaning
in different contexts and applications. In section IV, we
give an overview of various heuristic solution methods.
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In particular, we focus on recently developed heuristics
based on convex optimization, i.e., the trace and log-det
heuristics [7], [8]. Section V demonstrates the use of the
heuristics for the problem of system realization with time
domain constraints.

II. THE RANK MINIMIZATION PROBLEM

The general RMP can be expressed as

RMP:
minimize RankX

subject to X ∈ C,
(1)

where X ∈ Rm×n is the optimization variable and C is a
convex set denoting the constraints.

As a generic example of the RMP, suppose we are trying
to estimate or reconstruct the covariance matrix

X = E(z − E z)(z − E z)T

of a random vector z ∈ Rn, from measurements and
prior assumptions. Here E(z) denotes the expectation of
the random vector z. The constraint X ∈ C expresses the
condition that the estimated covariance matrix is consistent
with (or not improbable for) our measurements or observed
data and prior assumptions. For example, it could mean that
entries in X should lie in certain intervals. The rank of X is
a measure of the complexity of the stochastic model of z, in
the sense that it gives the number of underlying independent
random variables needed to explain the covariance of z.
The RMP (1) is therefore the problem of finding the
least complex stochastic model (i.e., covariance) that is
consistent with the observations and prior assumptions. As
we will point out in the next section, this problem has many
practical applications. In other applications, rank can have
other meanings such as embedding dimension, controller
order, or number of signals present.

In problem (1), we allow any constraints on the matrix
as long as they describe a convex set. Thus, we cover a
large number of constraints and specifications that come
up in practice. For example, constraints on the accuracy
of a model or the performance of a design are common;
e.g., f(X) ≤ t, where f(·) is a (convex) measure of
performance, and t ∈ R is the tolerance. We give examples
of these constraints in the next section.

III. APPLICATIONS OF THE RMP

A. Rank of a covariance matrix

Problems involving the rank of a covariance matrix often
arise in statistics, econometrics, signal processing, and other
fields where second-order statistics for random processes
are used. Second-order statistical data analysis methods,
such as principal component analysis and factor analysis,



deal with covariance matrices estimated from noisy data.
Because of noise, the estimated covariance matrices have
full rank (with probability one). Finding a covariance matrix
of low rank comes up naturally in these methods. A low-
rank covariance matrix corresponds to a simple explanation
or model for the data. For example, consider the following
constrained factor analysis problem:

minimize Rank(Σ)

subject to ‖Σ − Σ̂‖F ≤ ε,

Σ ≥ 0
Σ ∈ C,

where Σ ∈ Rn×n is the optimization variable, Σ̂ is the
measured covariance matrix, C is a convex set denoting the
prior information or assumptions on Σ, and ‖ · ‖F denotes
the Frobenius norm of a matrix (other matrix norms can be
handled as well). The constraint ‖Σ− Σ̂‖F ≤ ε means that
the error, i.e., the difference between Σ and the measured
covariance in Frobenius norm, must be less than a given
tolerance ε. The constraint Σ ≥ 0 ensures that we obtain
a valid covariance matrix. In the statistics terminology, the
objective function, RankΣ corresponds to the number of
factors that explain Σ.

If C = Rn×n (i.e., no prior information), this problem
has an SVD-based analytical solution. However, extra con-
straints such as upper and lower bounds on the entries of
Σ result in a computationally hard problem.

B. Rank of a Hankel matrix

We saw in the previous section that the rank of a
covariance matrix plays a central role in many statistical
methods as a notion of complexity of the stochastic model.
The rank of a Hankel matrix has similar significance in
model identification problems in system theory and signal
processing. It comes up commonly in problems that deal
with recursive sequences, where the order of the recursion
is expressed by the rank of an appropriate Hankel matrix.

Problems involving minimizing the rank of a Hankel
matrix also come up in system realization, e.g., in design-
ing a low-order linear, time-invariant system directly from
convex specifications on its impulse response. We discuss
this problem is section V.

C. Other examples

RMPs have been studied extensively in the control
literature, since many important problems in controller
design and system identification can be expressed as an
RMP. Minimum-order controller design is perhaps the
most widely studied problem among these (see, e.g.,[9],
[17]). Another problem is model order reduction in sys-
tem identification. Other applications include reduced-order
H∞ synthesis and reduced-order µ synthesis with constant
scalings [4], problems with inertia constraints [13], exact
reducibility of uncertain systems [1], and simultaneous
stabilization of linear systems [14].
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Fig. 1: Illustration of the alternating projections method for the RMP.

Low-rank matrix approximations are also sometimes used
to save computational effort. As a simple example, suppose
we want to compute y = Ax, where A ∈ Rm×n, for
various values of x, and suppose m and n are large. This
requires mn multiplications. If RankA = r, then A

can be factored as A = RLT , where R ∈ Rm×r and
L ∈ Rm×r. Thus, y = RLT x can be computed with only
(m + n)r multiplications. If r is much smaller than m and
n, this could lead to significant savings in computation. The
simplest matrix approximation problem is

minimize Rank Â

subject to ‖A − Â‖ ≤ ε,
(2)

where Â is the optimization variable and ε is the tolerance.
This problem can readily be solved via SVD. However,
often when A has a particular structure (e.g., Hankel or
Toeplitz), Â is desired to retain that structure. Such addi-
tional constraints typically make the problem hard.

IV. SOLUTION APPROACHES

In this section we discuss solution approaches to the
RMP. We list some existing approaches organized into three
groups, and review them briefly. We then focus in detail on
two heuristics based on convex optimization, i.e., the trace
and log-det heuristics.

A. Alternating projections method

This method is based on the fact that the sequence of or-
thogonal projections onto two closed, convex sets converges
to a point in the intersection of the sets, if the intersection is
non-empty [11]. If one or more of the sets are non-convex,
convergence to the intersection is no longer guaranteed. In
this case, we can have a situation where the sets intersect
but the sequence of projections converges to a limit cycle,
as depicted in figure 1. However, local convergence is still
guaranteed and the method may be used as a heuristic.
The alternating projections method can be applied to the
RMP (this is used in [2] for the low-order controller design
problem). We first fix the desired rank r. The goal is to



find a matrix in the intersection of the following two sets,
or determine that the intersection is empty: (i) the set of
matrices of rank r, and (ii) the constraint set C. Note that
the first set is nonconvex. Projection onto the set of matrices
of rank r, i.e., finding the closest rank r matrix to the
current iterate Xk−1, can be done by SVD. We denote the
solution by X̃k. Projection onto the constraint set C can
be done by minimizing the distance from X̃k to the set C.
In summary, given a desired value of rank r, we use the
following algorithm to check whether there is any X ∈ C
such that RankX ≤ r:

• Choose X0 ∈ C. Set k = 1.
• repeat

X̃k =
∑r

i=1
λiuiv

T
i , where Xk−1 = UΣV T ,

Xk = argminX∈C ‖X − X̃k‖,

ek = ‖Xk − X̃k‖,

until |ek − ek−1| ≤ ε.
See [10, chapter 10] and references therein for a detailed

discussion of the alternating projection method and its
variations, and their application to low-order control design.

In general, this method is known to have slow conver-
gence [24], although there have been recent variations that
improve the speed [24, chapter 10]. Also note that in each
iteration, in addition to an SVD, we need to solve the
problem of projection onto C. In some special cases, this
projection has a simple analytical expression (see [24]). In
these cases, we can afford a large number of iterations since
the computation required per iteration is very low; but in
general, each iteration involves solving a convex problem,
e.g., a semidefinite program.

B. Factorization, coordinate descent and linearization
methods

The idea behind factorization methods is that
Rank(X) ≤ r if and only if X can be factored as
X = FGT , where F ∈ Rm×r and G ∈ Rn×r. For each
given r, we check if there exists a feasible X of rank
less than or equal to r by checking if any X ∈ C can be
factored as above.

The expression X = FGT is not convex in X , F , and G

simultaneously, but it is convex in (X,F ) when G is fixed,
and convex in (X,G) when F is fixed. Various heuristics
can be applied to handle this non-convex equality constraint.
We consider the following simple heuristic: Fix F and G

one at a time and iteratively solve a convex problem at each
step. This can be expressed as

• Choose F0 ∈ Rm×r. Set k = 1.
• repeat

(X̃k, Gk) = argmin
X∈C, G∈Rn×r

‖X − Fk−1G
T ‖F

(Xk, Fk) = argmin
X∈C, F∈Rm×r

‖X − FGT
k ‖F

ek = ‖Xk − FkGT
k ‖F ,

until ek ≤ ε, or ek and ek−1 are approximately equal.

This is a coordinate descent method, since some variables
(i.e., coordinates) are fixed during each minimization step.

Another heuristic to handle the non-convex constraint
X = FGT is to linearize this equation in F and G.
Assuming the perturbations δF , δG are small enough so
that the second order term is negligible, we get X =
FGT + FδGT + δFGT . This constraint can be handled
easily since it is linear in both δF and δG. The method
is useful if the initial choice for FGT is close enough to
a rank r matrix for the small perturbations assumption to
be valid. This method has been used in BMI problems that
come up in low-authority controller design [12].

Some other heuristics, similar to the ones described
here, have been applied to the problem of reduced order
controller design in the control literature. This problem has
a particular structure, allowing for different choices for the
variables in a coordinate descent or linearization method.
For example, the dual iteration method in [16] and the
successive minimization approach in [24] are coordinate
descent methods applied to this problem, and [5] gives
a linearization method based on a cone-complementarity
formulation.

C. Interior-point-based methods

Consider a positive semidefinite RMP, i.e., a special
case of the RMP with the extra constraint that X ≥ 0.
Reference [3] proposes heuristics for this problem that
use ideas from interior point methods for convex opti-
mization [20]. One heuristic, called analytic anti-centering,
is based on the properties of convex logarithmic barrier
functions; specifically, that they grow to infinity as the
boundary of the feasible set is approached. Minimization of
a log-barrier function using the Newton method produces
a point in the interior of the feasible set, known as the
analytic center. Now note that any rank-deficient solution to
the positive semidefinite RMP must lie on the boundary of
the semidefinite cone. The analytic anti-centering approach
takes steps in the reverse Newton direction, in order to
maximize the log-barrier function. This tends to produce
points that are on the boundary of the feasible set, and
hence rank deficient. Since this approach involves the
maximization of a convex function, the solutions are not
necessarily global optima.

Note that in these methods the result is highly sensitive to
the choice of the initial point. The initial point is typically
chosen in the vicinity of the analytic center of the feasible
region. The iterations may follow a completely different
path to a different point on the boundary if the initial point
is slightly changed. See reference [3] for more details and
examples, and for the application of these methods to low-
order control design.

In the next section, we focus our attention on heuristics
based on solving convex problems, and present a few useful
properties of these methods.



D. Trace and Log-det heuristics

A well-known heuristic for the RMP when the variable
X ∈ Rn×n is positive semidefinite is to replace the rank
objective in (1) with the trace of X and solve

minimize TrX

subject to X ∈ C
X ≥ 0.

(3)

One way to see why this heuristic works is to note that
TrX =

∑n

i=1
λi(X), where λi(X) are the eigenvalues of

X . This is the same as ‖λ(X)‖1 =
∑n

i=1
|λi(X)| for a PSD

matrix where the eigenvalues are non-negative. It is known
that to obtain a sparse vector, minimizing the `1-norm of the
vector is an effective heuristic [18], [8]. Thus, minimizing
the `1-norm of λ(X) renders many of the eigenvalues as
zero, resulting in a low-rank matrix. The trace heuristic
has been used in many applications; see for example [22],
[23]. Also see [19] for a special case where this heuristic is
exact. Trace heuristic’s popularity stems from the fact that
problem (3) is a convex optimization problem, which can
be solved very efficiently and reliably in practice.

The log-det heuristic can be described as follows: rather
than solving the RMP, use the function log det(X + δI)
as a smooth surrogate for RankX and instead solve the
problem

minimize log det(X + δI)
subject to X ∈ C,

(4)

where δ > 0 can be interpreted as a small regularization
constant. Note that the surrogate function log det(X + δI)
is not convex (in fact, it is concave). However, since it is
smooth on the positive definite cone, it can be minimized
(locally) using any local minimization method. We use
iterative linearization to find a local minimum. Let Xk

denote the kth iterate of the optimization variable X . The
first-order Taylor series expansion of log det(X +δI) about
Xk is given by

log det(X + δI) ≈
log det(Xk + δI) + Tr(Xk + δI)−1(X − Xk).

(5)
Here we have used the fact that ∇ log det X = X−1, when
X > 0. Hence, one could attempt to minimize log det(X +
δI) over the constraint set C by iteratively minimizing the
local linearization (5). This leads to

Xk+1 = argmin
X∈C

Tr(Xk + δI)−1X. (6)

The new optimal point is Xk+1, and we have ignored the
constants in (5) because they do not affect the minimization.
Since the function log det(X+δI) is concave in X , at each
iteration its value decreases by an amount more than the
decrease in the value of the linearized objective. Based on
this observation, it can be shown that the sequence of the
function values generated converges to a local minimum of
log det(X + δI).

Note that the trace heuristic can be viewed as the first
iteration in (6), starting from the initial point X0 = I .

Therefore, we always pick X0 = I , so that X1 is the result
of the trace heuristic, and the iterations that follow try to
reduce the rank of X1 further.

1) Generalized Trace and Log-det heuristics: The two
heuristics given in the previous section are applicable di-
rectly only to RMPs where the matrix variable is posi-
tive semidefinite. However, using the following embedding
lemma both heuristics are readily extended to handle general
matrices.

Lemma 1: Let X ∈ Rm×n be a given matrix. Then
RankX ≤ r if and only if there exist matrices Y = Y T ∈
Rm×m and Z = ZT ∈ Rn×n such that

RankY + RankZ ≤ 2r,

[

Y X

XT Z

]

≥ 0. (7)

The proof is omitted here, in the interest of space and
the tutorial nature of this paper. For the proof, see [8].

This result means that minimizing the rank of a general
nonsquare matrix X , problem (1), is equivalent to mini-
mizing the rank of the semidefinite, block diagonal matrix
diag(Y,Z):

minimize 1

2
Rankdiag(Y,Z)

subject to

[

Y X

XT Z

]

≥ 0

X ∈ C,

(8)

with variables X , Y and Z (we drop the constant factor 1/2
from now on).

Using this lemma, to have a generalized version of the
trace heuristic we simply apply the trace heuristic to (8)
by replacing Rank with Tr. The resulting heuristic can be
shown [7] to be equivalent to the following problem,

minimize ‖X‖∗
subject to X ∈ C,

(9)

where ‖X‖∗ =
∑min{m,n}

i=1
σi(X) is called the nuclear

norm or the Ky-Fan n-norm of X; see, e.g., [15]. Here
σi(X) are the singular values of X . This norm is the dual
of the spectral (or the maximum singular value) norm. The
following theorem yields an interesting interpretation of the
nuclear norm heuristic: in effect, this heuristic minimizes
the convex envelope of the rank function over a bounded
set (see [6] for the proof and more details).

Theorem 1: On the set S = {X ∈ Rm×n | ‖X‖ ≤ 1},
the convex envelope of the function φ(X) = RankX is
φenv(X) = ‖X‖∗ =

∑min{m,n}
i=1

σi(X).
The convex envelope of f : C → R is defined as

the largest convex function g such that g(x) ≤ f(x)
for all x ∈ C (Figure 2). This means that among all
convex functions, g is the one that is closest (pointwise)
to f . In situations such as problem (1) where the objective
function is non-convex, its convex envelope can serve as
a tractable convex approximation that can be minimized
efficiently. The minimum of the convex envelope can then
serve as a lower bound on the true minimum, and the
minimizing argument can serve as an initial point for a
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more complicated non-convex local search method, e.g., the
generalized log-det heuristic that we will discuss next.

In order to extend the log-det heuristic to the general case,
we appeal to Lemma 1 again. Since the matrix diag(Y,Z)
is semidefinite, the log-det heuristic (4) can be applied. This
yields

minimize log det(diag(Y,Z) + δI)

subject to

[

Y X

XT Z

]

≥ 0

X ∈ C.

(10)

Linearizing as before, we obtain the following iterations for
solving (10) locally:

diag(Yk+1, Zk+1) =

argminTr(diag(Yk, Zk) + δI)−1 diag(Y,Z)

subject to

[

Y X

XT Z

]

≥ 0

X ∈ C, (11)

where each iteration is an SDP in the variables X , Y and
Z.

Figure 3 provides an intuitive interpretation for the
heuristic. It shows the basic idea behind the TrX and
log det(X +δI) approximations of RankX . The objective
functions for the trace and log-det heuristics are shown for
the scalar case, i.e., when x ∈ R and σ(x) = |x|.

V. APPLICATION EXAMPLE: SYSTEM REALIZATION

WITH TIME-DOMAIN CONSTRAINTS

In this section, we discuss the problem of designing
a low-order, discrete-time, linear time-invariant (LTI) dy-
namical system, directly from convex specifications on the

first n time samples of its impulse response. Some typical
specifications are bounds on the rise-time, settling-time,
slew-rate, overshoot, etc. This problem can be posed as one
of minimizing the rank of a Hankel matrix over a convex
set.

We begin with a fact about linear systems that can be
derived from standard results in [25]. We denote by Hn the
Hankel matrix with parameters h1, h2, . . . , h2n−1 ∈ R,

Hn =















h1 h2 h3 . . . hn

h2 h3 h4 . . . hn+1

h3 h4 h5 . . . hn+2

...
...

...
. . .

...
hn hn+1 hn+2 . . . h2n−1















. (12)

Fact 1: Let h1, h2, . . . , hn be given real numbers. Then
there exists a minimal LTI system of order r, with state
space matrices A ∈ Rr×r, b ∈ Rr×1 and c ∈ R1×r, such
that

cAi−1b = hi i = 1, . . . , n,

if and only if

r = min
hn+1,...,h2n−1∈R

RankHn,

where Hn is a Hankel matrix whose first n parameters are
the given h1, h2, . . . , hn, and whose last n− 1 parameters,
hn+1, . . . , h2n−1 ∈ R, are free variables.
In other words, there exists a linear time invariant system
of order r whose first n impulse response samples are
h1, . . . , hn, if and only if the minimal-rank Hankel matrix
has rank r. Once h1, . . . , h2n−1 are known, a state space
description {A, b, c} can be easily obtained [21].

Note that the constraints in the Fact 1 are only on the
first n samples, even though hn+1, . . . , h2n−1 also appear
in the Hankel matrix. These extra variables are left free in
the optimization. Thus, they are chosen in a way so as to
minimize the overall rank of the Hankel matrix.

To see how the facts above can be used to design low-
order systems directly from specifications, consider the
specifications on the step response shown in Figure 4.
The goal is to find the minimum-order system whose step
response fits in the region defined by the dashed lines, up
to the 16th sample. The dashed lines are meant to capture
a typical set of time-domain step response specifications:
certain rise-time, slew-rate, overshoot, and settling charac-
teristics and an approximate delay of four samples. The
problem can be expressed as

minimize RankHn

subject to li ≤ si ≤ ui, k = 1, . . . , n
hn+1, . . . , h2n−1 ∈ R,

(13)

where sk =
∑k

i=1
hi denote the terms in the step response,

and li and ui are, respectively, samples of the lower and
upper time domain specifications (shown by the dashed
lines).
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This problem is an RMP with no analytical solution.
Note also that the optimization variable Hn is not positive
semidefinite. We apply the generalized trace and log-det
heuristics described before to this problem. Because of
the approximate four-sample delay specification, we do not
expect that the specifications can be met by a system of
order less than four.

After five iterations of the log-det heuristic, a fourth-order
system is obtained with the step response shown in Figure 4.
Thus, all the specifications can be met by a linear time-
invariant system of order exactly four. In this example, we
set δ = 10−6. Figure 5 shows the logarithm of the nonzero
Hankel singular values. We see that the rank of the 16 ×
16 matrix Hn drops to 5 after the first iteration, and the
next four iterations bring the rank to 4, which in this case

happens to be the global minimum.
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