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Abstract— This paper presents the mapping equations for
Integral Quadratic Constraints (IQCs). In particular it is
shown that IQCs with bounded rational multipliers can be
mapped into parameter space.

Using IQCs not only provides a uniform framework to map
specifications into parameter space, but provides a unified
approach to parameter space based robustness analysis and
synthesis with respect to nonlinearities, time variations, and
uncertain parameters.

The exploitation of additional degrees of freedom contained
in the multipliers is also addressed. To this end convex
optimization problems in terms of Linear Matrix Inequalities
(LMIs) can be formulated and solved during the mapping
process.

I. INTRODUCTION

The parameter space approach is a well established
method for robustness analysis of systems with uncertain
parameters [1]. Initially the parameter space approach con-
sidered eigenvalue specifications for linear systems.

Recently, this approach was extended to frequency do-
main specifications [3], [4]. Static nonlinearities were con-
sidered in the parameter space approach in [2]. Finally [10]
derived mapping equations for multi-input multi-output sys-
tems, includingH2,H∞ norms and passivity specifications.

Our goal is to use the unifying framework of IQCs to
find mapping equations which allow to incorporate a large
set of specifications. Having found the mapping equations
for general IQC specifications enables us to consider spec-
ifications from the input-output theory, absolute stability
theory and the robust control field. Specifications from all
these research fields can be used in conjunction with the
parameter space approach. Using the same mathematical
formulation the same computational methods can be used
for these different specifications.

Outline: In Section II, a brief treatment of IQCs will be
given. The following section then states the main result,
the mapping equations for IQCs. We will first consider
fixed, frequency independent multipliers. Section IV will
then show how to map specifications based on IQCs with
frequency dependent multipliers into parameter space.

For many uncertainties not just a single multiplier but sets
of multipliers exist to characterize the uncertainty structure.
Often these sets can be described by parameterized multipli-
ers. We will show how to utilize these additional degrees of
freedom in order to minimize the conservativeness inherent

TABLE I

NOTATION

Symbol Meaning
ℜ real part
R set of all real numbers
Lm

2
[0,∞) space of square summable functions

H∞ space of bounded, analytic functions fors > 0
Iq q × q identity matrix
A(s)∗ conjugate transposeA(−s)T

≻ positive definite

in mapping only a single multiplier in Section V. As an
example a nonlinear system is analyzed in Section VI using
a frequency-dependent multiplier. Finally we state some
open problems for future work.

II. I NTEGRAL QUADRATIC CONSTRAINTS

In general, IQCs provide a characterization of the struc-
ture of a given operator and the relations between signals
of a system component.

In a system theoretical context the following IQC is
widely used. Two signalsw ∈ Lm

2 [0,∞) and v ∈ Ll
2[0,∞)

satisfy the IQC defined by the multiplierΠ(jω) = Π(jω)∗,
if

∫

∞

∞

[

v̂(jω)
ŵ(jω)

]

∗

Π(jω)

[

v̂(jω)
ŵ(jω)

]

dω ≥ 0, (1)

holds for the Fourier transforms of the signals. Consider the
bounded and causal operator∆ defined on the extended
space of square integrable functions on finite intervals.
If the signal w is the output of ∆, i.e. w = ∆(v),
then the operator∆ is said to satisfy the IQC defined
by Π, if (1) holds for all signalsv ∈ Ll

2[0,∞). Thus the
multiplier Π gives a characterization of the operator∆. The
operator∆ represents the nonlinear, time-varying, uncertain
or delayed components of a system. For example, let∆ be
a saturationw = sat(v) then the multiplier

Π =

[

1 0
0 −1

]

,

defines an IQC which holds for this nonlinear operator.
Note, that this multiplier is not necessarily unique. Actually
there might be an infinite set of valid multipliers. See [9] for
a summarizing list of important IQCs, and [7] for a detailed
treatment.



We consider the general configuration of a causal and
bounded linear time-invariant (LTI) transfer functionG(s),
and a bounded and causal operator∆ which are intercon-
nected in a feedback manner

v = Gw + e2,

w = ∆(v) + e1,

wheree1 ande2 are exogeneous inputs. See Fig. 1.G(s)
�

we1
v e2

Fig. 1. General IQC feedback structure

The stability of this system can be verified using the
following theorem.

Theorem II.1 ([9]): Let G(s) ∈ RHl×m
∞

, and let∆ be a
bounded causal operator. Assume that

(i) for τ ∈ [0; 1], the interconnection(G, τ∆) is well-
posed,

(ii) for τ ∈ [0; 1], the IQC defined byΠ is satisfied byτ∆,

(iii) there existsε > 0 such that
[

G(jω)
I

]

∗

Π(jω)

[

G(jω)
I

]

≤ −εI, ∀ω ∈ R. (2)

Then, the feedback interconnection ofG(s) and∆ is stable.
�

Note that the considered feedback interconnection uses
positive feedback only.

III. PARAMETER SPACE MAPPING

In general, the parameter space approach maps a given
specification, e.g. a permissible eigenvalue region, into a
space of uncertain parametersq ∈ R

p. Usually the specifi-
cation is mapped into a parameter plane because this leads
to understandable and powerful graphical results. Moreover,
since we can map several specifications consecutively, this
approach actually allows multi-objective analysis and syn-
thesis of control systems.

In other words we are interested in the set of all parame-
tersPgood which fulfill a given specification. The boundary
of this ”good” set is characterized by the equality case of
the specification. Mathematically this good set is given by
a mapping equation. We will show, how to get mapping
equations for IQCs in the sequel.

A. Uncertain parameter systems

Consider an uncertain LTI systemG(s, q) ∈ RHl×m
∞

which is interconnected to a bounded causal operator∆.
The parametersq ∈ R

p are uncertain but constant param-
eters with possibly known range. The operator∆ might
represent various types of uncertainties, including constant
uncertain parameters not included inq. Let Π be a con-
stant multiplier which characterizes the uncertainty∆ with
partition

Π =

[

Π11 Π12

ΠT
12 Π22

]

. (3)

Conditions(i) and (ii) in Theorem II.1 are parameter-
independent. Hence, the parameter-dependent stability con-
dition (iii) which can be written as

G(jω)∗Π11G(jω) + Π22

+ ΠT
12G(jω) + G(jω)∗Π12 ≤ −εI, (4)

has to be fulfilled by parameters inPgood.
The avenue to determine mapping equations will be

the application of the Kalman-Yakubovich-Popov (KYP)
lemma. Previously known results on how to map specifica-
tions expressible as algebraic Riccati equations (ARE) are
then easily applied to IQC specifications.

B. Kalman-Yakubovich-Popov Lemma

The KYP lemma relates very different mathematical
descriptions of control theoretical properties to each other.
In particular, it shows close connections between frequency-
dependent inequalities, AREs and Linear Matrix Inequali-
ties.

The KYP lemma is also known as the ”positive real
lemma”. Nowadays a very popular application of the KYP
lemma is to derive LMIs for frequency domain inequalities,
since efficient numerical algorithms for the solution of LMI
problems exist.

Theorem III.1 (Kalman, Yakubovich, Popov): Let (A,B)
be a given pair of matrices that is stabilizable andA has
no eigenvalues on the imaginary axis. Then the following
statements are equivalent.

(i) R ≻ 0 and the ARE

Q+XA+AT X−(XB+S)R−1(XB+S)T = 0 (5)

has a stabilizing solutionX = XT ,

(ii) the LMI with unknownX
[

XA + AT X XB
BT X 0

]

+

[

Q S
ST R

]

≻ 0 (6)

has a solutionX = XT ,



(iii) for a spectral factorization the condition
[

(jωI − A)−1B
I

]

∗
[

Q S
ST R

][

(jωI − A)−1B
I

]

> 0

(7)
holds∀ω ∈ [0;∞],

(iv) R ≻ 0 and the Hamiltonian matrix

H =

[

A − BR−1ST BR−1BT

Q − SR−1ST −AT + SR−1BT

]

(8)

has no eigenvalues on the imaginary axis.

Proof. See, for example, [11] or [12]. �

In order to apply the KYP lemma we will need the
following remark.

Remark III.1 The KYP lemma can be extended such that
the spectral factorization condition applies to the case were
a transfer functionG(s) = C(sI −A)−1B + D appears in
the outer factors similar to the IQC condition (2):

[

G(jω)
I

]

∗
[

Q S
ST R

] [

G(jω)
I

]

=

[

(jωI − A)−1B
I

]

∗

M

[

(jωI − A)−1B
I

]

, (9)

where

M =

[

C D
0 I

]T [

Q S
ST R

] [

C D
0 I

]

.

�

C. Mapping Equations

We are now ready to derive the main result, the mapping
equations for IQC conditions. LetG(s, q) have a state-space
realizationA(q), B(q), C(q),D(q), i.e.

G(s, q) = C(q)(sI − A(q))−1B(q) + D(q).

We will not express the parametric dependence of matrices
in the remainder for notational convenience.

Using Remark III.1 the basic IQC condition (2) in
Theorem II.1 for a constant multiplierΠ with partition (3)
can be transformed into the condition

[

(jωI − A)−1B
I

]

∗

M

[

(jωI − A)−1B
I

]

≤ −εI, (10)

where the multiplier is transformed into

M=

[

CT Π11C CT (Π12+Π11D)

(DT Π11+ΠT
12)C DT Π11D+ΠT

12D+DT Π12+Π22

]

.

Since we are interested in mapping equations describing
the boundaries of a parameter setPgood, we consider
marginal satisfaction of (10), i.e.ε = 0.

Now, use statements(iii) and(iv) of the KYP lemma to
get the equivalent condition that the Hamiltonian matrix

H =

[

A 0

CT Π11C −AT

]

−

[

B
CT (Π12 + Π11D)

]

Π̃−1

22

[

CT (Π12 + Π11D)
−B

]T

(11)

has no eigenvalues on the imaginary axis, where we
let Π̃22 = Π22 + DT Π12 + ΠT

12D + DT Π11D.
We have now formulated the adherence of a given IQC

specification as the non-existence of pure imaginary eigen-
values of an associated Hamiltonian matrix. Using results
from [8] we can extend this equivalence to systems with
analytic dependence on uncertain parameters.

Actually, given a specific parameterq∗ ∈ R
p for which

a maximal, hermitian solutionX+(q∗) of (5) exists, the
Hamiltonian matrix (11) has no pure imaginary eigenvalues.
We can extend this property as long as the number of
eigenvalues on the imaginary axis is constant. In other
words, having found a parameter for which a specification
described by an IQC holds, the same specification holds
as long as the number of imaginary eigenvalues of the
associated Hamiltonian (11) is zero and does not change.
Hence the boundary of the subspace for which the desired
specification holds is given by all parameters for which
the number of pure imaginary eigenvalues of (11) changes.
A new pair of imaginary eigenvalues of (11) only arises
if either two complex eigenvalue pairs become a double
eigenvalue pair on the imaginary axis or if a double real pair
becomes a pure imaginary pair. Note: Another possibility is
a drop in the rank ofH, which corresponds to eigenvalues
which go through infinity.

Let us first discuss the appearance of pure imaginary
eigenvalues through a double pair on the imaginary axis.
The matrixH(q) has a double eigenvalue atλ = jω if and
only if

|jωI − H(q)| = 0,

∂
∂ω

|jωI − H(q)| = 0.
(12)

A necessary condition for a real eigenvalue pair which
becomes a pure imaginary pair through parameter changes
is

|jωI − H(q)|ω=0
= |H(q)| = 0. (13)

Additionally the opposite end of the imaginary axis has to
be considered

|jωI − H(q)|ω=∞
. (14)

Equation (14) is just the coefficient of the term with the
highest degree inω of |jωI − H|, observing that this
determinant is an even function inω.

Equation (13) is not sufficient, since it determines all
parameters for which (11) has a pair of eigenvalues at the
origin. This includes real pairs which are just interchanging
on the real axis. To get sufficiency we have to check for all
parameters satisfying (13), if there are only real eigenvalues.



The mapping equations (12), (13), and (14) have a
similar structure like the familiar equations for eigenvalue
loci specifications. Actually (12), (13), and (14) can be
interpreted as the complex, real, and infinite root boundary,
respectively.

IV. FREQUENCY-DEPENDENTMULTIPLIERS

Consider the case when the multiplierΠ is frequency-
dependent, i.e.Π = Π(ω). A particular example is the
strong result by Zames and Falb [13] for nonlinearities. Put
into the IQC framework, an odd nonlinear operator, e.g.
saturation, satisfies the IQC defined by

Π(ω) =

[

0 1 + H(jω)
1 + H(jω)∗ −2 − H(jω) − H(jω)∗

]

,

where H(s) has an impulse response withL1 norm less
than one.

Following [9], any bounded rational multiplierΠ(jω) can
be factorized as

Π(jω) = Ψ(jω)∗ΠsΨ(jω), (15)

where Ψ(jω) absorbs all dynamics ofΠ(jω) and Πs is
a static matrix. Hence the general IQC condition can be
written as a spectral factorization condition

[

(jωI − Ã)−1B̃
I

]∗

UT ΠsU

[

(jωI − Ã)−1B̃
I

]

> 0, (16)

where(Ã, B̃) represent an augmented system composed of
both the LTI system dynamics and the multiplier dynamics,
and U is a static matrix which takes theC,D matrices
of G(s) = C(sI − A)−1B + D into account. See [7] for
the actual transformation equations.

Hence frequency-dependent bounded rational multipli-
ersΠ(jω) can be mapped into parameter space using basic
matrix transformations and the results from the previous
section.

V. LMI O PTIMIZATION

For a system with fixed parameters, all multipliers con-
sidered so far led to a simple stability test which could be
evaluated by computing the eigenvalues of a Hamiltonian
matrix (8). For systems with uncertain parametersq ∈ R

p,
we showed how to map an IQC condition into a parameter
plane. But the uniqueness of a multiplier is in general not
given.

While the main idea behind the IQC framework is to
find a suitable multiplier for an uncertainty, for many un-
certainties a set of possible multipliers exists. Especially for
nonlinearities and time-delay systems there is an enormous
list of publications involving different multipliers. See[9]
for some references. Depending on the considered LTI
system one or the other multiplier might prove advantageous
and yield less conservative results.

For example consider the following multiplier from [6]
for a system

ẋ(t) = (A + U∆V )x(t)

with slowly time-varying uncertainty∆ and known rate
bounds

Π(jω) =

[

Z Y T − jωΛT

Y + jωΛ −X

]

.

Jönsson [6] derives a set of LMI conditions to check stabil-
ity involving X = XT , Y andZ = ZT . These matrices can
be easily obtained solving a convex optimization problem.
The result of the optimization is not only a binary stability
check, but also an optimal multiplierΠ(jω).

There are two different possibilities to exploit the degrees
of freedom in the multiplier formulation during the mapping
process.

One approach would be to use a limited set of parameter
points(q1, q2) for which we obtain optimal multipliers and
subsequently determine the set of good parametersPgood

for each individual multiplier. The actual overall set of
uncertain parameters which fulfill the specification is than
given as the union of all individual good sets.

The second approach could be denoted asadaptive mul-
tiplier mapping. Hereby we obtain successive multipliers as
we actually generate and move along the boundary of the
setPgood. Thus we adaptively correct the optimal multiplier
on the way as we generate the boundary by solving an
underlying optimization problem.

While the first approach needs to solve a limited and
predefined number of optimization problems, theadaptive
multiplier mapping requires a possibly large number of
optimization which is not known a priori. Nevertheless the
second approach gives the actual setPgood directly and
there is no need to determine the union of individual sets.
Furthermore if the actual mapping is expensive, it might be
favourable to use a single adaptive mapping run.

Note that conditions(i) and (ii) of Theorem II.1 have
to be evaluated separately if the multiplierΠ depends on a
parameter of the current parameter plane, e.g.q1 or q2.

VI. EXAMPLE

Consider the following nonlinear control example de-
picted in Fig. 2 with a PI controller, a deadzone which
models the actuator and a linear plantG(s). The transfer
function of the controller is given byGPI(s) = k1 + k2

s
.

The plant is given by

G(s) =
qs + 1

s2 + s + 1
,

whereq ∈ R is an uncertain parameter.r PI G(s) y{
Fig. 2. Deadzone PI example

We aim at analyzing the robustness of the system with
respect to variations inq. Furthermore we want to tune the



controller such that robustness to parameter variations is
achieved.

The given feedback interconnection is called critical since
the worst case linearization is at best neutrally stable. Note
that the transfer functionGPI(s)G(s) is unbounded which
prevents the application of standard stability criteria for
nonlinear systems which require bounded operators.

We use the Zames-Falb IQC derived in [5], where it was
shown that an integrator and a sector bounded nonlinearity
can be encapsulated in a bounded operator that satisfies the
following IQC

Π(jω) =

[

0 1 − H(jω)∗

1 − H(jω) − 2

k
ℜ(1 − H(jω) − kF (jω))

]

,

(17)
where

F (s) =
H(s) − H(0)

s
,

where H(s) is a stable transfer function withl1 norm
less than one, and the parameterk equals the static gain
of the open loop linear partk = k2G(0). This IQC
corresponds to Zames and Falbs IQC for slope restricted
nonlinearities [13].

Let the integral gaink2 = 2/5 and H(s) = 1/(s + 1).
For our particular example the parameterk equals the
proportional gaink = k2. We map the stability condition
into the (k1, q) parameter plane. This allows to evaluate
robustness with respect toq, while we can select the
controller gaink1 to maximize the robustness.

Since the multiplier Π(jω) in (17) is frequency-
dependent, we use the method described in Section IV
to reformulate the IQC stability problem with a constant
multiplier. For this particular example the augmented sys-
tem (Ã, B̃) in (16) is of forth order, the corresponding
mapping equations are of eighth order.

The resulting stability boundaries are shown in Fig. 3.
The set of stable parametersPgood contains the origin.
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Fig. 3. Stability boundaries

To evaluate the conservativeness of the results numerical
simulations were performed using the nonlinear system. The
simulations showed that the upper line shown in Fig. 3 is far
from the real boundary, while the lower boundary is very
close to the actual boundary.

Fig. 4 not only shows the nonlinear boundaries (solid) but
also the stability boundaries for a linear system (dashed)
which lacks the nonlinear deadzone actuator. The results
show that the nonlinear stability region is only slightly
smaller than the linear counterpart. Although the mathe-
matical description of the curves is different.
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Fig. 4. Comparison of linear and nonlinear system

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

The objective of this paper was to determine previously
unknown mapping equations for IQC-based stability tests.
Using the results in this paper we can draw from the
vast number of available IQCs and incorporate them into
the parameter space approach. Using standard parameter
space methods allows then to include an even larger list
of specifications into control system analysis and design.

B. Future Work

In order to exploit the various degrees of freedom inher-
ent in various IQCs, the implementation of the described
underlying LMI optimization should be investigated.
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