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Abstract— The computation of optimal H∞ controllers with
a prescribed order is important for their real-time implemen-
tation. This problem is well-known to be non-convex, and only
algorithms that compute upper bounds on the global optimal
value are known. We present a method to compute lower
bounds by re-formulating the problem as a robust analysis
problem, where the controller variables are the “uncertain”
parameters. This allows to apply the wide spectrum of robust
analysis techniques to the fixed order controller design prob-
lem. The solution to the robust analysis problem is a global
lower bound on the optimal closed loop H∞ performance.
We construct a family of robust analysis problems and relax
them to convex optimization problems using the S-procedure.
The optimal values of this family converge from below to the
globally optimal fixed order H∞-norm. This allows verification
of global optimality of controllers. The number of complicating
variables in our robust analysis problem is small if we optimize
over a few controller parameters. The technique is therefore
computationally feasible for optimization over few controller
variables, e.g. PID-tuning of systems with large Mc-Millan
degree. The method is applied to the tuning of two controller
parameters of a 4-block H∞ design of an active suspension
system, with a Mc-Millan degree of the plant of 27.

Keywords: H∞ control, fixed-order, lower bounds, robust
analysis.

I. INTRODUCTION

H∞ controller synthesis is an attractive model-based
control design tool. It allows incorporation of modelling
uncertainties in control design. This paper considers the
fixed order H∞ synthesis problem. It is one of the most
important open problems in control engineering, in the
sense that until now there do not yet exist fast and reliable
methods to compute optimal fixed order controllers. We
consider the closed-loop interconnection as shown below,
where the linear system P is the generalized plant and K is
a linear controller.
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The problem can be formulated as follows:
Problem 1: (Fixed-order H∞ synthesis) Given a plant

P, find a controller K of order nc such that the closed
loop interconnection is internally (asymptotically) stable
and such that the H∞-norm of the closed-loop transfer
function from w to z is minimized.
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The resulting optimization problem is non-convex and
difficult to solve. Various approaches have been presented in
the literature based on sequential solution of LMI’s [1] [2],
[3], [4], nonlinear SDP’s [5], [6], [7] and branch and bound
methods [8]. Except for the branch and bound method
these algorithms can in general not guarantee convergence
to the globally optimal solution. The method presented
in this paper allows to add a stopping criterion to these
algorithms with a guaranteed bound on the difference of
the performance of the computed controller and the optimal
fixed order H∞ performance.

A trivial lower bound on the fixed order performance is of
course the full order performance. Boyd and Vandenberghe
[9] proposed lower bounds based on convex relaxations of
the fixed order synthesis problem. These lower bounds are
not asymptotically exact, i.e. they can not straightforwardly
be improved to reduce the gap to the optimal fixed order
performance.

In this paper we present a re-formulation of the fixed
order synthesis problem into a robust analysis problem in
which the controller variables are the “uncertain” param-
eters. This allows to apply the wide spectrum of robust
analysis techniques to the fixed order controller design
problem. The solution to the robust analysis problem is
a global lower bound on the optimal closed loop H∞
performance. We construct a family of robust analysis
problems and relax them to convex optimization problems
using the S-procedure. The optimal values of this family
converge from below to the globally optimal fixed order
H∞-norm. This allows verification of global optimality of
controllers. These convex optimization problems are LMI
(Linear Matrix Inequality) problems. The size of the LMI
problem is quadratic in the number of plant states, but grows
exponentially with the number of controller variables. The
method is therefore appropriate for the design of controllers
with a few decision variables (PID with a few notches) for
plants with large Mc-Millan degree.

II. PROBLEM FORMULATION

Consider the H∞-reduced order synthesis problem with
parameterized closed-loop system described by A(p), B(p),
C(p) and D(p), where p parametrizes the to-be-constructed
controller and varies in the compact set P . The compact-
ness can for instance be realized by restricting the controller
variables to certain intervals. In many cases these closed
loop matrices depend affinely on the controller parameters.
Consider for instance a plant of order n with state space
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ẋ
z
y



 =





Aol Bol
1 Bol

2
Col

1
Col

2

Dol
11 Dol

12
Dol

21 0









x
w
u





where (·)ol stands for ‘open loop’ and Aol ∈ R
n×n, Bol

1 ∈
R

n×m1 , Bol
2 ∈ R

n×m2 , Col
1 ∈ R

p1×n, Col
2 ∈ R

p2×n, Dol
11 ∈
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12 ∈ R
p1×m2 and Dol

21 ∈ R
p2×m1 . A controller

of order nc parameterized by its state-space matrices
(
Ak,Bk,Ck,Dk

)
yields a closed loop state-space represen-

tation with matrices
(

A(p) B(p)
C(p) D(p)

)

= (1)
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which depend affinely on the quadruple p :=
(
Ak,Bk,Ck,Dk

)
. We intend to solve

inf
p∈P,A(p)stable

‖D(p)+C(p)(sI−A(p))−1B(p)‖∞

We assume that (A(p),B(p)) is controllable for all p ∈P .
The bounded real lemma yields the following equivalent
problem:

Problem 2:

infimize γ
subject to p ∈P,X ∈S

n,X � 0

B∞(X , p,γ)≺ 0 (2)
where S n denotes the set of symmetric n×n matrices and

B∞(X , p,γ) :=




A(p)T X +XA(p) XB(p) C(p)T

B(p)T X −γI D(p)T

C(p) D(p) −γI



 .

Let t p
opt denote the primal optimal value of Problem 2. Prob-

lem 2 is a nonconvex problem due to the bilinear coupling
of X and p. If np denotes the number of free controller
variables, then the number of bilinearly coupled variables
is 1

2 (n+nc)(n+nc +1)+np, which grows quadratically with
the number of plant states n. It is therefore crucial to convert
the fixed-order problem into a robust analysis problem with
few complicating variables, i.e. only the controller variables.
This is done in the next section by partial dualization.

III. CONVERSION TO ROBUST ANALYSIS PROBLEM

The key idea is to apply partial Lagrange dualization:
we fix the controller variables and dualize with respect
to the Lyapunov variable X . Optimizing the dual problem
over all p leads to a robust analysis problem with p as the
only complicating variables, i.e. the uncertain variables in
the robustness test.

Let the matrix Z be partitioned according to the partitioning
of B∞ in (2):

Z =





Z11 Z12 Z13
ZT

12 Z22 Z23
ZT

13 ZT
23 Z33



 . (3)

For fixed p = p0, Problem 2 is an LMI problem in X and
γ:

infimize γ
subject to X ∈S

n, X � 0, B∞(X , p0,γ)≺ 0, γ > 0

(4)

where the redundant constraint γ > 0 is added for technical
reasons that will be clarified in Section IV. The Langrange
dual of this problem reads as follows

Problem 3:

maximize 2Tr(Z13C(p0)+Z23D(p0))

subject to Z � 0, 1−Tr(Z22)−Tr(Z33)≥ 0

Z11A(p0)
T +A(p0)Z11 +Z12B(p0)

T

+B(p0)Z
T
12 � 0

where Tr(A) denotes the trace of the matrix A. Let td
opt(p0)

denote the dual optimal value of Problem 3. In Appendix
it is shown that Problem 3 is strictly feasible, in the sense
that for all p0 ∈P there exists a W � 0 such that

W11A(p0)
T +A(p0)W11 +

+W12B(p0)
T +B(p0)W

T
12 � 0

1−Tr(W22)−Tr(W33) > 0

are satisfied. This implies that strong duality holds, i.e. the
dual and primal have the same optimal value td

opt(p0) =
t p
opt(p0). Observe that for each p0 ∈ P there exists an

optimal dual variable Z for Problem 3. Suppose that indeed
we have found a dual variable Z(p) for each p ∈P such
that

Z11(p)A(p)T +A(p)Z11(p)+

+Z12(p)BT (p)+B(p)Z12(p)T � 0 (5)

1−Tr(Z22(p))−Tr(Z33(p)) > 0 (6)

2Tr(Z13(p)C(p)+Z23(p)D(p)) > t, Z(p) � 0 (7)

for all p ∈P.

Then clearly td
opt(p)≥ t for all p ∈P and hence t p

opt(p)≥
t. This shows that t is a lower bound on the optimal
control performance. Hence if we maximize t over Z(·)
parameterized as, for instance, rational functions subject to
(5), (6) and (7), we obtain a lower bound on the optimal
controller performance. This maximization problem is a ro-
bust analysis problem with the uncertain variable p varying
in the compact set P . The distance of the lower bound
to the optimal H∞ performance is non-decreasing if we
optimize over Z(·) in an increasing sequence of subspaces
of matrix-valued functions. The following theorem shows
that the lower bounds constructed in this way converge from
below to the globally optimal H∞ performance.



Theorem 4: Let γopt be the optimal solution to Problem
2. Let topt be the supremal t for which there exists a
continuous function Z(p) with (5), (6) and (7) for all p∈P .
Then γopt = topt.
Proof. We want to prove γopt = topt. On the previous page
has been shown that γopt ≥ topt. Now suppose γopt ≥ topt +ε
for some ε > 0. Let us use for V,W,Y 0 and Y (p) the same
partitioning as for Z in (3) and fix p0 ∈ P. Then Problem
2 has optimal value not smaller than topt + ε . Its dual is
Problem 3. As shown in Appendix , the dual is strictly
feasible and therefore there is no duality gap. Therefore
there exists V with

V11A(p0)
T +A(p0)V11 +

+V12BT (p0)+B(p0)V
T
12 � 0

1−Tr(V22)−Tr(V33) ≥ 0

V � 0

2Tr(V13C(p)+V23D(p))− ε/2 ≥ topt.

Now recall that there exists some W � 0 with W11A(p0)
T +

A(p0)W11 +W12BT (p0)+ B(p0)W
T
12 � 0 and 1−Tr(W22)−

Tr(W33) = 0. Therefore Y 0 = τW +(1− τ)V actually satis-
fies for some τ > 0 close to zero

Y 0
11A(p0)

T +A(p0)Y
0
11 +

+Y12BT (p0)+B(p)Y 0
12

T
� 0, (8)

1−Tr(Y22)−Tr(Y33) > 0

Y 0 � 0 (9)

2Tr(Y 0
13C(p0)+Y 0

23D(p0))− ε/4 > topt. (10)

Since (8), (9) and (10) hold strictly, there exists a continu-
ous function Y (p) such that for all p ∈P

Y11(p)A(p)T +A(p)Y11(p)+

+Y12(p)BT (p)+B(p)Y12(p)T � 0,

1−Tr(Y22(p))−Tr(Y33(p)) > 0

Y (p) � 0

2Tr(Y13(p)C(p)+Y23(p)D(p))− ε/8 > topt

This finishes the proof.

Remark on strict feasibility. Existence of a strict
feasible W is guaranteed by our controllability assumption
on the pair A(p),B(p) for all p ∈P . We used this to show
that Y (p) may be chosen to be continuous. Continuity
of Y (p) is important to show exactness for the rational
approximation of Y (p) that is presented in the next section.

The theorem shows that maximizing t over Z(p) satisfying
(5), (6) and (7) for all p ∈ P gives lower bounds on the
closed loop H∞ performance, and these lower bounds can
be improved to arbitrary accuracy. We have reduced the
H∞ synthesis problem to a robust analysis problem with
complicating variables p and nice variables Z(p). The

constraints (5), (6) and (7) can be tested for all p ∈P via
a robustness analysis test based on the S-procedure.

IV. SOLUTION OF THE ROBUST ANALYSIS PROBLEM

In this paper we consider a set of functions Z(p) that
are rational in p, and we apply the S-procedure to solve
the robust analysis problem. Our approach is, however,
not restricted to these choices. We can use in fact any
parameterization that is representable as a Linear Fractional
Representation (LFR) and apply any other robust analysis
test. In future work we will investigate the effect of
alternative parameterizations and analysis techniques on
the size of the LMI problems.

Let Z(p,z) be parameterized as a rational matrix function
in p ∈ R

np without poles in P and an affine function in
z ∈ R

N , i.e. Z(·, ·) ∈ZN , where ZN is the space

ZN :=

{
N

∑
j=1

z jZ j(p)|z ∈ R
N

}

,

Z j : R
np 7→ S n+m1 , j ∈ {1,2, . . . ,N} are matrix-valued

rational functions in p without poles in P , and the free
coefficients z j ∈ R, j ∈ {1,2, . . . ,N} are collected in a
single vector z.

Remark on (6). Since γ > 0 is redundant in (4),
Lagrange dualization implies that (6) can equivalently be
replaced by the equation

1−Tr(Z22)−Tr(Z33) = 0. (11)

We used the formulation with the inequality to simplify
the proof of Theorem 4. For implementation it is however
useful to use the version with the equation constraint,
since then we can eliminate it by a simple modification
of Z(·, ·): express the (1,1) element of Z22(·, ·) explicitly
in terms of the remaining diagonal elements of Z22(·, ·)
and the diagonal elements of Z33(·, ·) using (11). When
we discuss the LFR construction later in this section it is
tacitly assumed that this elimination has been realized.

Using this parameterization we observe that the inequalities
(5), (6) and (7) are rational inequalities in p depending
affinely on the coefficients z in the parameterization of Z.
We construct an LFR

L(z, p) = ∆(p)?

(
A B

C(z) D(z)

)

︸ ︷︷ ︸

H(z)

= D(z)+C(z)∆(p)(I−A∆(p))−1B,

where ? denotes the Redheffer star-product, ∆(p) is linear
in p and I−A∆(p) is nonsingular for all p ∈P . L can be
constructed such that (5), (6) and (7) are equivalent to

(
I

∆(p)?H(z)

)T

Mt

(
I

∆(p)?H(z)

)

≺ 0 (12)



where

Mt :=










0 0 0 −In 0 0
0 0 0 0 −In+p1+m1

0
0 0 t 0 0 −1
−In 0 0 0 0 0

0 −In+p1+m1
0 0 0 0

0 0 −1 0 0 0










Since P is compact we can apply the S-procedure [10],
[11], to infer that our problem is equivalent to minimizing
γ over z ∈ R

N and multipliers M with
(

∆(p)
I

)T

M

(
∆(p)

I

)

� 0 for all p ∈P, (13)

(
I 0
A B

)T

M

(
I 0
A B

)

+

+

(
0 I

C(z) D(z)

)T

Mt

(
0 I

C(z) D(z)

)

≺ 0

Equation (13) is a semi-infinite constraint on the multiplier
M. To render the lower bound computation tractable we
make a (standard) inner approximation of the set of multipli-
ers. If P equals co{p1, p2, . . . , pm}, the set M of multipliers
M such that

(
I
0

)T

M

(
I
0

)

≺ 0,

(
∆(p j)

I

)T

M

(
∆(p j)

I

)

� 0, j = 1, . . . ,m

is an inner approximation for {M|M satisfies (13)}, as
can be shown by an elementary convexity argument. If
we optimize over many controller variables, the number
of generators m of p may be large. To avoid explosion
of the size of the relaxed problem, we can exploit the
block diagonal structure in ∆(p). The exactness of the test
can then be guaranteed using higher order relaxations of
the robustness problem. The reader is referred to [12] for
details on this approach.

Remark on elimination of parameters. If A(p) is
stable for all p ∈ P, we can eliminate several parameters in
the problem. Inequality (5) then reduces to

Z11(p)A(p)T +A(p)Z11(p)+

+Z12(p)B(p)T +B(p)ZT
21(p) = 0,

and Z11(p) can be explicitly described as a rational
function in terms of Z12(p). This drastically reduces the
number of free variables in the polynomial Z. The function
Z11(p) constructed in this fashion has a rational dependence
on the controller variables and affine dependence on Z12(p).

Remark.There are two sources of conservatism in
our approach. The first is the approximation of the matrix
valued function Z(p) by a finite-order rational matrix
function. To proof its asymptotic exactness we need
Weierstrass’ theorem on the approximation of continuous

functions by polynomials [13]. There exists an increasing
sequence of finite dimensional spaces ZN ,N ∈ N of
matrix-valued rational functions in p, such that for every
continuous matrix polynomial Y (·)

lim
N→∞

inf
Z∈ZN

sup
p∈P

σmax(Z(p)−Y (p)) = 0,

where σmax denotes the maximum singular value. Since this
holds in particular for the continuous matrix polynomial in
Theorem 4, the sequence of optimal values of

supremum t

over Z ∈ZN

subject to (5), (6) and (7) for all p ∈P

converges to γopt for N →∞. The size of the LMI problems
of this family is increasing due to the increase of the
dimension of ZN for larger N.
The second source of conservatism is the error made by
the inner approximation of the multipliers. These errors
can be reduced by using an asymptotically exact family
of multiplier parameterizations [12], again by introducing
more variables in the LMI problem.
The methods presented in [12] allow to check the exactness
of the test for the robust analysis problem, i.e. they allow to
verify if the second source did not introduce conservatism.
If this is the case, then it is possible to construct a
worst-case perturbation, i.e. in our case a “worst-case”
controller. This controller is optimal if and only if neither
the first source introduced conservatism. This can easily be
verified, since the closed loop H∞ norm of this controller
equals the lower bound in case of optimality. If this is not
the case, the lower bound improves for increasing N.

Remark on LFR construction. For H(z) and ∆(p)
with

∆(p)?H(z) = G(p,z) :=




G11(p,z) 0 0
0 Z(p,z) 0
0 0 G33(p,z)





where

G11(p,z) : = Z11(p,z)A(p)T +A(p)Z11(p,z)+

+Z12(p,z)B(p)T +B(p)ZT
12(p,z)T

and

G33(p,z) : = Z13(p)C(p)+Z23(p)D(p)+

C(p)T Z13(p)T +D(p)T Z23(p)T −V

where V = V T is an auxiliary variable, existence of a V
and z with (12) and Tr(V ) > t is equivalent to (5), (6) and
(7). We construct H by diagonal augmentation of the LFRs
for each row of G. To keep the LMIs small it is important
to construct the LFR with a small sized uncertainty block
∆(p). Decompose G(p) as G(p) = ∑3

i=1 LiZ(p)Ri(p), where

L1 =





In 0
0 0
0 0



 ,L2 =





0
0
0



 ,L3 =





0 0
0 0
0 Im1







R1(p) =

(
A(p)T 0 0
B(p)T 0 0

)

,R2 =
(

0 I 0
)
,

R3(p) =

(
0 0 0 0
0 0 C(p) D(p)

)

.

The LFR’s for R1 and R2 can simply be derived of the
LFR of the closed-loop state-space matrices in (1), which
depends on the specific dependence of these matrices on p
and will typically have an uncertainty block of size equal
to the number of variables in p. If we assume that its
uncertainty block is square and of size rcl × rcl, then the
sizes of the uncertainty blocks of the LFR’s of R1 and R3
are at most rcl× rcl each.

Next we construct the LFR for Z(p). The size rZ × rZ of
its (again assumed square) uncertainty block depends on the
degree of numerator and denominator of Z(p). We compose
each term LiZ(p)Ri(p) by multiplication of the LFR Z(p)
with the LFR Ri(p). Multiplication of two LFR’s yields a
new LFR with the uncertainty blocks of the two factors
diagonally concatenated as the new uncertainty block. The
size of the uncertainty block of the LFR of G, i.e. the size
of ∆(p) in (12) is therefore in our construction at most of
size (2rcl +3rZ)× (2rcl +3rZ).

V. APPLICATION

For a first order plant given by




a b1 b2
c1 d11 d12
c2 d21 d22



 =





−7 9 2
−10 0 3
.8 3 0



 ,

we computed lower bounds for a static controller. The
LMI’s are solved with SeDuMi of Jos Sturm [14]. Lower
bounds are shown in Figure 1 for two different choices of
Z:

• a first order Z = Z(0) +Z(1)p and
• a second order matrix polynomial Z(p) = Z(0) +

Z(1)p+Z(2)p2.

The elements of the matrices Z(i) ∈ S n+m1 , i ∈ {0,1,2}
form the decision variables z. In these cases rZ = 1,rcl = 1
and rZ = 3,rcl = 1, resulting in ∆(p) in (12) of sizes 5×5
and 11× 11 for the first order and second order polyno-
mial respectively. For the ith lower bound the controller
parameter was restricted to lie in the compact set 2k +
[−1,1],k ∈ {−5,−4, . . . ,4,5}. The bounds for the second
order parameterization are clearly better than the bounds
for the first order ones. We also observe that the second
order dotted curve is quite close to the upper bound (dashed)
curve.

As a second example we consider the control of an active
suspension system, which has been a benchmark system
of a special issue of the European Journal of Control on
fixed-order controller synthesis [15], see Figure 2. The goal
is to compute a low-order discrete-time controller which
minimizes the sensitivity to two resonance frequencies.
The system has 17 states and the weights of our 4-block
H∞ design contributed with 10 states, which add up to
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Fig. 1. Lower bounds and closed loop H∞-norm for first order system:
first order lower bounds (o solid), second order lower bounds (+ dotted)
and H∞ performance (∗ dashed)

Fig. 2. Active suspension system

27 states of the generalized plant. The full order design
leads to a closed loop H∞-norm of 2.48. We computed a
5th order controller by closed-loop balanced residualization
with performance 3.41. For more details on the fixed order
H∞-design the reader is referred to [7]. We computed lower
bounds for changes in two diagonal elements of the state-
space matrices of the controller

(
Ak(p) Bk

Ck Dk

)

where

Ak(p) =








−78.2 1129.2 173.24 −97.751 −130.36
−1240.9 −78.2+ p1 111.45 125.12 76.16

0 0 −6.03+ p2 164.81 159
0 0 0 −204.56 49.031
0 0 0 −458.3 −204.56









,

Bk =
(

6.6086 21.4447 −11.1262 −12.4050 −9.4469
)T

,



TABLE I

LOWER BOUNDS FOR VARIOUS CONTROLLER INTERVALS

Interval p1 Interval p2 Lower bound
[−0.1 , 0.1] [−0.1 , 0.1] 3.41
[−2.5 , 2.5] [−2.5 , 2.5] 3.19
[−2.8 , 2.8] [−2.8 , 2.8] −25565
[−0.1 , 0.1] [−4 , 4] −9.62e5
[−4 , 4] [−0.1 , .1] 3.18

Ck =
(
−0.067565 0.198 −1.00 −0.0697 0.193

)

and Dk = 0.00629 and p1 and p2 are free scalar controller
variables. Lower bounds for various intervals of the con-
troller variables p1 and p2 are shown in Table I. These lower
bounds have been computed with Z being independent of
p. The table should be read as follows: the lower bound
3.19 in the second row shows that there does not exist
p1 ∈ [−2.5,2.5] and p2 ∈ [−2.5,2.5] such that the closed-
loop H∞-norm is smaller than 3.19. The lower bounds are
good up to intervals within [−2.5,2.5], in the sense that
the computed lower bounds are much larger than the full
order performance 2.48. But for larger parameter sets, such
as p1, p2 ∈ [−2.8,2.8], the lower bounds are useless. This
must probably be attributed to the zero-order polynomial
parameterization of Z, which is not flexible enough for
good lower bounds on larger compact sets P . As shown
in the first order example, we could establish better lower
bounds on larger controller parameter sets using higher
order polynomials in Z.

The size of ∆(p) is 4× 4 in this example, since rZ = 0
and rcl = 2. The number of LMI variables in this example is
631. If one constructs the LFR without care, one may easily
get a ∆(p) of size 50× 50 and hence a computationally
intractable LMI problem.

VI. CONCLUDING REMARKS

Asymptotically exact global lower bounds have been pre-
sented in this paper. The bounds are based on reformulating
the fixed order control problem as a robust analysis test. An
example for a first order system illustrated that the lower
bounds converge to the exact value. A 27th order example
has been presented to show the applicability to tuning few
controller parameters in high-order systems.

APPENDIX

Problem 3 is strictly feasible, in the sense that for all
p0 ∈P there exists a W such that

W11A(p0)
T +A(p0)W11 +

+W12B(p0)
T +B(p0)W

T
12 � 0

1−Tr(W22)−Tr(W33) > 0 (14)

W � 0

are satisfied. This is shown as follows. Consider an arbitrary
p0 ∈P . Since by assumption A(p0),B(p0) is controllable,
there exists an anti-stabilising state-feedback, i.e. a K with

A(p0)+B(p0)K is strictly anti-stable. Then there exists P =
PT � 0 such that

(A(p0)+B(p0)K)P+P(A(p0)+B(p0)K)T � 0. (15)

Since (15) is homogeneous in P we conclude that if P
satisfies (15), rP, r > 0 also satisfies (15). Now set W11(r) =
rP, W12(r)

T = rKP and W22(r) =W12(r)
TW11(r)

−1W12(r)−
εr with ε < 0. Now choose r > 0 such that Tr(W22(r)) < 1,
choose W33 > 0 such that (14) is satisfied and choose W31 =
0 and W32 = 0. This construction can always be done and
leads to a strictly feasible W for problem 3. Since p0 is
arbitrary this implies that Problem 3 is strictly feasible for
all p ∈P . This finishes the proof.
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