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Abstract— The guaranteed cost control problem for mul-
tiparameter singularly perturbed systems (MSPS) with un-
certainties is investigated. The main contribution of this
paper is that an ε–independent controller is newly derived
by solving the reduced–order ε–independent slow and fast
algebraic Riccati equations (AREs) which is extremely smaller
than the dimension of full–order ARE. It is shown that if
these AREs have positive definite stabilizing solution then
the uncertain closed–loop system with the new ε–independent
controller is quadratically stable and has the cost bound. As
another important feature, our new results can be applied
to the standard and the nonstandard MSPS because the
nonsingularity assumption of the fast state matrices are not
needed compared with the existing result.

I. INTRODUCTION

Multimodeling control problems have been studied ex-
tensively [1]–[11]. In order to obtain a controller, the
multiparameter algebraic Riccati equation (MARE) must be
solved. Although various reliable approaches for solving
the MARE have been established (see e.g., [8]–[10]), the
major limitation in these early approaches is that the small
parameters are assumed to be known.

In recent years, the problem of the robust control of
singularly perturbed systems (SPS) with parameter uncer-
tainties has been widely studied in the literatures (see
e.g., [12] and reference therein). In particular, it is well–
known that the guaranteed cost control approach [13] which
satisfies not only the robust stability, but also an adequate
level of performance is very useful. This approach has
the advantage of providing an upper bound on a given
performance index. However, when the parameters εj are
unknown, the guaranteed cost control [13] cannot be di-
rectly applied to the uncertain MSPS in the sense that the
MARE cannot be solved numerically.

A popular approach to deal with the MSPS is the two–
time–scale design method (see e.g., [1]–[6], [14]). When εj

is very small or unknown, this previously used technique is
very efficient. However, the nonsingularity assumption for
the fast state matrices Ajj , j = 1, 2 are needed to obtain
the slow subsystem. Furthermore, as long as the problem of
stabilizing the uncertain SPS is considered, the assumption
that the fast state uncertain matrix Ajj+∆Ajj(t) is Hurwitz
plays an important role in the study of this problem.
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In this paper, the guaranteed cost control problem of
the MSPS is newly investigated. Firstly, the unique and
the bounded solution of the MARE with indefinite sign
quadratic term and its asymptotic structure are established.
Secondly, using the asymptotic structure, a new guaranteed
cost controller which does not depend on the values of
the small parameters εj is obtained. It is worth pointing
out that the resulting controller is not based on the two–
time–scale design method [1]–[6], [14]. Therefore, the
nonsingularity assumptions for the fast state matrices Ajj

and Ajj + ∆Ajj(t) are not needed. As another signifi-
cant feature, the new method of the calculation for the
guaranteed cost is proposed to obtain the ε–independent
controller. In particular, since the proposed method is based
on the reduced–order ARE with smaller dimension, the
amount of computation required to get the ε–independent
controller becomes extremely small in contrast with the case
of solving the full–order MARE.
Notation: The notations used in this paper are fairly stan-
dard. The superscript T denotes matrix transpose. detL
denotes the determinant of the square matrix L. Ip denotes
the p × p identity matrix. block diag denotes the block
diagonal matrix. vecM denotes the column vector of the
matrix M [15]. ⊗ denotes the Kronecker product. Upq

denotes the permutation matrix in the Kronecker matrix
sense [15] such that UpqvecM = vecMT , M ∈ Rp×q .
E[·] denotes the expectation.

II. PROBLEM STATEMENT

Consider the uncertain MSPS

ẋ0(t) =
[
A00 +

2∑
i=1

D0iFii(t)Ei0

]
x0(t)

+
2∑

i=1

[
A0i + D0iFii(t)Eii

]
xi(t)

+
2∑

i=1

B0iui(t), (1a)

εjẋj(t) = [Aj0 + DjjFjj(t)Ej0]x0(t)
+[Ajj + DjjFjj(t)Ejj ]xj(t)
+Bjjuj(t), (1b)

F T
jj(t)Fjj(t) ≤ Isj , j = 1, 2, (1c)

where εj , j = 1, 2 are the small positive parameters,
xj(t) ∈ Rnj , j = 0, 1, 2 are the state vectors, uj(t) ∈
Rmj , j = 1, 2 are the control input. Moreover, Fjj(t) ∈
Rkj×sj are Lebesgue measurable matrix of the uncertain
parameters satisfying (1c). All the matrices are the constant



matrices of appropriate dimensions. We assume that the
ratio of the small positive parameter εj is bounded by some
positive constants k, k̄ (see e.g., [1]–[3]),

0 < k ≤ α ≡ ε2

ε1
≤ k̄ < ∞. (2)

It should be noted that the fast state matrices Ajj , j = 1, 2
may be singular.

Let us introduce the partitioned matrices

Πe := block diag
(

ε1In1 ε2In2

)
,

Ae :=
[

A00 A0f

Π−1
e Af0 Π−1

e Af

]
,

A0f :=
[

A01 A02

]
, Af0 :=

[
AT

10 AT
20

]T
,

Af := block diag
(

A11 A22

)
,

Be :=
[

B0

Π−1
e Bf

]
, B0 :=

[
B01 B02

]
,

Bf := block diag
(

B11 B22

)
,

De :=
[

D0

Π−1
e Df

]
, D0 :=

[
D01 D02

]
,

Df := block diag
(

D11 D22

)
,

F (t) := block diag
(

F11(t) F22(t)
)
,

E :=
[

E0 Ef

]
, E0 :=

[
ET

10 ET
20

]T
,

Ef := block diag
(

E11 E22

)
.

By using above relations, the MSPS (1) can be changed as

ẋ(t) = [Ae + DeF (t)E]x(t) + Beu(t), (3)

where

x(t) :=
[

xT
0 (t) xT

1 (t) xT
2 (t)

]T ∈ Rn,

u(t) :=
[

uT
1 (t) uT

2 (t)
]T ∈ Rm,

n := n0 + n1 + n2, m := m1 + m2.

For technical simplification, without loss of generality we
shall make the following basic assumptions.

Assumption 1: There exists a constant parameter σ∗ >
0 such that the pair (Ae, Be) is stabilizable for ||ε|| :=√

ε2
1 + ε2

2 ∈ (0, σ∗], ε :=
[

ε1 ε2

]
.

Assumption 2: The pairs (Ajj , Bjj), j = 1, 2 are
stabilizable.

Associated with the system (1) is the cost function

J =
∫ ∞

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt, (4)

where Q and R are given positive definite symmetric
matrices.

Definition 1: A control law u(t) = Kx(t) is said to be
a quadratic guaranteed cost control with the associated cost
matrix Xe > 0 for the MSPS (1) and the cost function
(4) if the closed–loop system is quadratically stable and
the closed–loop value of the cost function (4) satisfies the
bound J ≤ J ∗ for all admissible uncertainties, that is,

d

dt
xT (t)Xex(t) + xT (t)[Q + KT RK]x(t) ≤ 0, (5)

where J ∗ is the guaranteed cost.
The objective of this paper is to design an ε–independent

guaranteed cost control law u(t) = Kx(t) for the uncertain
MSPS (1).

III. PRELIMINARY

Before constructing the guaranteed cost controller, let
us establish the stability condition for the following au-
tonomous uncertain MSPS (6) without the control input.

ẋ0(t) =
[
Ā00 +

2∑
i=1

D0iFii(t)Ei0

]
x0(t)

+
2∑

i=1

[
Ā0i + D0iFii(t)Eii

]
xi(t), (6a)

εj ẋj(t) = [Āj0 + DjjFjj(t)Ej0]x0(t)
+[Ājj + DjjFjj(t)Ejj ]xj(t), (6b)

j = 1, 2.

It is easy to verify that the uncertain MSPS (6) is
equivalent to the following uncertain MSPS.

ẋ(t) = [Āe + DeF (t)E]x(t). (7)

Associated with the uncertain MSPS (7) is the cost function

J =
∫ ∞

0

xT (t)Q̄x(t)dt, (8)

where Q̄ is given positive definite symmetric matrices.
Definition 2: The matrix Pe > 0 is said to be the

quadratic cost matrix for the uncertain MSPS (7) if the
following inequality holds

d

dt
xT (t)Pex(t) + xT (t)Q̄x(t) ≤ 0. (9)

The following result is already known in [13].
Lemma 1: Suppose there exist a symmetric positive def-

inite matrix Pe > 0 and a positive scalar parameter µ such
that for all uncertain matrices (1c), the following multipa-
rameter algebraic Riccati equation (MARE) is satisfied.

PeĀe + ĀT
e Pe + µPeDeD

T
e Pe + µ−1ET E + Q̄ = 0, (10)

where

Āe :=
[

Ā00 Ā0f

Π−1
e Āf0 Π−1

e Āf

]
,

Ā0f :=
[

Ā01 Ā02

]
, Āf0 :=

[
ĀT

10 ĀT
20

]T
,

Āf := block diag
(

Ā11 Ā22

)
,

Pe :=
[

P00 P T
f0Πe

ΠePf0 ΠePf

]
,

P00 = P T
00, ΠePf = P T

f Πe,

Pf0 :=
[

P10

P20

]
, Pf :=

[
P11 αP T

21

P21 P22

]
.

Then the autonomous uncertain MSPS (7) is quadratically
stable and the corresponding value of the cost function (8)
satisfies the following inequality (11).

J ≤ xT (0)Pex(0). (11)



In order to investigate the solvability condition of the
MARE (10), let us introduce the following useful lemma
[10].

Lemma 2: The MARE (10) is equivalent to the follow-
ing generalized multiparameter algebraic Riccati equation
(GMARE) (12)

P T Ā + ĀT P + µP TDDT P + µ−1ET E + Q̄ = 0,(12a)

Pe = ΦT
e P = P TΦe, (12b)

where

Φe :=
[

In0 0
0 Πe

]
, Ā :=

[
Ā00 Ā0f

Āf0 Āf

]
,

D :=
[

D0

Df

]
, P :=

[
P00 P0f

Pf0 Pf

]
,

P0f = P T
f0Πe :=

[
ε1P

T
10 ε2P

T
20

]
.

In order to simplify the notation of the GMARE (12a),
we introduce the following matrices.

S := µDDT =
[

S00 S0f

ST
0f Sf

]
,

S00 := µD0D
T
0 =

2∑
i=1

µD0iD
T
0i,

S0f := µD0D
T
f =

[
S01 S02

]
,

Sf := µDfDT
f = block diag

(
S11 S22

)
,

S0j := µD0jD
T
jj , Sjj := µDjjD

T
jj ,

U := µ−1ET E + Q̄ =
[

U00 U0f

UT
0f Uf

]
,

U00 :=
2∑

i=0

µ−1ET
i0Ei0 + Q̄00, U0f :=

[
U01 U02

]
,

Uf := block diag
(

U11 U22

)
,

U0j := µ−1ET
j0Ejj + Q̄0j, Ujj := µ−1ET

jjEjj + Q̄jj .

Q̄ :=
[

Q̄00 Q̄0f

Q̄T
0f Q̄f

]
, Q̄0f :=

[
Q̄01 Q̄02

]
,

Q̄f := block diag
(

Q̄11 Q̄22

)
.

The GMARE (12a) can be partitioned into

f1 = P T
00Ā00 + ĀT

00P00 + P T
f0Āf0 + ĀT

f0Pf0

+P T
00S00P00 + P T

f0SfPf0

+P T
00S0f Pf0 + P T

f0S
T
0f P00 + U00 = 0, (13a)

f2 = ĀT
00P

T
f0Πe + ĀT

f0Pf + P T
00Ā0f + P T

f0Āf

+P T
00S00P

T
f0Πe + P T

f0S
T
0f P T

f0Πe

+P T
00S0f Pf + P T

f0SfPf + U0f = 0, (13b)

f3 = P T
f Āf + ĀT

f Pf + ΠePf0Ā0f + ĀT
0fP T

f0Πe

+P T
f SfPf + P T

f ST
0fP T

f0Πe + ΠePf0S0f Pf

+ΠePf0S00P
T
f0Πe + Uf = 0. (13c)

It is assumed that the limit of α exists as ε1 and ε2 tend
to zero (see e.g., [1]–[3]), that is

ᾱ := lim
ε1→+0
ε2→+0

α = lim
ε1→+0
ε2→+0

ε2

ε1
. (14)

Let P̄00, P̄f0 and P̄f be the limiting solutions of the above
equation (13) as εj → +0, j = 1, 2, then we obtain the
following equations

P̄ T
00Ā00 + ĀT

00P̄00 + P̄ T
f0Āf0 + ĀT

f0P̄f0

+P̄ T
00S00P̄00 + P̄ T

f0Sf P̄f0

+P̄ T
00S0f P̄f0 + P̄ T

f0S
T
0f P̄00 + U00 = 0, (15a)

ĀT
f0P̄f + P̄ T

00Ā0f + P̄ T
f0Āf

+P̄ T
00S0f P̄f + P̄ T

f0Sf P̄f + U0f = 0, (15b)

P̄ T
f Āf + ĀT

f P̄f + P̄ T
f Sf P̄f + Uf = 0, (15c)

where

P̄f :=
[

P̄11 ᾱP̄ T
21

P̄21 P̄22

]
, P̄jj = P̄ T

jj , j = 0, 1, 2. (16)

Note that the ARE (15c) is asymmetric. However, it will
be shown that the ARE (15c) admits at least a symmetric
positive definite stabilizing solution under the appropriate
conditions. In the following analysis, we need a weaker
assumption than the nonsingularity assumption of the fast
state matrices.

Assumption 3: The Hamiltonian matrices Tjj , j = 1, 2
are nonsingular, where

Tjj :=
[

Ājj Sjj

−Ujj −ĀT
jj

]
.

We will establish the relation between the GMARE (12a)
and the zeroth–order equations (15). Firstly, the following
sets are newly defined.
Γfj := {µ > 0| The ARE P̄jjĀjj + ĀT

jjP̄jj + P̄jjSjjP̄jj +
Ujj = 0 has a positive definite stabilizing solution.}, j =
1, 2.
µfj := sup{µ|µ ∈ Γfj}.

Theorem 1: Under Assumption 3, if we select a param-
eter 0 < µ < µf := min{µf1 , µf2}, then the ARE
(15c) admits a unique symmetric positive definite stabilizing
solution P̄f which can be written as

P̄ ∗
f := block diag

(
P̄ ∗

11 P̄ ∗
22

)
, (17)

where P̄ ∗
jj is a unique symmetric positive definite stabilizing

solution for the following ARE, respectively

P̄ ∗
jjĀjj + ĀT

jjP̄
∗
jj + P̄ ∗

jjSjjP̄
∗
jj + Ujj = 0, j = 1, 2.

Proof: Substituting the matrix (17) into the ARE (15c)
as P̄ ∗

f → P̄f , it is easy to verify that P̄ ∗
f Āf + ĀT

f P̄ ∗
f +

P̄ ∗
f Sf P̄ ∗

f + Uf = 0. Furthermore, it can be seen that
P̄ ∗

f = P̄ ∗T
f > 0 and the following matrix Āf + Sf P̄ ∗

f is
stable because P̄ ∗

jj is the unique symmetric positive definite
stabilizing solution.

Āf + Sf P̄ ∗
f

= block diag
(

Ā11 + S11P̄
∗
11 Ā22 + S22P̄

∗
22

)
.



Consequently, there exists the unique solution of the ARE
(15c) and its solution is (17) itself.

In this situation, we obtain the following zeroth–order
equations (18) [10]

P̄ ∗
00A + AT P̄ ∗

00 + P̄ ∗
00SP̄ ∗

00 + U = 0, (18a)

P̄ ∗
j0 =

[
P̄ ∗

jj −Inj

]
T−1

jj Tj0

[
In0

P̄ ∗
00

]
, (18b)

P̄ ∗
jjĀjj + ĀT

jjP̄
∗
jj + P̄ ∗

jjSjjP̄
∗
jj + Ujj = 0, (18c)

where j = 1, 2,

T :=
[

A S
−U −AT

]
= T00 −

2∑
j=1

T0jT
−1
jj Tj0,

T00 =
[

Ā00 S00

−U00 −ĀT
00

]
, T0j =

[
Ā0j S0j

−U0j −ĀT
j0

]
,

Tj0 =
[

Āj0 ST
0j

−UT
0j −ĀT

0j

]
, j = 1, 2.

Secondly, let us define the following set.

Γs := {0 < µ| The ARE (18a) has a positive definite
stabilizing solution.}
µs := sup{µ|µ ∈ Γs}.

As a result, for every 0 < µ < µ̄ = min{µs, µf}, the
AREs (18a) and (18c) have the positive definite stabilizing
solutions. Hence, the limiting behavior of Pe as the param-
eter ||ε|| =

√
ε2
1 + ε2

2 → +0 is described by the following
theorem.

Theorem 2: Under Assumption 3, suppose there exists
a positive scalar µ̄ := min{µs, µf} such that for all
0 < µ < µ̄, the AREs (18a) and (18c) have the positive
definite stabilizing solutions. Then there exists a small
constant σ̄(≤ σ∗) such that for all ||ε|| ∈ (0, σ̄) and any
µ(< µ̄), the MARE (10) admits the symmetric positive
definite stabilizing solution Pe which can be written as

Pe =
[

P̄ ∗
00 + O(||ε||) [P̄ ∗

f0 + O(||ε||)]TΠe

Πe[P̄ ∗
f0 + O(||ε||)] Πe[P̄ ∗

f + O(||ε||)]

]
.(19)

In this case, the matrix Pe > 0 is called the guaranteed cost
matrix for the uncertain MSPS (7).

Proof: We apply the implicit function theorem [5] to
(13). To do so, it is enough to show that the corresponding
Jacobian is nonsingular at ||ε|| = 0. It can be shown, after
some algebra, that the Jacobian matrix of (13) in the limit
as ||ε|| → 0 is given by

J = ∇F =

⎡
⎣ J00 J01 0

J10 J11 J12

0 0 J22

⎤
⎦ , (20)

where

J00 = In0 ⊗ ÂT
00 + ÂT

00 ⊗ In0 ,

J01 = (In0 ⊗ ÂT
f0)Un0n̂ + ÂT

f0 ⊗ In0 ,

J10 = ÂT
0f ⊗ In0 = (ÂT

0f ⊗ In0)Un0n0 ,

J11 = ÂT
f ⊗ In0 , J22 = In̂ ⊗ ÂT

f + ÂT
f ⊗ In̂,

Â00 = Ā00 + S00P̄
∗
00 + S0f P̄ ∗

f0, Â0f = Ā0f + S0f P̄ ∗
f ,

Âf0 = Āf0 + ST
0f P̄ ∗

00 + Sf P̄ ∗
f0, Âf = Āf + Sf P̄ ∗

f ,

Âf = block diag
(

H11 H22

)
,

Hjj := Ājj + Sjj P̄
∗
jj, n̂ := n1 + n2.

The Jacobian (20) can be expressed as

detJ = detJ22 · detJ11 · det[In0 ⊗ ÂT
0 + ÂT

0 ⊗ In0 ], (21)

where Â0 ≡ Â00 − Â0f Â−1
f Âf0. Obviously, Jjj, j = 1, 2

are nonsingular because the matrix Âf = Āf +Sf P̄ ∗
f is sta-

ble from Theorem 1. After some straightforward but tedious
algebra, we see that A + SP̄ ∗

00 = Â00 − Â0f Â−1
f Âf0 =

Â0. Therefore, the matrix Â0 is also stable because the
assumption that the ARE (18a) has the positive definite
stabilizing solution is satisfied. Thus, detJ �= 0, i.e., J is
nonsingular at ||ε|| = 0. The asymptotic structure of Pe is
obtained directly by using the implicit function theorem.

The remainder of the proof is to show that Pe is the
positive semidefinite stabilizing solution. Since this proof
can be done by using Schur complement similarly as in
[11], it is omitted.

IV. GUARANTEED COST CONTROL FOR THE
MSPS

In this section, we consider not the MARE but the
GMARE because these equations are equivalent under the
mathematical argument in Lemma 2. The following useful
result is known [13].

Lemma 3: Under Assumption 1, suppose there exists
a matrix X satisfying Xe = XT

e := ΦeX > 0 and
the positive scalar parameter ν such that for all uncertain
matrices (1c), the following GMARE satisfies.

XT A + AT X + XT (νDDT − BR−1BT )X
+ν−1ET E + Q = 0, (22)

where

A :=
[

A00 A0f

Af0 Af

]
, B :=

[
B0

Bf

]
,

R := block diag
(

R11 R22

)
> 0,

Q :=
[

Q00 Q0f

QT
0f Qf

]
> 0, Q0f :=

[
Q01 Q02

]
,

Qf := block diag
(

Q11 Q22

)
,

X :=
[

X00 XT
f0Πe

Xf0 Xf

]
, X00 = XT

00 > 0,

ΠeXf = XT
f Πe, Xf0 :=

[
X10

X20

]
,



Xf :=
[

X11 αXT
21

X21 X22

]
.

Then the closed–loop uncertain MSPS with the linear state
feedback control law (23) is the guaranteed cost control

u(t) = Kx(t) = −R−1BT Xx(t). (23)

Moreover, the corresponding value of the cost function (4)
satisfies the following inequality (24).

J ≤ xT (0)ΦeXx(0). (24)
Applying the similar analysis used in Theorem 2, the

existence condition of the GMARE (22) is studied. Firstly,
we introduce the following matrices.

V := νDDT − BR−1BT =
[

V00 V0f

V T
0f Vf

]
,

V00 := νD0D
T
0 − B0R

−1BT
0

=
2∑

i=1

(νD0iD
T
0i − B0iR

−1
ii BT

0i),

V0f := νD0D
T
f − B0R

−1BT
f =

[
V01 V02

]
,

Vf := νDfDT
f − BfR−1BT

f = block diag
(
V11 V22

)
,

V0j := νD0jD
T
jj − B0jR

−1
jj BT

jj ,

Vjj := νDjjD
T
jj − BjjR

−1
jj BT

jj ,

W := ν−1ET E + Q =
[

W00 W0f

WT
0f Wf

]
,

W0f :=
[
W01 W02

]
, Wf := block diag

(
W11 W22

)
,

W0j := ν−1ET
j0Ejj + Q0j , Wjj := ν−1ET

jjEjj + Qjj.

In order to guarantee the existence of the solution of
the GMARE (22), the nonsingularity assumptions of the
Hamiltonian matrices are needed.

Assumption 4: The Hamiltonian matrices Zjj , j = 1, 2
are nonsingular, where

Zjj :=
[

Ajj Vjj

−Wjj −AT
jj

]
.

Secondly, let us define the reduced–order AREs (25).

X̄∗
00Ξ + ΞT X̄∗

00 + X̄∗
00VX̄∗

00 + W = 0, (25a)

X̄∗
j0 =

[
X̄∗

jj −Inj

]
Z−1

jj Zj0

[
In0

X̄∗
00

]
, (25b)

X̄∗
jjAjj + AT

jjX̄
∗
jj + X̄∗

jjVjjX̄
∗
jj + Wjj = 0, (25c)

where[
Ξ V

−W ΞT

]
= Z00 − Z01Z

−1
11 Z10 − Z02Z

−1
22 Z20,

Z00 =
[

A00 V00

−W00 −AT
00

]
, Z0j =

[
A0j V0j

−W0j −AT
j0

]
,

Zj0 =
[

Aj0 V T
0j

−WT
0j −AT

0j

]
, j = 1, 2.

Now, let us define the design parameters.

νf := min{νf1 , νf2}, where νfj := sup{ν|ν ∈ Λfj} and
Λfj := {ν > 0| The AREs (25c) have a positive definite
stabilizing solution, respectively.}
νs := sup{ν|ν ∈ Λs}, where Λs := {0 < ν | The ARE
(25a) has a positive definite stabilizing solution.}

As a result, for every 0 < ν < ν̄ = min{νs, νf}, the
AREs (25a) and (25c) have the positive definite stabilizing
solutions. Hence, there exists a small σ̂(≤ σ∗) such that for
all ||ε|| ∈ (0, σ̂) and for any ν(< ν̄), the GMARE (22) has
a solution X which can be written as

X =
[

X̄∗
00 + O(||ε||) [X̄∗

f0 + O(||ε||)]TΠe

X̄∗
f0 + O(||ε||) X̄∗

f + O(||ε||)

]
. (26)

We now give a new design approach to the construction
of the guaranteed cost controller. The new ε–independent
guaranteed cost controller can be obtained by solving
reduced–order slow and fast AREs (25). The ε–independent
guaranteed cost controller are obtained by neglecting the
term of O(||ε||) of the guaranteed cost controller (23).
The reason why the proposed approximation is adopted
is that these parameters are unknown and O(||ε||) term is
sufficiently small. If ||ε|| is very small, it is obvious that the
guaranteed cost controller (23) can be changed as

u(t) ≈ uapp(t) = Kappx(t)

= −R−1
[
BT

0 BT
f

]
⎡
⎣ X̄∗

00 0 0
X̄∗

10 X̄∗
11 0

X̄∗
20 0 X̄∗

22

⎤
⎦x(t). (27)

Since the proposed ε–independent controller (27) is very
close to the exact one (23) because of ||K − Kapp|| =
O(||ε||), it is expected that the proposed controller (27)
works well as the guaranteed cost control. The main result
of this section is as follows.

Theorem 3: Under Assumptions 1, 2 and 4, if we select
a parameter 0 < ν < ν̄ = min{νs, νf}, then there exists
a small σ̃ > 0 such that for all ||ε|| ∈ (0, σ̃), the uncertain
closed–loop MSPS is quadratically stable and the cost (4)
has the upper bound via the ε–independent controller (27).
That is, the approximate controller (27) is the guaranteed
cost controller.

Proof: It is enough to show that the GMARE (12a) has
the solution P as A+BKapp → Ā, KT

appRKapp+Q → Q̄.
Substituting A + BKapp and KT

appRKapp + Q into Ā and
Q̄ respectively, it follows:

P T (A + BKapp) + (A + BKapp)T P + λP T DDT P

+λ−1ET E + KT
appRKapp + Q = 0. (28)

The proof of the existence of P is obtained by the implicit
function theorem [5]. Using the similar manner used in the
proof of Theorem 2, it is easy to prove that

P =
[

X̄∗
00 + O(||ε||) [X̄∗

f0 + O(||ε||)]TΠe

X̄∗
f0 + O(||ε||) X̄∗

f + O(||ε||)

]
(29)

under λ = ν .
Since X̄00 and X̄f are positive definite solution of the

AREs (25a) and (25c) respectively, we find that the solution



Pe = ΦeP is the positive definite solution. Thus, the proof
of Theorem 3 is completed.

According to the existing results [13], we need to solve
the full–order GMARE (22) to calculate the bound of
the cost x(0)T Pex(0) = x(0)T ΦePx(0) for every 0 <
ν < ν̄ . However, to solve the GMARE (22), information
of each parameter εj is needed. Therefore, the parameter
independent calculation method of the cost bound is newly
established.

If ||ε|| is very small, then the guaranteed cost given by
(24) can be changed as follows

x(0)T Pex(0) = x0(0)X̄00x0(0) + O(||ε||). (30)

Thus, in order to calculate the bound of the cost, our
new idea is to use only the solution X̄00 of the reduced–
order ARE (25a). That is, we can neglect the O(||ε||) term
of the cost (30) if ||ε|| is sufficiently small. Therefore,
the amount of the computation required to get the ε–
independent controller becomes extremely small compared
with the case of solving the full–order GMARE (22) be-
cause the approximate cost can be computed by the small
dimension which are the same as the slow subsystems.

Remark 1: It can be noted that the bound obtained in
Theorem 3 depends on the initial condition x(0). To remove
this dependence on x(0), we assume that x(0) is a zero
mean random variable satisfying E[x(0)xT (0)] = In. In
this case, it is interesting to point out that the guaranteed
cost becomes

x(0)TPex(0) = Trace Pe = Trace X̄00 + O(||ε||). (31)
Finally, we give an algorithm for the guaranteed cost

control problem of the uncertain MSPS.

Step 1. Search the minimum parameter νf =
min{νf1 , νf2} such that the reduced–order
AREs (25c) have positive definite stabilizing
solution X̄jj by using the bisection method.

Step 2. Secondly, search the minimum parameter νs(≤
νf) such that the reduced–order ARE (25a) has
positive definite stabilizing solution X̄00 by using
the bisection method.

Step 3. Choose any parameter ν such that 0 < ν < ν̄ =
min{νs, νf} and calculate Ξ, V and W via the
matrices Z00, Z0j , Zj0 and Zjj , j = 1, 2.

Step 4. Compute the positive definite stabilizing solution
X̄00 and calculate the approximate guaranteed cost

f(ν) = Trace X̄00, (32)

where we have neglected the O(||ε||) term.
Step 5. Find a ν = ν̂ that minimizes the approximate cost

f(ν) for all 0 < ν < ν̄.
Step 6. Using the obtained ν = ν̂, design the ε–

independent controller (27).

V. CONCLUSION

The guaranteed cost control problem for the uncertain
MSPS has been studied. By solving the reduced–order slow

and fast AREs, the new ε–independent controller can be
obtained. The new technique has the following advantages.
1. The proposed method does not need the information
for the small parameters. 2. The required work space is
the same as the reduced–order slow and fast subsystems.
3. Our new results apply to the standard and the non–
standard MSPS without the nonsingularity assumption of
the fast subsystems although the fast subsystems include
the uncertainty. Therefore, we have succeeded in applying
the new design approach to more practical MSPS.
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[14] P. V. Kokotović, H. K. Khalil and J. O’Reilly, Singular Perturbation
Methods in Control: Analysis and Design, New York: Academic Press,
1986.

[15] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with
Applications in Statistics and Econometrics, New York: John Wiley
and Sons, 1999.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP02.5
	Page0: 3303
	Page1: 3304
	Page2: 3305
	Page3: 3306
	Page4: 3307
	Page5: 3308


