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Abstract— A general compensator architecture for fault
tolerant control (FTC) for sampled-data systems is proposed.
The architecture is based on the YJBK parameterization of all
stabilizing controllers, and uses the dual YJBK parameteriza-
tion to quantify the performance of the fault tolerant system.
The FTC architecture is based on a discrete-time nominal
feedback controller and with the FTC part also in discrete-
time.

Further, a number of problems for the design of the
controller reconfiguration part in the FTC architecture is
considered. It is shown how these design problems can be
transformed into standard design problems for feedback
controllers.

I. INTRODUCTION

In the past years, the area of fault tolerant control has
received an increasing interest. The reason is the increasing
use of more and more complex systems and control systems.
The research in this area has been derived both for general
dynamical systems, [2], [3], [12], [13], [14], [15], [18], [20],
[24].

The focus in this paper is on an architecture for fault
tolerant controllers for sampled-data systems. Fault tol-
erant controllers for sampled-data systems is important,
because fault tolerant controllers can be quite complicated
and therefore in general a digital implementation will be
required. Further, digital control is standard today in many
complicated control systems. It is therefore also natural to
use digital implementation of the FTC part of feedback
controller.

The proposed FTC architecture is based on the Youla-
Jabr-Bongiorno-Kucera (YJBK) parameterization of all sta-
bilizing controllers. This architecture was first introduced in
connection with continuous-time system, see e.g. [12], [13],
[15] for a description of the continuous-time architecture.
The architecture has a number of advantages that makes
it very useful in connection with fault tolerant control.
First of all, both the fault diagnosis part as well as the
controller reconfiguration part are derived based on the
same setup. Further, it is possible to change/modify the
nominal controller without breaking the feedback loop. The
modification is derived by using the parameterization in the
architecture to add a modification signal into the nominal
controller. This will make controller changes due to faults
much more smooth.
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II. SYSTEM SETUP

Consider the following generalized nominal 2×2 system,

Σ :

{

e(t) = Gedd(t) + Geuu(t)

y(t) = Gydd(t) + Gyuu(t)
(1)

where d ∈R r is a disturbance input vector, u∈R m the con-
trol input signal vector, e ∈ R q is the external output signal
vector to be controlled, and y ∈ R p is the measurement
vector.

Further, let the dynamical system in (1) be controlled by
the following stabilizing sampled-data feedback controller

uk = K(z)yk (2)

where the connections between the continuous-time signals
u(t),y(t) and the discrete-time signals uk,yk are given by

yk = Sy(t)

u(t) = H uk

where S is a sampler and H is a zero order hold. A block
diagram of the system is shown in Figure 1.
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Fig. 1. Standard sampled-data system setup.

Let the system given in (1) include a number of paramet-
ric/multiplicative faults, described by the vector θ, θT =
[θ1, · · · ,θl ]

T . All four transfer functions in (1) will be a
function of the fault vector, i.e.

Σθ :

{

e(t) = Ged(θ)d(t) + Geu(θ)u(t)

y(t) = Gyd(θ)d(t) + Gyu(θ)u(t)

It is in general possible to give a more explicit description
of the system setup for systems with parameter faults by
including an extra input and output vector. The above
system is then given by

Σθ :















z = Gzww + Gzdd + Gzuu

e = Geww + Gedd + Geuu

y = Gyww + Gydd + Gyuu

(3)



where the connection between the two external vectors w
and z is given by

w = θz (4)

This description is equivalent with the general description
of system with model uncertainties, see e.g. [23].

For simplifying the following analysis, we have the
following assumption.

Assumption II.1 It is assumed that each parametric fault
θi occurs by itself, i.e. two parameter faults never occur
simultaneously. Moreover, faults occur sufficiently apart in
time so that at any given time at most one fault affects the
measurement signal.

The general result without this assumption can be obtained
quite easily from the results stated in this paper. The above
assumption is often satisfied and makes the presentation of
our results more transparent without the need to cloud the
presentation with more technically complex methods.

III. THE YJBK PARAMETERIZATION

The YJBK and the dual YJBK parameterization are
shortly introduced in this section. The YJBK parameter-
ization was first derived by Youla et al. [21], [22] and
independently by Kucera [11]. It has later been applied in
numerous cases in connection with feedback control, see
e.g. [1], [4], [5], [8], [19], [23].

A. The YJBK Parameterization

Consider a generalized nominal 2×2 system given by (1)
controlled by a sampled-data controller K(z) given by (2).
Further, let the discrete-time transfer function from uk to yk

be defined by
Gyu(z) = SGyu(s)H

i.e. the transfer function that the controller look into. A co-
prime factorization of the system Gyu(z) and the controller
K(z) is given by:

Gyu(z) = NM−1 = M̃−1Ñ, N,M, Ñ,M̃ ∈ R H∞

K(z) = UV−1 = Ṽ−1Ũ , U,V,Ũ ,Ṽ ∈ R H∞
(5)

where the eight matrices in (5) must satisfy the double
Bezout equation given by, see [23]:

(

I 0
0 I

)

=

(

Ṽ −Ũ
−Ñ M̃

)(

M U
N V

)

=

(

M U
N V

)(

Ṽ −Ũ
−Ñ M̃

) (6)

Based on the above coprime factorization of the system
Gyu(z) and the controller K(z), we can give a parameteriza-
tion of all controllers that stabilize the system in terms of
a stable parameter Q(s), i.e. all stabilizing controllers are
given by [19]:

K(Q) = U(Q)V (Q)−1 (7)

where

U(Q) = U +MQ, V (Q) = V +NQ, Q ∈ R H∞

or by using a left factored form:

K(Q) = Ṽ (Q)−1Ũ(Q) (8)

where

Ũ(Q) = Ũ +QM̃, Ṽ (Q) = Ṽ +QÑ, Q ∈ R H∞

Using the Bezout equation, the controller given either by
(7) or by (8) can be realized as an LFT in the parameter Q,

K(Q) = Fl(JK ,Q) (9)

where JK is given by

JK =

(

UV−1 Ṽ−1

V−1
−V−1N

)

(10)

The controller K(Q) with the structure given by (9) can
be implemented with a resulting the closed loop system as
depicted in Figure 2, [19].
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Fig. 2. Controller structure with parameterization for a sampled data
system with a discrete time controller

The main observation which shall be exploited in the so-
lution to the fault tolerant control problem, is the following
simple expression for the transfer function from faults to
the external output e terms of the parameter Q:

e = Ged(s)d +Geu(s)H K(Q)(z)

×(I −Gyu(z)K(Q)(z))−1SGyd(s)d

= Ged(s)d +Geu(s)H

×(U(z)M̃(z)+M(z)Q(z)M̃(z))SGyd(s)d

(11)

where (6) has been exploited. Note that it is not possible
to describe the connection between external input d and
external output e directly by a transfer function.



From (11), it is clear that the closed loop operator
between the external input d and the external output e is an
affine operator in Q. Therefore, the closed loop stability will
not be affected as long as Q is selected as a stable transfer
function. Further, as a direct consequence of the closed loop
operator being an affine function of Q, Q cannot be applied
for stabilizing the nominal closed loop system.

B. The Dual YJBK Parameterization

In the same way, it is possible to derive a parameter-
ization in terms of a stable parameter S of all systems
that are stabilized by one controller, i.e. the dual YJBK
parameterization. The parameterization is given by [19]:

Gyu(S) = N(S)M(S)−1 (12)

where

N(S) = N +V S, M(S) = M +US, S ∈ R H∞

or by using a left factored form:

Gyu(S) = M̃(S)−1Ñ(S) (13)

where

Ñ(S) = Ñ +SṼ , M̃(S) = M̃ +SŨ , S ∈ R H∞

An LFT representation of (12) or (13) is given by:

Gyu(S) = Fl(JG,S) (14)

where JG is given by

JG =

(

NM−1 M̃−1

M−1
−M−1U

)

(15)

It has been shown in e.g. [19], that the dual YJBK
parameter S transfer function can be calculated by using
the primary YJBK parameterization. It turns out that S is
given by:

S = Fu(JK ,Gyu(S)) (16)

This simple relationship between the YJBK parame-
terization and the dual YJBK parameter S can be used
in connection with calculation/estimation of S. A general
description of estimation of S will not be given in this paper,
see instead [6], [19].

IV. FAULT TOLERANT CONTROLLER ARCHITECTURE

FOR SAMPLED-DATA SYSTEMS

In the sequel, an architecture for fault tolerant controllers
for sampled-data systems will be proposed, based on the
YJBK parameterization shown in the block diagram in
Figure 2. There is a number of reasons for using the
architecture from the YJBK parameterization in connection
with FTC. First of all, a fault tolerant controller consists
of two parts, a fault diagnosis part (the FDI part) and a
controller reconfiguration part (the CR part). Both parts can
be based on the YJBK parameterization. From Section III,
we have that the Q parameter will be the CR part of the
FTC controller. This means that the CR part of the feedback

controller is a modification of the existing controller. Thus,
the required change of controller when a fault appears in the
system does not imply a complete shift to another controller,
but only a modification of the existing controller by adding
a correction signal in the nominal controller, the r signal
in Figure 2. However, it should be pointed out that it is
possible to modify the controller arbitrarily by designing
the YJBK parameter Q, see e.g. [17], [19].

The other part in the general FTC architecture is the fault
diagnosis part. This part can also be derived by using the
same signals as used in connection with the YJBK param-
eterization. Equivalent with the YJBK parameterization of
all stabilizing controllers, a parameterization of all residual
generators is given by, [9], [10]

r = QFDIr̃k = QFDI(M̃y− Ñu) (17)

This is just the YJBK parameterization of all filters, i.e.
there is no feedback. This means that it is possible to
combine both fault diagnosis and controller reconfiguration
in the same architecture without any problems. A block
diagram for this combined FDI and CR architecture based
on the YJBK parameterization for sampled-data systems is
shown in Figure 3 for three potential multiplicative faults
- the generalization to any number of faults should be
obvious.

The above controller architecture applied for FTC shown
in Figures 2 and 3 has a fixed structure with respect to
the number of measurement signals and control signals.
This will not in general be the case in real applications.
Here, faults in e.g. sensors can be handled by applying other
sensors in the system, i.e. the measurement output from the
system is changed. An equivalent approach applies to faults
in connection with the actuators in the system. This type of
system change has not directly been included in the system
description given by (3). However, it is possible to include
change of sensors and/or actuators in the FTC architecture
given above. This aspect will not be considered here, see
instead [13] for a discussion of how to change the number
of sensors/actuators in connection with the FTC architecture
shown in Figure 3.

V. DESIGN OF THE CONTROLLER RECONFIGURATION

PART

In the remaining part of this paper, design of the con-
troller reconfiguration part, QCR in the FTC architecture
will be considered. The design of the reconfiguration part
can be derived with respect to closed loop stability only or
with respect to both closed loop stability and performance
of the faulty sampled-data system. Both these two design
problems will be considered in the following.

First, let us consider the closed-loop stability problem
when the system is affected by multiplicative faults, i.e.
if Gyu depends on some multiplicative faults. Let a YJBK
parameterized controller K(QCR) be applied, where the
nominal controller K(0) = K0 is designed for the nominal
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Fig. 3. Fault tolerant scheme for sampled-data systems with three potential
parameter faults. The residual signal is used both for isolation and for
feedforward in the fault handling.

system. The YJBK parameter is then applied for the con-
troller reconfiguration in the faulty case, i.e. QCR(z) needs to
stabilize the sampled-data closed-loop system when a fault
has appeared in the system. The stability of the sampled-
data closed loop system requires stability of the nominal
sampled-data closed-loop system and closed-loop stability
of a certain loop where both QCR(z) and the multiplicative
faults θ are included, [19]. The stability of the nominal
sampled-data closed-loop system is satisfied by the design
of the nominal feedback controller K(0). Using (16), we
have that the two YJBK parameters (QCR,S(θ)) will give
a closed loop system that is decoupled from the nominal
closed-loop system. It is therefore quite easy to show that
the closed loop system is stable if and only if the nominal
system is closed-loop stable and the closed-loop performed
by the YJBK parameters is stable, [19], given by

S̃(QCR)(z) = (I −QCRS(θ))−1(z) (18)

where S(θ)(z) is the dual YJBK parameter, depending on

the multiplicative faults θ.
To guarantee closed-loop stability, it is required that S is

stable. Combining the YJBK parameterization with the dual
YJBK parameterization, it is not a condition that QCR and S
themselves need to be stable. QCR and S just need to satisfy
that the closed-loop system given by (18) is stable, [19].
From the general explicit description of S given by (16),
we have that S can be derived as the open loop transfer
function between the input signal rk and the output signal
r̃k in Figure 3. Based on this, S(θ)(z) then has the following
form:

S(θ)(z) = M̃(z)SGyw(s)θ(I−Gzw(s)θ)−1Gzu(s)H

×M(z)(I−ŨSGyw(s)θ(I−Gzw(s)θ)−1

Gzu(s)H M(z))−1

(19)
In connection with (19), it is important to note that the

stability condition of S and/or of S̃(QCR) in (18) for satis-
fying that the faulty closed loop system is stable, is valid
only if the faulty system is still detectable and stabilizable
from the specified input signals u and output signals y. This
is a standard condition in connection with FTC systems.
If the faulty system is not detectable and/or stabilizable,
additional actuators and/or sensors need to be included in
the system to satisfy these two conditions. It should be
pointed out that the FTC setup considered in this paper, does
not restrict the possibility to include more general controller
architectures, where the number of actuators and/or sensors
can be changed/modified in connection with faults. This
subject is discussed in [13].

It is important to note that if S is stable, we do not need
a QCR-parameter to stabilize the system. In this way, S can
also be used for analyzing which faults are admissible and
how large they can be before the closed-loop system will
become unstable.

Based on the general equation for S(θ) given by (19),
we have the following controller reconfiguration design
problem.

Problem 1 The controller reconfiguration design problem
is defined as the problem of designing, if existent, a feedback
controller QCR(z), such that S̃(QCR)(z) given by

S̃(QCR)(z) = (I −QCR(z)S(θ)(z))−1

is stable, where S(z) is given by (19).

This design problem is a pure discrete-time design prob-
lem and stabilizing QCR(z) controllers can be found by
using standard discrete-time design methods.

So far, only the stability part with respect to multiplicative
faults has been treated. This is the most important part of
the CR. However, it will also in some cases be possible to
design QCR(z) controller with respect to both closed-loop
stability as well as closed-loop performance. Closing the
loop of in Σθ in (3) with the feedback controller K(QCR),



we get the following closed loop transfer operators between
the inputs d, rk and the outputs e, r̃k:

ΣSD,θ,K :

{

e = Ted(θ,s)d +Ter(θ,s)rk

r̃k = Tr̃d(θ,s)d +Tr̃r(θ,s)rk

(20)

where

Ted(θ,s) = Ged(θ)+Geu(θ)H M(z)(I −Ũ(z)S

×Gyw(s)θ(I −Gzw(s)θ)−1Gzu(s)H

×M(z))−1Ũ(z)SGyd(θ)

Ter(θ,s) = Geu(θ)H M(z)(I −Ũ(z)SGyw(s)

×θ(I −Gzw(s)θ)−1Gzu(s)H M(z))−1

Tr̃d(θ,s) = M̃(z)(I −SGyw(s)θ(I −Gzw(s)θ)−1

×Gzu(s)H U(z)M̃(z))−1SGyd(θ)

Tr̃r(θ,s) = S(θ)(z)
(21)

when a discrete-time nominal feedback controller is applied.
Closing the loop from r̃k to rk by QCR, the connection
between the external input d and the external output e is
then given by:

e = TSD,cl(θ,s)d = Fl(ΣSD,θ,K ,QCR)d (22)

Note that the closed loop operator is a periodic system
with the sampling time as the period. Based on this, we
have the following H2 and H∞ controller reconfiguration
design problems.

Problem 2 The optimal H2 controller reconfiguration
design problem with performance recovery is defined as
the problem of designing, if existent, a feedback controller
QCR, such that the closed loop operator TSD,cl(θ,s) is stable
and the H2 norm of TSD,cl(θ,s) is minimized.

Problem 3 For a given number γ > 0, The suboptimal
H∞ controller reconfiguration design problem with per-
formance recovery is defined as the problem of designing,
if existent, a feedback controller QCR, such that the closed
loop transfer function TSD,cl(θ,s) is stable and the H∞ norm
of TSD,cl(θ,s) is less than or equal to γ.

Standard sampled-data design methods cannot be applied
directly in connection with Problems 2 and 3. The reason
is that the discrete-time nominal feedback controller is
mixed with the continuous-time system. However, it is still
possible to find a (sub)optimal controller QCR by using the
lifting technique followed by standard discrete-time design.
The lifting needs only to be applied on the continuous-time
part of the closed loop system.

Let us consider a faulty closed loop system where a
discrete-time nominal feedback controller is applied shown
in Figure 4.

Σθ(s)

H S

Nom. discrete-time
controller

QCR(z)

-

?

�

6

-

-

?
6

d e

uk yk

u y

r̃k rk

Fig. 4. Controller architecture with a discrete-time nominal feedback
controller and a discrete-time reconfiguration block.

Using the lifting on the open loop system between the
inputs d, uk and the outputs e, yk, we get the following
equivalent discrete-time system:

ΣL,θ(z) :



























ek = LGed(θ)L−1dk + LGeu(θ)H uk

= GL,ed(θ)(z)dk + GL,eu(θ)(z)uk

yk = SGyd(θ)L−1dk + SGyu(θ)H uk

= GL,yd(θ)(z)dk + Gyu(θ)(z)uk

(23)

where L is the lifting operator. It is important to note that
the equivalent finite dimensional discrete-time system will
depend on the subsequent controller design, see e.g. [7].
Introducing the lifted system in (23) in Figure 4, results
in the equivalent discrete-time feedback system shown in
Figure 5.

The open loop discrete-time transfer functions from the
inputs dk and rk to the outputs ek, r̃k, in Figure 5 are then
given by:

ΣL,θ,K(z) :

{

ek = TL,ed(z)dk +TL,er(z)rk

r̃k = TL,r̃d(z)dk +S(θ)(z)rk

(24)

where TL,ed(z), TL,er(z) and TL,r̃d(z) are functions of the
lifted system given by (23). Let the closed loop transfer
function from dk to ek be given by

TL,cl(θ,z) = Fl(ΣL,θ,K(z),QCR) (25)

The controller reconfiguration design problem is now
transformed into a standard design problem. Design Prob-
lems 2 and 3 are then given by:

Problem 4 The optimal H2 controller reconfiguration
design problem with performance recovery is defined as
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Fig. 5. Equivalent discrete-time controller architecture.

the problem of designing, if existent, a feedback controller
QCR(z), such that the closed loop operator TL,cl(θ,z) is
stable and the H2 norm of TL,cl(θ,z) is minimized, where
TL,cl(θ,z) is given by (25).

Problem 5 For a given number γ > 0, The suboptimal H∞
controller reconfiguration design problem with perfor-
mance recovery is defined as the problem of designing, if
existent, a feedback controller QCR(z), such that the closed
loop transfer function TL,cl(θ,z) is stable and the H∞ norm
of TL,cl(θ,z) is less than or equal to γ, where TL,cl(θ,z) is
given by (25).

VI. CONCLUSION

An architecture for fault tolerant controllers for sampled
data systems has been considered in this paper. The ar-
chitecture is based on the YJBK parameterization, which
facilitates both the inclusion of a fault diagnosis part as
well as a controller reconfiguration part.

A number of design problems for the controller recon-
figuration part in the FTC architecture has been considered
in this paper. It turns out that the controller design problem
is a discrete-time design problem if stability of the faulty
system is considered only. When performance is included
in the design problem, the CR design problem is a sampled-
data design problem. Here, lifting can be applied with
advantage to transform the sampled-data design problem
into an equivalent discrete-time design problem.

The FTC architecture can been derived in two versions,
one version based on a nominal discrete-time feedback
controller as described in this paper and one version based
on a nominal continuous-time feedback controller. The
second version of the architecture allows it to be used
directly on a continuous-time feedback systems without
any modifications. This second architecture is considered
in details in the journal version of this paper, [16].

REFERENCES

[1] B.D.O. Anderson. From Youla-Kucera to identification, adaptive and
nonlinear control. Automatica, 34(12):1485–1506, 1998.

[2] M. Blanke, C.W. Frei, F. Kraus, R.J. Patton, and M. Staroswiecki.
What is fault-tolerant control? In Preprints of 4th IFAC Symposium
on Fault Detection Supervision ans Safety for Technical Processes,
SAFEPROCESS’2000, pages 40–51, Budapest, Hungary, 2000.

[3] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis
and Fault-Tolerant Control. Springer, 2003.

[4] S. Boyd, V. Balakrishnan, C.H. Barratt, N.M. Khraishi, X. Li, D.G.
Meyer, and S.A. Norman. A new CAD method and associated
architectures for linear controllers. IEEE Transactions on Automatic
Control, 33(3):268–283, 1988.

[5] S.P. Boyd and C.H. Barratt. Linear controller design - limits of
performance. Prentice Hall, 1991.

[6] F. De Bruyne, B.D.O. Anderson, and N. Linard. The Hansen scheme
revisited. In Proceedings of the 37th Conference on Decision and
Control, pages 706–711, Tampa, FL, USA, 1998.

[7] T. Chen and B. Francis. Optimal sampled-data control systems.
Springer-Verlag, 1995.

[8] M.A. Dahleh and I.J. Diaz-Bobillo. Control of Uncertain systems.
Prentice Hall, 1995.

[9] P.M. Frank and X. Ding. Frequency domain approach to optimally
robust residual generation and evaluation for model-based fault
diagnosis. Automatica, 30:789–804, 1994.

[10] J. Gertler. Fault detection and diagnosis in engineering systems.
Marcel Dekker, 1998.

[11] V. Kucera. Stability of discrete linear feedback systems. In
Proceedings of the 6th IFAC World Congress, Boston, MA, 1975.
Paper 44.1.

[12] H.H. Niemann and J. Stoustrup. Reliable control using the primary
and dual Youla parameterization. In Proceedings of the 41st IEEE
Conference on Decision and Control, page 6p, Las Vegas, NV, USA,
2002.

[13] H.H. Niemann and J. Stoustrup. An architecture for fault tolerant
controllers. Submitted for publication, September 2003.

[14] H.H. Niemann and J. Stoustrup. Controller reconfiguration based
on LTR design. In Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, Hawaii, USA, December 2003.

[15] H.H. Niemann and J. Stoustrup. Passitive fault tolerant control of a
double inverted pendulum - A case study example. In Proceedings
of IFAC SAFEPROCESS 2003, pages 1029–1034, Washington, DC,
USA, 2003.

[16] H.H. Niemann and J. Stoustrup. An architecture for sampled-data
fault tolerant controllers. Submitted for publication, January 2004.

[17] H.H. Niemann, J. Stoustrup, and R.B. Abrahamsen. Switching
between multivariable controllers. Optimal Control - Application
and Methods, pages –, 2004.

[18] R. Patton. Fault tolerant control: The 1997 situation. In Proceedings
of the IFAC Symposium SAFEPROCESS’97, pages 1033–1055, Hull,
England, 1997.

[19] T.T. Tay, I.M.Y. Mareels, and J.B. Moore. High performance control.
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