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Abstract— We propose two types of periodically weighted
model-matching problem by linear periodically time-varying
(LPTV) control for LTI plants. The causality constraint of
LPTV controller is satisfied via a representation that we call
dual lifted forms. We show the superiority of LPTV control to
LTI control and demonstrate a design example.

I. INTRODUCTION

Periodic digital control has been attracting many re-
searchers for its ability for gain margin improvement [1],
zero placement [2], simultaneous stabilization [1] etc. Moti-
vated by these results, we focus on model-matching problem
by periodic control because we can convert various control
problems into model-matching form via Youla parameteri-
zation [3], [4].

Model-matching problems for LPTV controller have been
investigated in [5]–[10]. Colaneri et al. [8] designed a
state feedback LPTV controller so that the closed-loop
transfer function is identical to a given LTI transfer function.
Chapellat et al. [5] showed that time-varying controllers
have not any advantage over periodic controllers. Tanaka et
al. [7] dealt with the same problem in [5] and concluded that
the cost of H∞ control for LTI plant cannot be improved
by any LPTV controller. This conclusion coincides with
the preceding researches about fundamental performance
limitation of LPTV control for an LTI plant [11], [12].

The main difficulty of LPTV controller design is the
causality constraint in lifted system representation. Several
approaches for this constraint can be found such as convex
optimization [6], nest algebra [9] and LMI formulation [10].
In this paper, we show an LTI approximation approach
completely different from them. Namely, we introduce two
forms of causal LPTV systems as dual lifted forms and
utilize them to restrict the Q-parameter in Youla parameteri-
zation. And our proposing problems are not for LPTV plants
but for LTI plants. This is because one of our motivation is
to reveal the fundamental difference between LPTV control
and LTI control for LTI plants.

We use the following notation. The set of integers, the
set of complex numbers and the set of real numbers are
denoted by Z, C and R, respectively. The set of discrete-
time sequences of n-th dimension is denoted by ln. A time
forward shift operator on ln is denoted by q. The set of
linear causal maps from lm to ln is denoted by Ln×m. The
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set RLn×m is a subset of Ln×m, which is represented by
matrices whose elements are rational functions of z. The set
RH∞ is a subset of RL, whose poles are in the open unit
disk on C. The symbol ei ∈ R

N denotes the i-th unit vector:
(ei)j = δij where δij is the Kronecker delta. We also use

the symbol Ei
�
= ei ⊗ Ir where ⊗ is the matrix Kronecker

product [4]. A linear discrete-time system G ∈ Ln×m is
called τ -periodic if G satisfies G = qτGq−τ where τ can
take any non-negative integer value [1].

II. PRELIMINARIES

Firstly, we define the lift operator W : lr → lrN

introduced in [1], which is an isomorphism on lr, and the
inverse operator of W denoted by W−1 : lrN → lr as

W : α(z) =
∞∑

i=0

αiz
−i →




α(0)(z)
...

α(N−1)(z)


 , (1)

W−1 :




α(0)(z)
...

α(N−1)(z)


 → α(z) =

N−1∑
i=0

α(i)(zN )z−i, (2)

where α(i)(z)
�
=

∑∞
j=0 αNj+iz

−j for i = 0, · · · , N − 1.
In the following argument, we oftenly state that α ∈ lr is
in the original signal space and Wα ∈ lrN is in the lifted
signal space.

We use the Youla parameterization [3], [4] of all stabi-
lizing controllers, where the generalized plant P (z) ∈ RL
and the stabilizing controller Ω ∈ RL are

P (z) =


 A B1 B2

C1 D11 D12

C2 D21 D22


 , (3)

Ω = Ω1(z) − Ω2(z)Q(Ω3(z) + Ω4(z)Q)−1, (4)

[ Ω1 Ω2 ]

=
(

A − B2K + HC ′
2 H −B2 − HD22

K 0 I

)
, (5)

C ′
2

�
= C2 − D22K, (6)

[ Ω3 Ω4 ] =
(

A − B2K −H −B2

C ′
2 I −D22

)
. (7)

We assume that the free parameter Q is an N -periodic stable
LPTV system. Consequently, Ω is a stabilizing controller
[13] and the closed-loop transfer function T has the fol-
lowing model-matching form where T1, T2, T3 ∈ RH∞:

T = T1(z) − T2(z)QT3(z). (8)



III. PROBLEM DEFINITION

Let us define an up-sampling operator Ui, a down-
sampling operator Di and a projection operator Prj on
discrete time sequences as

Ui
�
= W−1Ei+1, Di

�
= ET

i+1W, Prj �
= UjDj . (9)

It is easy to check Prj is a projection and has the eigen

signal space Wr
j

�
=

{
w ∈ lr | Prjw = w

}
.

Property 1: The projection operator Pri has the follow-
ing properties:

1) ∀ i, j ∈ Z[0, N − 1], PriPrj = δijPri.
2) Pr0 + Pr1 + · · · + PrN−1 = I .

From the properties the signal space lr can be decomposed
by Wr

j as

lr = Wr
0 ⊕Wr

1 ⊕ · · · ⊕Wr
N−1. (10)

The class Qp defined below represents causal, N -periodic
and stable systems (See Section IV for the detail).

Qp �
= {Q | Q : causal, WQW−1 ∈ RH∞} (11)

Then, we define the periodic model-matching problems with
the projection operator Pri:

P1. Find Q∗ such that

Q∗ = arg inf
Q∈Qp

∥∥[T1(z) − T2(z)QT3(z)]Pri
∥∥,

P2. Find Q∗ such that

Q∗ = arg inf
Q∈Qp

∥∥Pri[T1(z) − T2(z)QT3(z)]
∥∥.

A possible practical control subject with regard to these
problems is to reduce the effect by periodical impulsive
disturbances caused by gas explosions in a cylinder or to
move a hard disk head to desirable positions more precisely
at every clock time when data arrives.

In the following sections, we show an LTI approximation
approach to apply LTI design procedures to P1 and P2
problems.

IV. LIFTED SYSTEM REPRESENTATION

A. Lifting for LTI Systems

Similar to the equation (2), we can decompose an LTI
transfer function G(z) ∈ RLn×m into LTI subsystems
uniquely [1], [14] as

G(z) =
N−1∑
i=0

z−iG(i)(zN ), (12)

where G(i)(z) ∈ RLn×m for i = 0, 1, · · · , N − 1. By
letting (A,B,C,D) be a state space realization of G(z),
each G(i)(z) is represented by

G(i)(z) =




(a) i = 0
D + C(zI − AN )−1AN−1B

(b) i = 1, · · · , N − 1
CAi−1B + CAi(zI − AN )−1AN−1B

.

(13)

Obviously, when G(z) is stable, G(i)(z) is also stable for
i = 0, · · · , N − 1. We introduce a pair of row and column
operations for G̃(z) as cs : RLn×m → RLnN×m and rs :
RLn×m → RLn×mN :

cs G(z)
�
=




G(0)(z)
...

G(N−1)(z)


 ,

rs G(z)
�
=

(
G(N−1)(z) · · · G(0)(z)

)
.

Furthermore, let ccs G(z) and rrs G(z) denote

ccs G(z)
�
=

[
G(0)(zN ) z−1G(1)(zN ) · · ·
· · · z−N+1G(N−1)(zN )

]
,

rrs G(z)
�
=

(
ccs GT (z)

)T
.

where G(i)(zN ) is given by substituting zN into G(i)(z)
defined by (13). Note that cs G(z) and rs G(z) consist
of matrix blocks because G(z) is a matrix function and
the operators cs and rs are one to one maps due to the
uniqueness of G(i)(z) defined in (12) and (13). An existence
condition of stable inverses of rrs G(z) and ccs G(z) can
be derived as the following lemma. The operators ccs, rrs
and their stable inverses are used in our main results.

Lemma 1: Let an LTI system G(z) have a state space
realization (A,B,C,D). And let us introduce two functions
M c

N (A,B, ξ) and Mo
N (A,C, ξ) with respect to two matrices

A, B and a vector ξ ∈ R
N−1 as

M c
N (A,B, ξ)

�
=

(
AN−1 + ξ1I + ξ2A + · · · + ξN−1A

N−2
)
B, (14)

Mo
N (A,C, ξ)

�
= C

(
AN−1 + ξ1I + ξ2A + · · · + ξN−1A

N−2
)
. (15)

Then, when there exists ξ such that M c
N (A,B, ξ) = 0 or

Mo
N (A,C, ξ) = 0, the following two statements hold.
1) If there exists a constant matrix D# such that

DD# = I , then there exists (ccs G)#(z) ∈ RH∞
such that ccs G(z) · (ccs G)#(z) = I .

2) If there exists a constant matrix D# such that
D#D = I , then there exists (rrs G)#(z) ∈ RH∞
such that (rrs G)#(z) · rrs G(z) = I .

Proof: The proof of the first part is similar to that of
the second part. So we only prove the second part here. By
selecting (rrs G)#(z) as

(rrs G)#(z)
�
=

[
D# z−N+1ξ1D

# · · ·
· · · z−1ξN−1D

#
]
, (16)

it is obvious that (rrs G)#(z) ∈ RH∞ and the following
equations complete the proof.

(rrs G)#(z) · rrs G(z)
= D#D + D#Mo

N (A,C, ξ)(zNI − AN )−1B

= D#D + D#C(zN − AN )−1M c
N (A,B, ξ).



B. Dual Lifted Forms for N -Periodic Systems

We show that a causal LPTV system has a pair of dual
representations in the lifted signal space. The dual lifted
forms enable us to calculate the multiplication of two causal
LPTV systems very simply and this is a key idea to solve
problems P1 and P2.

The lifted forms of time shift operators have been shown

in [15]. Let q̃τ �
= WqτW−1 and q̃−τ �

= Wq−τW−1 for
τ ∈ Z[0, N ]. Then, q̃τ and q̃−τ can be represented as

q̃τ =
(

0 IN−τ

zIτ 0

)
⊗ Ir, (17)

q̃−τ =
(

0 z−1Iτ

IN−τ 0

)
⊗ Ir. (18)

By using the lifted time shift operators, we can give
a parameterization of causal LPTV systems. In this pa-
rameterization, all free parameters are LTI and embedded
via operators the rs and cs. Consequently, the causality
constraint is satisfied naturally.

Theorem 1: For any linear causal N -periodic discrete-
time system G ∈ Ln×m, G̃ = WGW−1 is an element of
RLnN×mN and can be represented by the following pair
of dual lifted forms:

F1. G̃(z) =
[

q̃0cs G0(z) · · · q̃−N+1cs GN−1(z)
]
,

where Gi(z) ∈ RLn×m for i = 0, · · · , N − 1.

F2. G̃(z) =




rs GN−1(z) · q̃−N+1

rs GN−2(z) · q̃−N+2

...
rs G0(z) · q̃0


 ,

where Gi(z) ∈ RLn×m for i = 0, · · · , N − 1.
Proof: Because G is linear and N -periodic, G satisfies

G = qNGq−N . From this and the equations q̃N = zI and

q̃−N = z−1I , G̃
�
= WGW−1 satisfies G̃ = q̃N G̃q̃−N =

qG̃q−1 . This means that G̃ is an element of RLnN×mN

and we can write G̃(z) as a block matrix [Gij(z)] where
Gij(z) ∈ RLn×m and i, j ∈ Z[1, N ]. Furthermore,
limz→∞ G̃(z) must be block lower triangular because of
causality [1], [13]. Therefore, the upper right blocks of
G̃ can be represented as z−1Ĝij(z), where j > i and
Ĝij(z) ∈ RLn×m. ( For example, 1

z−1 = z−1 · z
z−1 . ) In

addition, because of the uniqueness of the maps cs and rs,
there always exists Gi(z) ∈ RLn×m such that q̃−ics Gi(z)
equals the i + 1-th column block WGW−1 in the F1 case
and rs GN−1−i(z) · q̃−N+1+i is equal to the i + 1-th row
block of WGW−1 in the F2 case. This completes the proof.

The relationship between an LPTV system represented in
dual lifted forms and its implicit period is given as follows.

Corollary 1: Given a system G̃ in F1 or F2 form, then
G = W−1G̃W is τ -periodic (i.e. G̃(z) = q̃τ G̃(z)q̃−τ ) iff
the following two conditions are satisfied.

1) Gi(z) = Gτ+i(z) is satisfied for i = 0, · · · , N−τ−1.
2) Gi(z) = GN−τ+i(z) is satisfied for i = 0, · · · , τ − 1.

In particular, G is LTI (i.e. 1-periodic) iff G0(z) = G1(z) =
· · · = GN−1(z) = G(z).
The two conditions in Corollary 1 always hold when τ =
N . Therefore, when given a system G̃ ∈ RLnN×mN in F1
or F2 form, there always exists a linear causal N -periodic
system G ∈ Ln×m whose lifted form is G̃.

Let us define two classes of causal and stable LPTV
systems for the Q parameter:

Qc �
= {Q | WQW−1 is (19) , ∀i Qc

i (z) ∈ RH∞},
Q̃(z) =

[
q̃0cs Qc

0(z) · · · q̃−N+1cs Qc
N−1(z)

]
, (19)

Qr �
= {Q | WQW−1 is (20) , ∀i Qr

i(z) ∈ RH∞},

Q̃(z) =




rs Qr
N−1(z) · q̃−N+1

...
rs Qr

0(z) · q̃0


 . (20)

The two classes Qc and Qr are equivalent to Qp although
their representations are different.

The well-posedness condition of the LPTV controller Ω
expressed by (4)–(7) with a causal N -periodic Q parameter
is equivalent to the existence of a causal inverse map of
Ω3 + Ω4Q in Lm×m and the following theorem states the
necessary and sufficient condition for it.

Theorem 2: For causal N -periodic Q, Ω3 + Ω4Q has
a causal inverse in Lm×m iff the following equation is
satisfied for i = 0, · · · , N − 1.

lim
z→∞det(Im − D22Q

(0)
i (z)) �= 0 (21)

where Q0(z), · · · , QN−1(z) are parameters of F1 form or
F2 form.

Proof: By lifting (4) from both sides we get Ω̃ =
Ω̃1−Ω̃2Q̃(Ω̃3 +Ω̃4Q̃)−1 . Because Q is causal N -periodic,
we can represent Q̃ in F1 form:

Q̃ =
[

q̃0cs Q0(z) · · · q̃−N+1cs QN−1(z)
]
.

Therefore, Ω̃3+Ω̃4Q̃ is a rational matrix function of z in the
lifted signal space and has an inverse iff its constant term

is non-singular. Let us define D∞ as D∞
�
= limz→∞(Ω̃3 +

Ω̃4Q̃) = IN ⊗ Im − IN ⊗ D22 · limz→∞ Q̃(z) . Note
that D∞ is block lower triangular because Ω3, Ω4, Q
are causal transfer functions. Hence, D∞ is non-singular
iff its diagonal blocks are non-singular. Moreover, D−1

∞ is
also block lower triangular if it exists. Consequently, the
condition:

lim
z→∞det(Ω(0)

3 (z)+Ω(0)
4 (z)Q(0)

i (z)) �= 0 ∀ i ∈ Z[0, N −1]

is necessary and sufficient for the existence of a causal N -
periodic inverse of Ω3 + Ω4Q.
From this theorem, we know that only the constant part of
Q is relevant to the well-posedness of the LPTV controller.
Therefore, any LPTV controller parameterized as (4) can al-
ways be made well-posed by adding an appropriate nonzero
constant ε to the free parameter Q.



V. MAIN RESULTS

The following theorem shows that the problems P1
and P2 can be expressed by corresponding LTI transfer
functions.

Theorem 3: The following two statements hold.
1) Let Q ∈ Qc, then

T1(z) − T2(z)QT3(z) =
N−1∑
i=0

T I(i)(z)Pri, (22)

T I(i)(z)
�
= T1(z) − T2(z)QI(i)(z) · rrs T3(z),

QI(i)(z)
�
=




(a) i = 1, · · · , N − 1[
Qc

i (z) · · · Qc
N−1(z),

Qc
0(z) · · · Qc

i−1(z)
]

(b) i = 0[
Qc

0(z) · · · Qc
N−1(z)

]
.

2) Let Q ∈ Qr, then

T1(z) − T2(z)QT3(z) =
N−1∑
i=0

PriTO(i)(z), (23)

TO(i)(z)
�
= T1(z) − ccs T2(z) · QO(i)(z)T3(z),

QO(i)(z)
�
=



(a) i = 0, · · · , N − 2[
Qr

N−1−i(z)T · · · Qr
N−1(z)T ,

Qr
0(z)T · · · Qr

N−2−i(z)T
]T

(b) i = N − 1[
Qr

0(z)T · · · Qr
N−1(z)T

]T

.

Note that T I(i)(z) and TO(i)(z) contain all free parameters
of Qc and Qr. Hence, the statements of the theorem are not
conservative at all. The proof is based on dual lifted forms.

Proof: From linearity of T and Property 1, T =
TPr0 + · · · + TPrN−1 = Pr0T + · · · + PrN−1T hold.
We show that TPri = T I(i)(z)Pri and PriT = PriT I(i)(z).
Because T3(z) is LTI, T̃3(z) can be represented in F2 form:

T̃3(z) =




rs T3(z) · q̃−N+1

...
rs T3(z) · q̃0


 . (24)

Therefore, from TPri = T1Pri − T2W
−1Q̃T̃3Ei+1Di,

W−1Q̃T̃3Ei+1

= W−1


N−1∑

j=0

q̃−jcs Qc
j · rs T3 · q̃j−N+1


 Ei+1

= W−1
N−1∑
j=0

Q̃c
jEj+1E

T
j+1T̃3Ei+1

= W−1


i−1∑

j=0

Q̃c
jEj+1z

−1T
(N−i+j)
3 (z)

+
N−1∑
j=i

Q̃c
jEj+1T

(j−i)
3 (z)




=


i−1∑

j=0

Qc
j(z)V c

N−i+j(z) +
N−1∑
j=i

Qc
j(z)V c

j−i(z)


 Ui

where V c
j (z)

�
= z−jT

(j)
3 (zN ) (j = 0, · · · , N − 1).

Consequently, we get the first part of the theorem.
The proof of the second part is similar to that of the first

part. At first T̃2(z) can be represented in F1 form:

T̃2(z) =
[

q̃0cs T2(z) · · · q̃−N+1cs T2(z)
]
. (25)

The equation PriT = PriT1 − UiE
T
i+1T̃2Q̃WT3 and

ET
i+1T̃2Q̃W

= ET
i+1


N−1∑

j=0

q̃−jcs T2 · rs Qr
N−1−j · q̃j−N+1


 W

= Di


 i∑

j=0

V r
i−j(z)Qr

N−1−j(z)

+
N−1∑

j=i+1

V r
N−j+i(z)Qr

N−1−j(z)




where V r
j (z)

�
= z−jT

(j)
2 (zN ) (j = 0, · · · , N −1) complete

the proof.
From Theorem 3, we can formulate LTI model-matching

problems corresponding to P1 and P2 as P1’ and P2’:

P1’. Find QI(i)∗ ∈ RH∞ such that

QI(i)∗ = arg inf
QI(i)∈RH∞

∥∥∥T I(i)(z)
∥∥∥, (26)

P2’. Find QO(i)∗ ∈ RH∞ such that

QO(i)∗ = arg inf
QO(i)∈RH∞

∥∥∥TO(i)(z)
∥∥∥. (27)

Because (22) and (23) are satisfied for any norm definition,
we can apply various design methods such as H∞ control
[16] and l1 optimal control [17] to solve P1’ and P2’. And
we can estimate upper and lower bounds about P1 and P2
with P1’ and P2’.

Proposition 1: For any LTI transfer matrix T = T (z) ∈
RL,

‖T‖ ≥ ∥∥TPr0
∥∥ = · · · =

∥∥TPrN−1
∥∥ ≥ ‖T‖

N
, (28)

‖T‖ ≥ ∥∥Pr0T
∥∥ = · · · =

∥∥PrN−1T
∥∥ ≥ ‖T‖

N
. (29)

Proof: By representing T̃ (z) in F1 form, we get
T (z)Prj = W−1q̃jcs T · Dj = qj(T (z)Pr0)U0Dj for
j = 0, · · · , N − 1, where the third equality is satisfied
from the equation cs T (z) = WT (z)U0 and the definition
of Prj . Because q and Uj are norm preserving opera-
tors,

∥∥T (z)Prj
∥∥ =

∥∥T (z)Pr0U0Dj

∥∥ and ‖UjD0w‖ =
‖D0w‖ =

∥∥Pr0w
∥∥ for w ∈ l2. In addition, from U0Dj ·



UjD0 = Pr0 and Pr0 · Pr0 = Pr0,

sup
w∈l2
w �=0

∥∥TPr0U0Djw
∥∥

‖w‖ = sup
w∈l2
w �=0

∥∥TPr0U0DjUjD0w
∥∥

‖UjD0w‖

= sup
w∈l2
w �=0

∥∥TPr0w
∥∥∥∥Pr0w

∥∥ .

From this,
∥∥T (z)Prj

∥∥ =
∥∥T (z)Pr0

∥∥ for j = 0, · · · , N − 1.
We proceed to the proof of (29). Firstly,

∥∥PrjT
∥∥ =

‖DjT (z)‖ is satisfied because of the norm preserving
property of Uj . In addition, DjT (z) = rs T · q̃j−N+1W =
rs T · Wqj−N+1 hold by representing T̃ (z) in F2 form.
From this and the equation rs T (z) = DN−1T (z)W−1, the
equation DjT (z) = DN−1T (z)qj−N+1 is satisfied . There-
fore,

∥∥PrjT (z)
∥∥ =

∥∥PrN−1T (z)
∥∥ for j = 0, · · · , N − 1.

In addition,
∥∥PriT (z)

∥∥ ≤ ‖T (z)‖ and
∥∥T (z)Pri

∥∥ ≤
‖T (z)‖ are satisfied because Pri is a projection operator.
The first and the second inequalities of (28) and (29)
are satisfied from the triangular inequality and the two
equations ‖T (z)‖ =

∥∥∥∑N−1
j=0 T (z)Prj

∥∥∥ and ‖T (z)‖ =∥∥∥∑N−1
j=0 PrjT (z)

∥∥∥.
We can simplify the problems P1’ and P2’ in some cases.
Theorem 4: The following two statements hold.
1) If there exists ξ ∈ R

N−1 such that M c
N (A +

HC2, B1+HD21, ξ) = 0 or Mo
N (A+HC2, C2, ξ) =

0 is satisfied, in addition, there exists a constant
matrix D#

21 such that D#
21D21 = I , then

inf
QI(i)(z)∈RH∞

∥∥∥T I(i)(z)
∥∥∥

= inf
QI′ (z)∈RH∞

∥∥∥T1(z) − T2(z)QI′(z)
∥∥∥. (30)

2) If there exists ξ ∈ R
N−1 such that M c

N (A −
B2K,B2, ξ) = 0 or Mo

N (A−B2K,C1−D12K, ξ) =
0 is satisfied, in addition, there exists a constant
matrix D#

12 such that D12D
#
12 = I , then

inf
QO(i)(z)∈RH∞

∥∥∥TO(i)(z)
∥∥∥

= inf
QO′ (z)∈RH∞

∥∥∥T1(z) − QO′
(z)T3(z)

∥∥∥. (31)

Proof: We can confirm these equations by substituting
QI(i)(z) = QI′(z)(rrs T3)#(z) into T I(i)(z) and substitut-
ing QO(i)(z) = (ccs T2)#(z)QO′

(z) into TO(i)(z) from
Lemma 1.

The fact that ccs T2(z) or rrs T3(z) can be removed
from P1’ and P2’ indicates that unstable zeros of T2(z)
or T3(z) have no effect on resulting control performances.
This enables LPTV controllers be superior to LTI controllers
with regard to our model-matching problems.

Remark 1: The conditions of Lemma 1 except for the
existence of D# are always satisfied in two cases: (1) when
N is larger than the size of A; (2) when N is equal to
the size of A and there exist uncontrollable modes of the
pair (A,B) or unobservable modes of the pair (A,C). In

the first case, we can achieve both M c
N (A,B, ξ) = 0 and

Mo
N (A,C, ξ) = 0 by selecting ξ1, · · · , ξN−1 as the coeffi-

cients of the characteristic polynomial of A from Cayley-
Hamilton theorem (See [4]). In the second case, there exists
ξ such that M c

N (A,B, ξ) = 0 or M c
N (A,B, ξ) = 0 because

the controllability matrix or the observability matrix is not
full rank. Conversely, it is sufficient to take N = size(A)+1
to construct stable inverses of the operators rrs and ccs.

Remark 2: When N is a fixed number less than the size
of A matrix and V r

i (z) = T2(z) or V c
i (z) = T3(z) is

satisfied for some i where V r
i (z) and V c

i (z) are defined
in the proof of Theorem 3, minimizing

∥∥T I(i)(z)
∥∥ subject

to QI(i)(z) ∈ RH∞ or minimizing
∥∥TO(i)(z)

∥∥ subject to
QO(i)(z) ∈ RH∞ is equivalent to minimizing ‖T‖ subject
to Q(z) ∈ RH∞. For example, when T2(z) = z

z2−2 and
N = 2, the equation V r

1 (z) = T2(z) is satisfied. Therefore,
when the number N is fixed, our proposed LPTV controller
is effective in the case that V r

i (z) �= T2(z) or V c
i �= T3(z)

is satisfied for i = 0, · · · , N − 1.

VI. ILLUSTRATIVE EXAMPLE

We show an illustrative example in which the controller
designed by the method based on P2’ achieves arbitrary
small induced norm performance. We consider 2-periodic
LPTV controller for the P2 problem with regard to l2
induced norm and compare the resulting controller with
LTI controllers. We deal with the closed-loop illustrated in

Ω
+
w

P− y

Fig. 1. A closed-loop system of the example problem

Fig. 1 where the plant P is P (z) = z−2
z−3 . Because P (z)

has an unstable pole at 3 and an unstable zero at 2, trivial
controllers Ω = 0 and Ω = ∞ do not stabilize the closed-
loop. Selecting a feedback gain K and an observer gain H
in (4)–(7) as K = H = −2.5, Ω1, · · · ,Ω4 is given by[

Ω1(z) Ω2(z)
Ω3(z) Ω4(z)

]
=

[ 6.25
z−4.25

z−0.5
z−4.25

z−4.25
z−0.5

z−2
z−0.5

]
. (32)

Then, we can represent the closed-loop transfer function T
(y = Tw) as T = T1(z) + 4T2(z)QT3(z), where

T1(z) = −2
z − 2
1 − 2z

(
1 − 3.75

z − 0.5

)
, (33)

T2(z) = T3(z) =
z − 2
1 − 2z

. (34)

We select Q from Qr|N=2 which is a class of causal 2-
periodic stable functions, then there exists TO(1)(z) which
satisfies Pr1T = Pr1TO(1)(z) from Theorem 3:

TO(1)(z) = T1(z) + 4 ccs T2(z) · QO(1)(z)T3(z). (35)

By following Theorem 4, we set

QO(1) =
1
4

(ccs T2)#(z)QO′
(z) =

[ −0.5
0.25z−1

]
QO′

(z),



where QO′
(z) is a new parameter in RH∞. This leads to

TO(1)(z) =
z − 2
1 − 2z

{
QO′

(z) −
(

2 − 7.5
z − 0.5

)}
. (36)

Therefore, we can design a suboptimal QO′
(z) as

QO′
(z)

�
= 2 + ε − 7.5

z − 0.5
, (37)

where ε is a constant that guarantees the well-posedness
of the LPTV controller Ω (See Theorem 2). Note that∥∥TO(1)(z)

∥∥
∞ = ε because z−2

1−2z is an inner function. How-
ever, the well-posedness condition is violated for ε = 0 and
we set ε = 0.01 for the following arguments. Substituting
(37) into QO(1)(z) and using the definition of QO(1) and
(20) yield Q̃. Furthermore, substituting Q̃ into Ω̃, we get

Ω̃ =




3.943 −4.075 −3.282 −983.3
−5.498 5.682 4.577 −1312
−1.806 1.846 0 0
−3.003 3.104 2.5 −201


 . (38)

Then, T̃ = (I + P̃ Ω̃)−1P̃ is an element of RH2×2
∞ and

we readily calculate H∞ norm
∥∥Pr0T

∥∥
∞ = 28.0 and∥∥Pr1T

∥∥
∞ = 0.01. Hence, as we can see in Fig. 2, the con-

troller drastically refine
∥∥Pr1T

∥∥
∞ by ignoring

∥∥Pr0T
∥∥
∞.

On the other hand, the optimal l2 induced norm by LTI
controllers is ‖T‖∞ = 3.00. Therefore, any LTI controllers
cannot achieve

∥∥Pr1T
∥∥
∞ less than 1.50 from Proposition 1.

This suggests that the resulting LPTV controller is superior
to LTI controllers for our design objective P2 and contrasts
with performance limitation results [11], [12] .

0 5 10 15 20
−10

−5

0

5

10

15
phase 1

Fig. 2. An impulse response of the closed-loop transfer function T

VII. CONCLUSIONS AND FUTURE WORKS

We formulated two types of periodically weighted model-
matching problem, P1 and P2, in which input signals
or output signals of a closed-loop transfer function are
projected onto the signal space Wi where any time sequence
can take non-zero value at a specified phase in each period.

The Q parameter in Youla parameterization was se-
lected so that the resulting LPTV controller is causal, N -
periodic and well-posed. We firstly formulated causal LPTV
discrete-time systems as the dual lifted forms F1 and F2,
then we factorized the closed-loop transfer function into
N sub LTI transfer functions in model-matching form.
Consequently, the problems P1 and P2 with a class of LPTV
controllers can be solved approximately by LTI model-
matching problems P1’ and P2’ in which new stable LTI

free parameters QI(i)(z) and QO(i)(z) are to be designed.
These relaxed problems P1’ and P2’ give upper and lower
bounds of achievable performances for the problems P1 and
P2. In particular, we can remove the effect by unstable zeros
of T2(z) or T3(z) to solve P1’ and P2’ under conditions in
Theorem 4, which is easily satisfied for any period N larger
than the size of A from Cayley-Hamilton theorem. However,
the conditions are conservative and we will try to overcome
this conservativeness. In addition, it is necessary to clarify
the relationship between our periodic performance criteria
and previously revealed advantages, such as arbitrary zero
placement [2] or gain margin improvement [1] etc.
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