
 
 

 

  
Abstract — Structural health monitoring (SHM) is the 

process of monitoring structural health and identifying 
damage existence, severity and location. Clear needs for SHM 
exist for various types of civil structures; for example, 
approximately 25% of U.S. bridges are rated as deficient and 
will require significant expenditures to rebuild or replace 
them (FHWA, 2002). Yet, the dominant method for 
monitoring the health of civil structures is manual visual 
inspection — a time-and labor-intensive procedure. Global 
vibration-based SHM techniques have been studied, but no 
approach has been well established and accepted due to 
limitations of ambient excitation sources for most civil 
structures. 

 One approach that may help alleviate some of the SHM 
difficulties for civil structures would be to use variable 
stiffness and damping devices (VSDDs) — controllable passive 
devices that have received significant study for vibration 
mitigation — to improve damage estimates. In addition to 
providing near optimal structural control strategies for 
vibration mitigation, these low-power and fail-safe devices can 
also provide parametric changes to increase global vibration 
measurement sensitivity for SHM.  

This paper proposes using VSDDs in structures to improve 
SHM, and demonstrates the benefits in contrast with 
conventional passive structures. It is shown that using VSDDs 
in identification gives parameter estimates that have better 
means and smaller variations than the conventional structure 
approach. The improvements in the identification process are 
even more effective when adding higher effective levels of 
stiffness or damping to a structural system, even though the 
resulting VSDD forces due to ambient excitation are small.  

I. INTRODUCTION AND LITERATURE REVIEW 

ccurate diagnosis of structural health is a vital step in 
protecting structures. Whether caused by acute events, 

such as earthquakes or other natural disasters, or long-term 
degradation from environmental effects and human use 
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(and abuse), structural damage can threaten both danger to 
human life and economic loss. The process of monitoring 
structural health and identifying damage existence, severity 
and location is generally termed structural health 
monitoring (SHM). Chang [6] defined structural health 
monitoring to be an “autonomous [system] for the 
continuous monitoring, inspection, and damage detection 
of [a structure] with minimum labor involvement.”  

By determining the model that best fits data taken from 
the structure, certain structural characteristics may be 
identified. With identification at different points in time — 
periodic or shortly after natural disasters — changes in 
these characteristics may be monitored. With damage 
models, changes in structural characteristics are used to 
predict damage severity and location. The focus of model 
parameter identification to achieve SHM is usually on local 
loss of stiffness as a proxy for local damage [2,3,5]. 

For most civil structures, the excitation is limited to 
ambient sources for SHM. Ambient excitation on civil 
structures takes a number of forms including wind, traffic, 
waves and microtremors. The ambient excitation approach 
has several advantages over those using forced vibration 
response. For example, for the low amplitude excitations 
typically experienced during ambient vibration, most 
structural systems are well characterized with linear 
models. In addition, continuous ambient vibration tests can 
be performed at a very low cost. However, while 
applications of ambient excitation identification techniques 
are more acceptable than active ones, the signal-to-noise 
ratios are small enough to make SHM difficult and results 
uncertain. Thus, solutions to these SHM difficulties must 
be sought elsewhere. One solution is to induce parametric 
changes into the structures through semiactive control 
devices in order to increase the sensitivity to detect model 
parameters changes. 

A. Passive, Active, and Semiactive Devices 

In general, control devices can be classified into passive, 
active, semiactive, and hybrid devices [21]. Hybrid devices 
are combinations of the other three classes. Passive devices 
can partially absorb structural vibration energy and reduce 
response of the structure [22]. These passive devices 
require no energy to function, and are relatively simple and 
are easily replaced. However, the effectiveness of passive 
devices is always limited due to narrow effective frequency 
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range, their dependence on local information, and inability 
to be modified if goals change.  

Active control devices can reduce structural response 
more effectively than passive devices because feedback 
and/or feed-forward control systems are used [15]. 
However, large power requirements hamper their 
implementation in practice. Further, active devices can 
inject dynamic energy into the structural system; if done 
improperly, this energy has the potential to cause further 
damage.  

In contrast, “smart” devices are controllable passive 
devices that require small amounts of power to control 
certain passive behavior. These devices may only store and 
dissipate energy. Furthermore, they offer highly reliable 
operation at a modest cost and viewed as fail-safe as they 
default to passive devices should the control hardware 
malfunction [9]. 

This paper proposes using smart, controllable passive 
devices such as Variable Stiffness and Damping devices 
(VSDDs) in structures to improve SHM, and demonstrates 
the benefits over conventional passive structures. VSDDs 
can adjust the behavior of a structure by real-time 
modification of stiffness and damping at discrete points 
within the structure. By commanding different behavior for 
each VSDD in a structure, multiple structural 
configurations can be tested, each of which can be designed 
to increase the sensitivity to damage in different portions of 
the structure. 

 
Figure 1. Mutual benefits of SHM and VSDDs 

B. Applications of Semiactive Control to Civil Structures 

VSDDs have been extensively researched for base 
isolation of structures and other structural control 
applications. Some researchers have investigated MR 
dampers for control of seismic response [e.g., 9]. ER 
dampers were also studied for seismic response control 
[e.g., 10,13,14] and others. Wind response mitigation using 
semiactive devices has also received attention, such as stay 
cable damping [16] and variable stiffness tuned mass 
dampers [22]. Patten et al. [19] reported the first successful 
full-scale demonstration of semiactive control technology, 
installing an Intelligent Stiffener for Bridges (ISB) on an 
in-service bridge on interstate I-35. The Kajima 
Corporation developed a semiactive hydraulic damper 
(SHD) and installed it in an actual building [17]. In these 
applications, the structural deflections were significantly 
reduced. 

II. PARAMETRIC FREQUENCY DOMAIN ID WITH VSDDS 

While using VSDDs to improve identification of 

parameters can be applied to a variety of techniques, the 
VSDD approach herein is introduced in the context of 
parametric frequency domain identification. 

One method of identifying parameters of a dynamical 
system is by representing transfer functions (TFs) in the 
frequency domain as ratios of polynomials. The transfer 
functions generally are defined by the ratio between the 
output and input signals. For example, consider a linear 
structural model of the form: 

 ƒbKxxCxM =++ &&& d ,     vdxCxCy +++= ƒ&21  (1) 

where M, K, and Cd are the mass, stiffness and damping 
matrices of the system, and C1, C2, and d are the output 
influence matrices for the displacement, velocity and the 
external force f. For simplicity of the method developed 
herein, the input force is assumed to be a single scalar 
force. Similarly, one can write the model in state-space 
form 

 ƒBqAq
~~ +=& ,     vDCqy ++= ƒ  (2) 

where TTT ][ xxq &=  is the state vector, A
~

is the system 
state matrix which is dependent on the mass, damping, and 
stiffness matrices, B

~
is the input influence matrix, C is the 

output influence matrix for the state vector q, and D is the 
direct transmission matrix. In both equations, f is an 
excitation force, and y is an 1×m  vector of measured 
responses corrupted by 1×m  sensor noise vector v.  

Thus, the system can be represented by the 1×m  
transfer function matrix )( jωH . Each element of 

)( jωH can be expressed as the ratio of numerator and 
denominator polynomials at a certain frequency with 
coefficients depending on matrices in Eqs. (1) or (2). It is 
important to state that, for many structural systems, the 
denominator polynomial is the same for all transfer 
functions from the same input. Therefore, identifying the 
denominator polynomial is crucial in defining the system 
dynamics. The transfer function vector from a single input 
to the outputs can, consequently, be written in polynomial 
ratio form as: 

 )(/)()( jωAjωjω BH =  (3) 

where )( jωB and )( jωA are the numerator and denominator 
polynomials, which may be expanded in the forms 
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where the b’s and a’s are real coefficients. 
Assuming that the transfer functions have been 

determined experimentally through standard procedures 
from measured input and output data [5], then the 
experimental transfer function matrix, 

 )(ˆ
ijωH ,  i=1, 2, …, nω (5) 

is known at various discrete frequency points. Therefore, 
the difference between the estimated theoretical transfer 
function )( jωH and the actual experimental one )(ˆ jωH  



 
 

 

represent the residual error equation, which is then used in 
the identification process of the parameters. 

Parametric frequency-domain methods to match such 
theoretical and measured transfer functions date back to the 
work of Levy [18] who parameterized a continuous-time 
TF by the coefficients of numerator and denominator 
polynomials. One approach to this problem is to follow 
Levy’s procedure [18] in determining the polynomial 
coefficients and then, as a subsequent step, estimate 
structural parameters such as mass, stiffness and damping 
coefficients. In this study, however, the parameterization is 
chosen to be the structural parameters directly without 
calculating the coefficients of the polynomials as an 
intermediate step. In addition, it may be shown that the 
alternate error measure in [18], while simpler to solve, can 
be susceptible to strong bias from sensor noise in frequency 
ranges where )( jωA is large (i.e., often the case where 

)( jωH  is small). To avoid this bias, and to avoid some 
complexity in solving the least-squares problem for the 
standard error measure e, an iterative method, described in 
the following section, is adopted here using an 
approximation to the denominator )( jωA . 

For a structure with one or more variable stiffness and/or 
damping devices, the properties of which are determined 
through a local control system, some of the coefficients in 
the transfer function polynomials may be adjusted through 
changing the VSDD control algorithms. Thus, it is 
convenient to introduce notation to explicitly state that the 
transfer function polynomials are functions of unknown 
structural parameters, denoted by the 1×n  vector θ , 
which is to be estimated, and of known controllable 
structural parameters, denoted by the vector κ . The 
transfer function is, therefore, modified to be: 

 ),,(/),,()( κθκθBH jωAjωjω =  (6) 

A. Least Squares Identification 

For a given structural model, the A and B polynomials 
are specific known functions of their parameters. 
Substituting the measured TF in place of the exact TF 
leaves a residual error e that may be defined by  
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A conventional least-squares approach may be adopted 
to solve this problem, forming a global square error 

 ∑ ⋅=
i

ii jωjω ),,(),,()( *2 κθeκθeθ∆∆∆∆  (8) 

where (·)* denotes complex conjugate transpose. The 
optimal choice of the unknown parameters is found by 
minimizing the square error — i.e., take the derivatives of 
the square error Eq. (8) with respect to the elements of 
unknown vector θ , set them equal to zero, and solve the 
resulting (generally nonlinear) equations. However, if there 
are known controllable structural parameters in a structure 
with multiple configurations — which is the case when 

using VSDDs, for example — the square error equation can 
be augmented by using several combinations of known 
controllable structural parameters 

 ∑∑ ⋅=
k i

kiki jωjω ),,(),,()( *2 κθeκθeθ∆  (9) 

where the symbol kκ  denotes multiple distinct sets of 
parametric changes to the structure. The error is, then, 
minimized simultaneously for all configurations. 

B. Iterative-Least Squares Numerator Method 

This method is an approximation to the conventional TF 
problem. Assume that iteration l in Eq. (9) begins with a 
starting approximation 1

ˆ
−lθ to the unknown parameter 

vector ;θ then, the denominator of Eq. (7) is estimated 
based on the vector 1

ˆ
−lθ  of estimated parameters and is no 

longer a function of these unknowns, but only in the 
frequency and the multiple distinct sets of parametric 
changes to the structure 

 ),ˆ,(),(ˆ
1 klikil jωAjωA κθκ −≡  (10) 

and the error is, thus, formed as 
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and the squared error takes the form: 

 ∑∑ ⋅=
k i

kilkill jωjω ),,(ˆ),,(ˆ)( *2 κθeκθeθ∆  (12) 

Minimizing the sum of the square error in Eq. (12) will 
result in an updated estimate lθ̂ to the unknown parameter 
vector .θ  The iterations continue until the relative 
differences between 1

ˆ
−lθ  elements and the corresponding 

elements of lθ̂  are all below some threshold. (Absolute or 
relative norms of the difference could also be used.) A 
maximum number of iterations may also be set to stop the 
algorithm in the case that the iterative method does not 
converge (though this termination criterion was not 
required in this study as convergence always occurred 
within a limited number of iterations). 

III. ILLUSTRATIVE EXAMPLE 

Consider a bridge stru- 
cture such as one shown in 
Fig. 2, which is a typical 
elevated high- way bridge 
that consists of decks, 
bearings, and piers. The 
behavior of the bridge deck 
and piers, with a bearing 
between them, while 
complex, can be well 
approximated with the 
simple 2DOF model shown 
in Fig. 3c. This 2DOF 
model may be used to  

 

 
Figure 2. General view of the   
construction of  vehicle lanes [1] 



 
 

 

represent a passive system with rubber bearings if the 
girder is continuous with one pier and one bearing, or for 
several piers and bearings with identical properties as 
Shown in Figs. 3a and 3b. Also, this model can be used for 
VSDD systems if the dev-ices are attached as shown in Fig. 
3d and commanded to provide identical force levels. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 2DOF bridge model and placement of VSDDs  

The device is considered ideal (no internal device 
dynamics), the transfer functions are measured through 
standard means, and the iterative least-squares parametric 
frequency-domain identification technique is applied. The 
numerical quantities for this model of a full-scale bridge 
structure, are drawn from [12] where k1 = 15.791 MN/m, 
k2 = 7.685MN/m, m1 = 100 Mg (tons), m2 = 500 Mg, 
c1 = 125.6 kN·s/m, c2 = 196 kN·s/m. The experimental 
transfer functions are simulated in MATLAB

® by using the 
exact transfer functions plus the Fourier transform of a 
Gaussian pulse process typical of band-limited Gaussian 
white sensor noise vector processes. The noisy transfer 
functions are shown in Fig. 4.  
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Figure 4. Exact and noisy TF magnitudes for 2DOF bridge model  

Data is collected while the VSDDs are commanded to 
act in one of several discrete stiffness or damping modes, 
with different noise corrupting each subsequent data set. 
The conventional structure approach is provided with the 
same amount of data for fair comparison. The variation in 
identified structural parameters due to the effects of 
random noise are studied by performing these 
identifications 100 times, each with a different random seed 

to generate the noise. This gives a measure of the mean and 
the variance of the estimates. 

The theoretical polynomial transfer function matrix 
),( κjωH  of the 2DOF bridge model is defined as  
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containing the transfer functions from the ground 
acceleration to the absolute accelerations of the pier and to 
the bridge deck. The unknown parameter vector θ  is  
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where k1 is the stiffness of the pier and k2 the stiffness of 
the bearing. It is assumed in this problem that the pier mass 
m1 is known. The parameterκ denotes the additional 
stiffness or damping at discrete levels added by the VSDD 
connected between the per and the deck. 

A. Variable Stiffness Case Results: Small Forces 

The iterative least-squares parametric frequency domain 
identification is performed on this 2DOF bridge model, 
both with a VSDD in the isolation layer between the deck 
and pier and without. The stiffness levels induced by the 
device are 0%, 10%, 20%, 30% and 40% stiffness of the 
isolator; i.e., κ1 = 0.0, κ2 = 0.1, …,κ5 = 0.4 of the isolator 
stiffness coefficient. 
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Figure 5. Stiffness and damping error levels for the iterative method with 
exact start in 2DOF model (variable stiffness mode) 

The results show error reductions in both stiffness and 
damping estimates (though with the latter more modest 
than the former). The relative error in the stiffness 
estimates, shown in Fig. 5, have some small bias for both 
conventional and VSDD approaches  about 0.5% in the 
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estimate of the pier stiffness and about 2% in that of the 
isolator. While the bias level is similar, the VSDD 
approach shows notable reductions in stiffness estimate 
variation, demonstrating that the VSDDs improve the 
identification. Similar observations may be made regarding 
damping estimates, as shown in Fig. 5b. The VSDD 
approach slightly decreases the bias in the pier damping 
coefficient estimate, and modestly decreases the variation 
in both pier and isolator damping estimates. 

B. Variable Damping Case Results: Small Forces 

Using variable damping would be of great interest since 
“smart” semiactive damping devices have received 
extensive study for vibration mitigation purposes and 
capitalizing on the synergies between control and SHM 
would be a cost-effective solution.  

The results, shown in Fig. 6, indicate that the VSDD 
approach, with the damping levels described above, did not 
differ significantly from the conventional structure 
approach for low damping levels. The relative errors in 
stiffness estimates in Fig. 6 have similar bias in both 
approaches and a slightly larger variation with the VSDD 
damping device. Similar observations may be made about 
the damping estimates. 
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Figure 6. Stiffness and damping error levels for the iterative method with 
exact start in 2DOF model (variable damping mode) 

One reason that the variable damping here did not 
provide any notable improvement is the very small force 
levels generated by the damping device. The damping 
forces in the isolation layer of this bridge model are about 
one order of magnitude smaller than the stiffness forces. 

IV. LARGER VSDD STIFFNESS/DAMPING FORCES 

To improve the advantages of the VSDD approach, larger 

VSDD stiffness/damping levels may be used. To verify this 
improvement, the identification is performed again with 
four sets of configurations: (i) adding {0,1,2,3,4} times the 
bearing stiffness, (ii) adding {0,5,10,15,20} times the 
bearing stiffness, (iii) adding {0,25,50,75,100} times the 
bearing damping, and (iv) adding {0,100,200,300,400} 
times the bearing damping. The device is considered ideal 
(no internal device dynamics), the transfer functions are 
simulated as discussed previously. 
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Figure 7. Comparison of stiffness and damping estimate error levels of 
higher VSDD induced stiffness/damping for 2DOF bridge model 

Studying the results from these simulations, it is found 
that by increasing the level of stiffness that the VSDD 
induces at the isolator level, the variation of the relative 
error of stiffness coefficients estimation decreases 
extensively as shown in Fig. 7a. In addition, the variation 
of the relative error of the damping coefficients estimation 
reduces considerably as shown in Fig. 7c compared to 
cases of lower levels of induced VSDD stiffness, as in Figs. 
5 and 6. For the case of varying damping coefficients, it is 
shown in Fig. 7b that the estimation of the stiffness 
coefficients are improved dramatically by increasing the 
damping levels that VSDDs induce to the structure. The 
damping estimates are also improved considerably. The 
results definitely confirm the improvement in the ID 
process using VSDDs.  

One initial reaction to this approach is that the 
stiffness/damping levels sound unreasonable. However, it 
must be understood that these are effective levels of 
stiffness and damping forces exerted during low-level 
ambient excitation.  The actual forces are well within the 
capabilities of current VSDDs. To verify that the force 
levels are reasonable, the response of the structure to a low-
level earthquake excitation (Kanai-Tajimi filtered white 
noise with a 0.002g RMS ground acceleration) is 
computed.  With the VSDD producing 20 times the bearing 
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stiffness, the RMS pier and deck drifts are 1.5 mm and 
0.125 mm, respectively, RMS absolute pier and deck 
accelerations are 0.0037g and 0.004g, respectively, and 
RMS VSDD force is 19.2 kN. This force level is quite 
small relative to the masses (500 ton deck, 100 ton pier). 
With the VSDD producing 400 times the bearing damping, 
the RMS pier and deck drifts are 1.44 mm and 0.074 mm, 
respectively, RMS absolute accelerations are 0.003g at both 
deck and pier, and the RMS VSDD force is about 15 kN, 
which is also small compared to the masses. 

V. CONCLUSIONS 

This paper demonstrates the effectiveness of using 
variable stiffness and damping devices to improve 
estimates of structural parameters for SHM and damage 
detection. Since VSDDs can be commanded to exert 
various force time histories, the response of a structure may 
be altered through the parametric changes affected by the 
VSDDs. The multiple “snapshots” of structural 
characteristics provided by the VSDD approach, can 
provide additional information to make structural parameter 
ID more accurate. 

VSDD/SHM was investigated by identifying structural 
parameters — mass, stiffness and damping coefficients — 
based on measured absolute acceleration transfer function 
data, using a parametric frequency-domain least-squares 
identification method. The structural parameters were 
identified, first with VSDDs in the structure, and then with 
no VSDDs. In all cases, simulated sensor noise is added to 
the exact transfer function to replicate the noisy transfer 
functions. The variation in identified structural parameters 
due to the effects of random noise are studied by 
performing these identifications several times, each with a 
different random seed to generate the noise. 

The iterative least-squares identification, with and 
without VSDDs, is applied to a bridge pier/deck model. 
The results indicate that using the VSDD approach with 
variable stiffness or variable damping can reduce errors in 
estimating structural stiffnesses by two orders of 
magnitude, and provide significant improvements in 
damping estimates as well. Thus, VSDDs can improve the 
effectiveness of ambient SHM for civil structures.  
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