
 
 

 

 

  
Abstract—It is well known that modern guidance laws are 

capable of better performance than the traditional 
proportional navigation laws, provided that the missile model 
in the guidance law matches that of the actual missile. In this 
paper we study the stability of modern guidance laws when the 
missile's actual model differs from the model used in the 
design. The analysis is performed by means of Lyapunov 
functions and by means of the multivariable circle criterion. 

I. INTRODUCTION 
T is well known that modern guidance laws are capable 
of better performance than the traditional proportional 
navigation laws, if the missile model in the guidance law 

matches that of the actual missile. The purpose of this paper 
is to provide a partial answer to the question: To what 
extent may the dynamics of the actual missile differ from 
that used in the derivation of the guidance law without 
compromising the superior performance of the modern 
guidance laws? An attempt is made to provide an answer to 
this question by studying the stability properties of the 
guidance loop.  
Both time and frequency domain tools are used to study the 
stability of the guidance loop. The time domain analysis is 
based on Lyapunov functions generated by modifications of 
the cost to go associated with the solution of the guidance 
law optimization problem. The frequency domain analysis 
is based on the use of the circle criterion. Using the time 
domain analysis, explicit analytic terms are derived and 
ensure that: 1. the missile states remain bounded throughout 
the time interval studied; 2. the zero effort miss is a 
decreasing function. The first condition implies that the 
missile acceleration is bounded. 
The time domain and frequency methods complement each 
other, the total stability region derived is the union of the 
stability regions. Since proportional navigation can be 
derived as a special case of the optimal guidance law, the 
stability analysis derived in this paper is also applicable to 
the study of a Proportional Navigation Guidance (PNG) 
loop. 
Stability of guidance systems has been investigated only for 
the proportional navigation law. In the case of a non-ideal 
dynamics the PNG system tends to diverge as the time to go 
approaches zero  [1],  [2]. Therefore the relevant stability for 
a PNG system is the stability associated with a finite time 
interval. Guelman  [2] and Gurfil et al  [3] supply sufficient 
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conditions for the finite time stability of a PNG system. In 
their work the length of the time interval, for which the 
system is globally absolutely asymptotically stable, is 
defined in terms of a lower bound on the time to go. 
Guelman  [2] uses the Popov criterion to derive the lower 
bound. Gurfil et al  [3] use the circle criterion in their 
derivation. Rew et al  [4] apply practical stability methods to 
derive a lower bound on the time to go for a PNG system 
with a single time constant dynamics. Tanaka and Hirofumi 
 [5] use absolute stability methods to determine the stable 
range of a PNG system. 
The paper is organized as follows. In the next section we 
present the notation and the required background material 
about optimal guidance laws. Sections 3 and 4 respectively 
present the time domain (Lyapunov) stability and the 
frequency domain (circle criterion) analyses. The detailed 
stability domain calculations for first and second order 
missile models, using both time and frequency domain 
methods are carried out in section 5. 

II. PROBLEM STATEMENT 

A. Scenario 
Interceptor missiles are usually skid to turn, roll stabilized 
and have two independent perpendicular guidance channels 
in the lateral planes. Hence the guidance problem can be 
treated as planar. The equations are linearized around the 
initial line sight. The state variables are the distance, 
velocity, and the acceleration perpendicular to the line of 
sight. 

B. Dynamic Equations 
 The equations of the relative motion between the 
interceptor and its target, in a direction normal to the initial 
line of sight, are 
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Based on the linearization assumption and assuming that in 
the endgame the closing velocity is constant, the 
interception time ft  is taken as fixed. 

Let the guidance law be derived on the basis of the missile 
model 
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Since stability is unaffected by the target acceleration we 
henceforth assume that 0Ta = . Then, in matrix vector form 
the dynamic equation is 

Haim Weiss 1 and Gyorgy Hexner2 RAFAEL, P.O.B. 2250, Haifa 31021, Israel.  

Stability of Modern Guidance Laws with Model Mismatch 

I 



 
 

 

 

 
0 1 0 0
0 0
0 0

c

y y
v v d a

z

       
       = − + −       
              

h
z F g

, (3) 

or more compactly 
 ca= +x Ax B . (4) 

C. Optimal Guidance Problem and its Solution 
The optimal guidance law is the solution of the optimization 
problem 
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subject to Eq. (4) where fK  is a square matrix with a 

single non-zero entry in the )1,1(  position. The solution of 
this optimization problem is well known and is given by 
 T

ca = −B Kx  (6) 
where K is the solution of the Riccati differential equation 
 ( )f ft= − − + =T TK A K KA KBB K; K K  (7) 
In the following we make use of the following well known 
facts  [6],  [7] about the optimal law. The optimal law may be 
expressed as 
 ( )c ga t Zem= Λ  (8) 
where gt  is the time to go and Zem  is the zero effort miss 
distance, namely the miss that would be obtained by setting 

ca to zero from the current to the final time. 
Now suppose that the real missile differs from the model 
used to generate the guidance, and is instead given by 
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m m m c
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where we assume that , , ,m m m mdF g h is a minimal 
realization and mF  is stable. 
The actual system is defined by replacing , , ,dF g h in 
Eq.(3) with, , , ,m m m mdF g h , and may be expressed as 
 m m m m ca= +x A x B  (10) 
where [ ]T

m my v=x z . If the size of the state z differs from 
that of mz , and this is known, then we modify the optimal 
law as 
 T

c ma = −B KGx  (11) 
where the matrix G is 
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=  

 

I 0
G

0 G
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and rG  satisfies  
 r m≈z G z  (13) 
that is; r mG z  is an approximation to z . 

D. Guidance Loop Stability 
The guidance problem is inherently a finite time problem. 
Hence the concept of stability of this problem differs from 
that of time invariant problems. For the stability of the 
guidance system we require that: 

1. The Zem  is a decreasing function of time.  
2. The norm of the missile state vector mz  is a non-

increasing function of time. 
In this paper we restrict our attention to studying whether 
stability is retained over the entire problem interval. If the 
one non-zero entry in fK  is unbounded then the two 
stability requirements ensure that the missile hits (with zero 
miss distance) the target with bounded values of its state 
vector. 
The next sections deal with the stability of the guidance 
loop where the dynamics of the actual missile differ from 
that used in the guidance derivation. 

III. TIME DOMAIN ANALYSIS 
In this section we define the Lyapunov function  [8] that we 
use for the time-domain analysis, and derive some of its 
properties. 

A. The Stability Condition 
We seek a Lyapunov function of the form 
 m

T T T
m m mV = +x G KGx z Rz  (14) 

where R , is an as yet undetermined, positive definite 
matrix. The matrix K  has the following special form 
 Tγ=K nn  (15) 

where (1,1)γ = K ,  1 ( )T T
g r gt t =  n n  and ( )r gtn  is the 

lateral displacement response due to the missile’s initial 
acceleration states. Thus the Lyupanov function can be 
written as 
 2 T

m mV Zemγ= + z Rz . (16) 
where Zem  is an approximation of the zero effort miss 
based on the missile model (2) used in deriving the optimal 
guidance law. Note that this approximation relies on the 
relation m≈x Gx  obtained from Eqs.(12) and (13). 
This Lyapunov function is only positive semi-definite, but 
the negativity of its derivative is a sufficient condition for 
the stability of the optimal law. Note also that  γ → ∞  as 
the weight on the terminal miss grows without bound. 
Using Eq.(7)  we obtain that the time derivative of the 
Lyapunov function (14) is 
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Using the structure of the , , mG A A  matrices V may be 
rewritten as 
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Then a sufficient condition for stability is the existence of 
R , such that 
 ,> >R 0 S 0  (20) 
Because the functions γ  and n  depend on time, equations 
(19) and (20) describe an infinite system of Linear Matrix 
Inequalities  [9],  [10]. 

B. Conditions for Small Variations Stability 
We now show that when the missile is stable and the actual 
missile dynamics are equal to the dynamics assumed in the 
optimal guidance problem then there always exists an  R   
satisfying 0>R . Further, by continuity, the stability is 
retained for values of the missile dynamics near its assumed 
values.  
When the actual missile dynamics equals that of the 
optimization problem then by substituting m =F F , m =B B , 

m =h h , r =G I  in equation (19) we obtain, 
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Using Schur complements  [9] this is equivalent to 
 − − >TF R RF 0  (22) 
 11 ( ) 0T T T T− − − − > n B g R F R RF Rg B n  (23) 
Since we assume that the missile’s transfer function is 
stable, there exists a positive definite solution R  of 
Eq.(22) for any positive definite Q  
 T + = −F R RF Q  (24) 
Substituting(24) into(23) we obtain 
 11 0T T T− − > n B g RQ Rg B n  (25) 
which can be satisfied by choosing >Q 0  sufficiently 
small. Therefore the nominal closed loop system is stable. 
Further, because the left hand side of inequality (25) is a 
continuous function, stability is retained in the face of small 
parameter variations. 

C. Specialization of the LMI 
In this section we derive the special form of the LMI 
defined by Eqs.(19) and (20) for the case that: 1. the missile 
model used in the design of the optimal law is a first order 
system; 2. the transfer function of the actual missile is 
strictly proper. We now use these assumptions to simplify 

the system of LMI’s from the previous section. From the 
assumptions we conclude that 

 1

pτ
= −F , 1

pτ
=g , 1=h , 0d = . 0md = , r m=G h  (26) 

Substituting Eqs. (26) into Eq. (19) and using Schur 
complements and the fact that γ and rn are non-negative 
scalars  we find that the inequality 
 >S 0  (27) 
is equivalent to 
 >T 0  (28) 
where T  is 
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Thus we arrive at a set of 2 LMI’s ,> >R 0 S 0  instead of 
an infinite set, as a sufficient condition for stability. 

IV. FREQUENCY DOMAIN ANALYSIS 

A. Stability Conditions for First Order Guidance Law 
We recall the actual missile model described by Eq. (9). 
Assuming that the missile model used for the design of the 
guidance law is a first order model of the form 

 1
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then the acceleration command, as defined by the guidance 
law, is 

 ca Zem= Λ  (31) 
where, 
 ( )g p p gZem y vt g t aτ= + −  (32) 

and Λ is defined by 
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The variables p pgτ , pzg  are the lateral displacements due 
to initial acceleration and due to impulse input applied to 

( ) ( )ca s a s , respectively  [7]. 
Note that Zem is the estimated zero effort miss calculated 
by the guidance law model. 
Let us define a new state variable w by  

 1( )p m c
p

w d a
g

τ= +
Λ

 (34) 

Using Eq. (34) the time derivative of w is  
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The following intermediate results can be used to derive a 
compact expression for w : 
 ca Zem Zem= Λ + Λ  (36) 
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g
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 p p pZem g a g aτ= − −  (38) 
 m m m ca h z d a= +  (39) 
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Using equations (36) to (40) w can be expressed as 

( ) ( ) p p
m p m m p m m m c c
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Equation (41) enables us to define the following set of state 
equations 
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where the state x  is [ ]T
mz w and the control u  satisfies 
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The control can also be described by 
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Assuming that the time varying gains (1 )p m p pg d gτΛ + Λ  and 

( ) (1 )p p m p pg g d gτ+ Λ  are sector bounded, the stability of 
the system (42) to (45) can be analyzed using a 
multivariable version of the Circle Criterion,  [8] Corollary 
5.6.28, p.225, which we repeat here, 
Multivariable circle criterion 
Consider the system 

 
= +
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x Ax Bu
y Cx Du

 (46) 

where 
 ( , )t= −u Φ y  (47) 
Suppose that (i) ( , )A B is controllable (ii) ( , )C A is 

observable (iii)Φ  belongs to the sector ],[ µε . 
Define 

 1( ) ( )[ ( )]s s I sε ε −= +W W W  (48) 
where, 
 1( ) ( )s sI D−= − +W C A B  (49) 
and suppose that 

 1( ) ( )s sε µ ε
= +

−
W W  (50) 

is strictly positive real, and all poles of ( )sεW have 
negative real parts. Under these conditions the system (46), 
(47) is exponentially stable. 
We constrain the time interval 1 2[ , ]t t where we expect to 
establish stability so that the following are valid 
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where µ ε> . We choose ε  to be an arbitrarily small 
positive number, for example 1µ ε= . For large values of 

gt  the feedback gains tend to zero, while for small values of  

gt  they tend to infinity. We have here implicitly assumed 

that the missile transfer function (30) used to design the 
guidance law is a minimum phase, or alternatively we 
restrict 1t  and 2t  so that (51) is valid. Under minimum 

phase conditions we may take 1t  to be any finite number 

and  2t  to be arbitrarily close to the terminal time. 
The poles of ( )sW consist of the poles of the missile 
transfer function associated with (9), and a simple pole at 
the origin. To apply the theorem we still have to prove that 
all the poles of ( )sεW  have negative real parts, and 

( )sW is strictly positive real. Now suppose that ( )sW is 
positive real. Then (a) ( )sεW  is positive real, since it 
represents a positive real system with a strictly positive gain 
ε  in a negative feedback configuration. Further, by 
considering the properties of the root locus of ( )W sε (with 
ε  as the parameter) we may conclude that for sufficiently 
small but positive values of ε  all the poles of ( )sεW have  

negative real parts. (b) ( )sW is a strictly positive real 
transfer function since ( )W sε  is positive real. 
It is then sufficient to show that ( )sW is positive real in 
order to show that the guidance loop is exponentially stable 
on any interval where Φ  in Eq. (45) is in the sector[ ,1 ]ε ε . 
For the class of control laws studied in this paper this 
implies stability up to a time arbitrarily close to the terminal 
time.  
Note that the positive real condition can be tested directly in 
terms of the state matrices or as a linear matrix inequality 
 [11]. 



 
 

 

 

B. Conditions for Stability Near 0gt =  

Consider the case where the missile model used in the 
guidance law is described by Eq. (26), and the actual 
missile model is described by Eq. (9) with 0md = . 
Conditions for stability near 0got =  can be derived using 

approximations for the time varying functions  p p

p

g g
g

−
Λ

 in 

Eq. (41) and pg Λ in Eq. (44) assuming 0md = .  
Using the following approximations near 0gt = , 
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then system (42), (43), and (44) is reduced to 

 
0

2( ) 0 ( )
5

m
mm m

cc
m p m p m m

a
Iw wτ τ

−       = +      − + −       

gFz z
h F h g

 

  (53) 
where, 
 cc c pa a g w= − = − Λ  (54) 
The minus sign in Eq.(54) guarantees that the transfer 
function ( ) ( )W s s −= − 1c I A b ; [0 1]=c is associated 
with negative feedback as required in the circle criterion.  

Note that 5 [0, ]p
g

g
t

Λ ≈ ∈ ∞ .  In this case the stability is 

guaranteed if the transfer function ( )W s  is positive real.  

V. EXAMPLES 
In the following we analyze three cases: a first order 
missile, a second order missile without a zero and a second 
order system including a zero using the time domain and the 
frequency domain methods. In all the examples the transfer 
function used in the derivation of the optimal guidance law 
is described by Eq. (26) 

A. Example 1: First Order Missile 
In this section we study the stability properties of the 
optimal guidance law when the actual missile is described 
by a first order system   

 1 1 ;c
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z z a a z
τ τ

= − + =  (55) 

1) Time domain analysis 
Using Eq. (29) we obtain that T is 
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Choosing pτ=R  we conclude that if 2m pτ τ< both 
conditions >R 0 , >T 0 are fulfilled and stability is 
retained. 

2) Frequency domain analysis 
We obtain that the transfer function ( )W s  associated with 
the stability near 0gt =  has the form 

 ( )3 5( )
1

p m

m

W s
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τ τ
τ

−
= +

+
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Hence if m pτ τ≤  then ( )W s  is positive real and the 
guidance loop is stable. 
Note that in this case the frequency domain analysis 
generates a stability region which is a subset of the region 
generated by the time domain analysis. 

3) Time responses 
The system was simulated for a number of values of mτ , 
and it was noted that the condition 2m pτ τ< properly 
delimits the regions of stability and instability. 

B. Example 2: Second Order Missile 
In this section we show that for the case of a second order 
missile transfer function a zero is required in order to obtain 
a stable guidance loop. 

1) Case 1: Second Order Missile without a zero 
Let the missile state equation be defined by 
  

[ ]2 2
0 0 0

0 1 0
; ; 1 0 ; 0

2m m md
ω ω ξ ω

   
= = = =   − −   

mF g h  (58) 

Substituting these values into Eq.(29) we obtain that 
2(1,1) 1 pτ= −T . 

Hence the stability test fails. The system was simulated and 
it was found that the states indeed diverge near the final 
time. 

2) Case 2: Second order missile including a zero 
We now consider a missile with a second order transfer 
function which includes zero at z1 T− .  
The associated system matrices are 

[ ]2 2
0 0 0

0 1 0
; ; 1 ; 0

2m m z mT d
ω ξω ω

   
= = = =   − −   

mF g h      (59) 

a) Time domain analysis 
Substituting these values into equation Eq. (29) the 
inequality T > 0  can be derived. We also need  >R 0 . The 
last two inequalities define a system of Linear Matrix 
Inequalities. Although an analytic solution was not found a 
set of parameters satisfying both inequalities was found by 
means of the Matlab® LMI toolbox  [10]. The results of the 
calculation for 1secpτ = are shown in Figure 1.  
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Figure 1: Regions of stability, time domain results for 

2, 1, 0.5, 0.25zT = seconds 

b) Frequency domain analysis  
The system (59) was used to calculate the transfer function 

)(sW  associated with the stability near 0gt = . 

Testing the transfer function )(sW  for the positive real 
condition using its LMI version  [11] and the Matlab® LMI 
toolbox  [10], we obtain the stability region in Figure 2 
where stability is verified in the region above and to the 
right of the lines. 
In contrast to the first order case there is no simple 
relationship between the regions predicted by the time 
domain and the frequency domain methods. In fact both sets 
of stability regions are subsets of the actual stability region 
as we demonstrate in the next section. 

c) Time Responses 

Again we take 1pτ = sec and study the acceleration 
commands generated in the closed loop guidance system. 
Three cases are examined. Case a: 0 1 / secradω = , 

0.6ξ = , 2zT = sec.   In this case the time domain criterion 
predicts stability, while the frequency domain criterion fails 
to predict stability. Case b: 0 0.3ω = / secrad             

0.6ξ = , 2zT = sec. In this case neither criterion predicts 
stability. Case c: 0 3 / secradω = , 0.6ξ = , 2zT =  sec. In 
this case the time domain criterion does not predict 
stability, while the frequency domain criterion does predict 
stability. The missile state responses for each have been 
investigated, and it was found that cases a and c are stable 
while case b results in an unstable system. 

VI. SUMMARY AND CONCLUSIONS 
A frequency domain method and a time domain method 
were used to study the properties of a missile guidance 
system based on an optimal guidance law. Both of these 
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Figure 2: Regions of stability, frequency domain results 
for 2, 1, 0.5, 0.25zT = seconds 

methods provide sufficient conditions for the stability of the 
closed loop system. We have shown that stability is retained 
in the face of significant missile parameter departure from 
its nominal values. Nevertheless, by means of simple 
simulations we have shown that the derived stability regions 
are subsets of the actual region of stability. 
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